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CHAPTER 1

Markov Chains

This chapter is under development.
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CHAPTER 2

Renewal and Regenerative Processes

Renewal and regenerative processes are used to model stochastic phe-
nomena in which an event, or combination of events, occurs repeatedly over
time, and the times between occurrences are i.i.d. Models of such phenomena
typically focus on (i) determining limiting averages for costs or other system
parameters, via strong laws of large numbers (SLLN’s), and (ii) establishing
whether certain probabilities or expected values for a system converge over
time, and evaluating their limits.

Accordingly, a significant part of this chapter is devoted to SLLN’s for
several types of regenerative processes, including Markov chains, Poisson
processes, and Markov-renewal processes. These laws are based on the clas-
sical SLLN for sums of independent, identically distributed random vari-
ables. The main part of this chapter, however, covers Blackwell’s renewal
theorem, and an equivalent key renewal theorem. These results are im-
portant tools for characterizing the limiting behavior of probabilities and
expectations associated with regenerative processes.

1. Renewal Processes

In this section, we introduce renewal processes and discuss several ex-
amples. The discussion covers Poisson processes and renewal processes that
are “embedded” in more intricate processes.

We begin with some point process notation and terminology, which we
use throughout this chapter. Suppose 0 ≤ T1 ≤ T2 ≤ . . . are random times
at which a certain event occurs; or the Tn are locations in <+ at which some
phenomenon occurs. The number of the times Tn in the interval (0, t] is

N(t) =
∞∑

n=1

1(Tn ≤ t), t ≥ 0.

We assume this counting process is finite valued for each t, which is equiv-
alent to Tn →∞ a.s. as n →∞.

The process {N(t) : t ≥ 0}, denoted simply by N(t), is a point process
on <+. The Tn are its occurrence times (or point locations). The point
process N(t) is simple if its occurrence times are distinct: 0 < T1 < T2 < . . .
a.s. (there is at most one occurrence at any instant).

Definition 1. A simple point process N(t) is a renewal process if the
inter-occurrence times ξn = Tn − Tn−1, for n ≥ 1, are independent with a
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4 2. RENEWAL AND REGENERATIVE PROCESSES

common distribution F , where F (0) = 0 and T0 = 0. The Tn are called
renewal times because of the independent or renewed stochastic information
at these times. The ξn are the inter-renewal times, and N(t) is the number
of renewals in (0, t].

To establish the “existence” of a renewal process, one must justify that
there exists a probability space and independent random variables ξ1, ξ2, . . .
defined on it that have the distribution F . The existence of such a proba-
bility space is given by Theorem 6.1 in the Appendix.

Examples of renewal processes include the random times at which: cus-
tomers enter a queue for service, insurance claims are filed, accidents or
emergencies happen, or a stochastic process enters a special state of inter-
est. In addition, Tn might be the location of the nth vehicle on a highway, or
the location of the nth flaw along a pipeline or cable, or the cumulative quan-
tity of a product processed in n production cycles. A discrete-time renewal
process is one whose renewal times Tn are integer-valued. Such processes
are used for modelling systems in discrete time, or for modelling sequential
phenomena such as the occurrence of a certain character (or special data
packet) in a string of characters (or packets), such as in DNA sequences.

Example 1.1. Scheduled Maintenance. An automobile is lubricated
when its owner has driven it L miles or every M days, whichever comes
first. Let N(t) denote the number of lubrications up to time t. Suppose the
numbers of miles driven in disjoint time periods are independent, and the
number of miles in any time interval has the same distribution, regardless
of where the interval begins. Then it is reasonable that N(t) is a renewal
process. The inter-renewal distribution is F (t) = P{τ ∧ M ≤ t}, where τ
denotes the time to accumulate L miles on the automobile.

This scheduled maintenance model applies to many types of systems
where maintenance is performed when the system usage exceeds a certain
level L or when a time M has elapsed. For instance, in reliability theory,
the Age Replacement model of components or systems, replaces a component
with lifetime τ if it fails or reaches a certain age M (see Exercise 19).

Example 1.2. Service Times. An operator in a call center answers
calls one at a time. The calls are independent and homogeneous in that
the callers, the call durations, and the nature of the calls are independent
and homogeneous. Also, the time needed to process a typical call (which
may include post-call processing) has a distribution F . Then one would be
justified in modelling the number of calls N(t) that the operator can process
in time t as a renewal process. The time scale here refers to the time that
the operator is actually working; it is not the real time scale that includes
intervals with no calls, operator work-breaks, etc.

We begin with elementary properties of renewal processes. Unless spec-
ified otherwise, N(t) will denote a renewal process with inter-renewal dis-
tribution F . Important relations between the times Tn and counts N(t)
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are

{N(t) ≥ n} = {Tn ≤ t},
TN(t) ≤ t < TN(t)+1.

In addition, N(Tn) = n and

N(t) = max{n : Tn ≤ t} = min{n : Tn+1 > t}.
These relations (which also hold for simple point processes) are used to
derive properties of N(t) in terms of Tn, and vice versa.

We have a good understanding of Tn =
∑n

k=1 ξk, since it is a sum of
independent variables with distribution F . In particular, by properties of
convolutions of distributions (see the Appendix), we know that

P{Tn ≤ t} = Fn?(t),

which is the n-fold convolution of F . Then {N(t) ≥ n} = {Tn ≤ t} yields

(1.3) P{N(t) ≤ n} = 1− F (n+1)?(t).

Also, using EN(t) =
∑∞

n=1 P{N(t) ≥ n} (a well-known formula for
means; see Exercise 1), we have

(1.4) EN(t) =
∞∑

n=1

Fn?(t).

Here is a justification that this mean and all moments of N(t) are finite.
Properties of moment generating functions are in the Appendix.

Proposition 1.5. For each t ≥ 0, the moment generating function
E[eαN(t)] exists for some α in a neighborhood of 0, and hence

E[N(t)m] < ∞, m ≥ 1.

Proof. Choose x > 0 such that p ≡ P{ξ1 > x} > 0. Consider the sum
Sn =

∑n
k=1 1(ξk > x), which is the number of successes in n independent

Bernoulli trials with probability of success p. The number of trials until the
mth success is Zm = min{n : Sn = m}

Clearly xSn ≤ Tn, and so

N(t) = max{n : Tn ≤ t} ≤ max{n : Sn = bt/xc} ≤ Zbt/xc+1.

Now Zm has a negative binomial distribution with parameters m and p,
and its moment generating function E[eαZm ] is given in (20.1) in Exercise 8.
From these observations, we have

E[eαN(t)] ≤ E[eαZbt/xc+1 ] =
( peα

1− qeα

)bt/xc+1
, 0 < α < − log q.

Thus, the moment generating function of N(t) exists. This existence ensures
that all moments of N(t) exist (a well-known property of moment generating
functions for nonnegative random variables). ¤
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Keep in mind that the preceding properties of the renewal process N(t)
are true for any distribution F . When this distribution has a finite mean
µ and variance σ2, the distribution of N(t), for large t, is approximately a
normal distribution with mean t/µ and variance tσ2/µ3 (this follows by the
central limit theorem in Example 14.8 below). Refined asymptotic approxi-
mations for the mean of N(t) is given in Example 16.5.

The rest of this section is devoted to examples of renewal processes. The
most prominent renewal process is as follows.

Example 1.6. Poisson Process. The renewal process N(t) is a Poisson
process with rate λ if the inter-renewal times have the exponential distribu-
tion F (t) = 1− e−λt with rate λ (its mean is λ−1). In this case,

P{Tn ≤ t} = Fn?(t) =
∫ t

0
λnxn−1 e−λx

(n− 1)!
dx.

This is a gamma distribution with parameters n and λ. Alternatively,

P{Tn ≤ t} = 1−
n−1∑

k=0

(λt)k

k!
e−λt.

This is justified by noting that the derivative of this function is clearly the
integrand (the gamma density) in the preceding integral. Then by {N(t) ≥
n} = {Tn ≤ t}, we arrive at

P{N(t) ≤ n} =
n∑

k=0

(λt)k

k!
e−λt.

This is the Poisson distribution with mean EN(t) = λt.

Poisson processes are very important in the theory and applications
of stochastic processes. We will discuss them further in Chapter 3. The
discrete-time analogue of a Poisson process is the Bernoulli process described
in Exercise 8.

Example 1.7. Delayed Renewal Process. Many applications involve a
renewal process N(t) with the slight difference that the first renewal time
ξ1 does not have the same distribution as the other ξn, for n ≥ 2. We call
N(t) a delayed renewal process. Elementary properties of delayed renewal
processes are similar to those for renewal processes with the obvious changes
(e.g., if ξ1 has distribution G, then the time Tn of the nth renewal has the
distribution G ? F (n−1)?(t)). More important, we will see that most of the
limit theorems we present for renewal processes also apply to delayed renewal
processes.

In addition to being of interest by themselves, renewal processes play
an important role in analyzing more complex stochastic processes. Specifi-
cally, as a stochastic process evolves over time, it is natural for some event
associated with its realization to occur again and again. When the “embed-
ded” occurrence times of the event are renewal times, they may be useful
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for gleaning properties about the parent process. Stochastic processes with
embedded renewal times include Markov chains, Markov processes, Markov-
Renewal processes and more general regenerative processes. The Markov
chains are described next and the other processes are introduced in later
sections.

Example 1.8. Ergodic Markov Chain. Let Xn denote a discrete-time
ergodic (aperiodic, irreducible and positive recurrent) Markov chain on a
countable state space. Consider any state i and let 0 < ν1 < ν2 < . . . denote
the (discrete) times at which Xn enters state i. The Markov property ensures
that the times νn form a discrete-time renewal process when X0 = i. These
times form a delayed renewal process when X0 6= i. The Bernoulli process
in Exercise 8 is a special case.

Example 1.9. Cyclic Renewal Process. Consider a continuous-time sto-
chastic process X(t) that cycles through states 0, 1, . . . ,K− 1 in that order,
again and again. That is, it starts at X(0) = 0, and its nth state is j if
n = mK + j for some m. For instance, in modelling the status of a ma-
chine or system, X(t) might be the amount of deterioration of a system, or
the number of shocks (or services) it has had, and the system is renewed
whenever it ends a sojourn in state K − 1.

Assume the sojourn times in the states are independent, and let Fj

denote the sojourn time distribution for state j, where Fj(0) = 0. The
time for the process X(t) to complete a cycle from state 0 back to 0 has the
distribution F = F0 ?F1 ? · · ·?FK−1. Then it is clear that the times at which
X(t) enters state 0 form a renewal process with inter-renewal distribution
F . We call X(t) a cyclic renewal process.

There are many other renewal processes embedded in X(t). For instance,
the times at which the process enters any fixed state i form a delayed renewal
process with the same distribution F . Another more subtle delayed renewal
process is the sequence of times at which the processes X(t) bypasses state
0 by jumping from state K − 1 to state 1 (assuming F0(0) > 0); see Exer-
cise 6. It is quite natural for a single stochastic process to contain several
such embedded renewal processes associated with particular features of the
process.

Example 1.10. Alternating Renewal Process. An alternating renewal
process is a cyclic renewal process with only two states, say 0 and 1. This
might be appropriate for indicating whether a system is working (state 1) or
not working (state 0), or whether a library book is available or unavailable
for use.

2. Strong Laws of Large Numbers

This section covers strong laws of large numbers (SLLN’s) for renewal
processes and related stochastic processes. We will use these strong laws
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throughout this chapter. Background material on convergence a.s. is in the
Appendix.

We begin with the classical law for independent random variables, which
is proved in standard texts on probability.

Theorem 2.1. (Classical SLLN) If X1, X2, . . . are independent, identi-
cally distributed random variables with a finite expectation µ, then

n−1
n∑

k=1

Xk → µ, a.s. as n →∞.

Throughout this section, we assume N(t) is a point process on <+ with
occurrence times Tn. The following result says that a SLLN for N(t) is
equivalent to a SLLN for Tn. Here and below, the limit statements are a.s.,
but for convenience, we will sometimes suppress this phrase.

Theorem 2.2. For a positive constant µ (or random variable that is
positive a.s.), the following statements are equivalent:

(2.3) lim
n→∞n−1Tn = µ, a.s.

(2.4) lim
t→∞ t−1N(t) = 1/µ, a.s.

Proof. Suppose (2.3) holds. We know TN(t) ≤ t < TN(t)+1. Dividing
these terms by N(t), we have

TN(t)

N(t)
≤ t

N(t)
<

TN(t)+1

N(t) + 1
N(t) + 1

N(t)
.

Supposition (2.3) along with N(t) ↑ ∞ and (N(t) + 1)/N(t) → 1 ensure
that the first and last terms in this display converge to µ. Since t/N(t) is
sandwiched between these terms, it must also converge to their limit µ. This
proves (2.4).

Conversely, suppose (2.4) holds. When N(t) is simple, N(Tn) = n, and
so Tn/n = Tn/N(Tn) → µ. When N(t) is not simple, N(Tn) ≥ n and one
can prove (2.3) as suggested in Exercise 18. ¤

Corollary 2.5. (SLLN for Renewal Processes). If N(t) is a renewal
process whose inter-renewal times have a finite mean µ, then

t−1N(t) → 1/µ, a.s. as t →∞.

Proof. This follows by Theorem 2.2, since the classical SLLN ensures
that n−1Tn → µ. ¤

This result has the extension that t−1N(t) → 0 a.s. as t → ∞, when
the inter-renewal times have an infinite mean. Indeed, the classical SLLN
extends to n−1Tn →∞, when ET1 = ∞, and this in turn implies t−1N(t) →
0 by the argument above for proving (2.3) implies (2.4).
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Example 2.6. Statistical Estimation. Suppose N(t) is a Poisson process
with rate λ, but this rate is not known, and one wants to estimate it. One
approach is to observe the process for a fixed time interval of length t and
record N(t). Then an estimator for λ is

λ̂t ≡ t−1N(t).

This estimator is unbiased in that Eλ̂t = λ. It is also a consistent estimator
since λ̂t → λ by Corollary 2.5. Similarly, if N(t) is a renewal process whose
inter-renewal distribution has a finite mean µ, then µ̂t ≡ t/N(t) is a consis-
tent estimator for µ (but it is not unbiased). Of course, if it is practical to
observe a fixed number n of renewals (rather than observing over a “fixed”
time), then n−1Tn is an unbiased and consistent estimator of µ.

We now present a framework for obtaining SLLN’s for a variety of sto-
chastic processes. Consider a real-valued stochastic process {Z(t) : t ≥ 0}
on the same probability space as the point process N(t). The next result de-
scribes natural conditions under which the limit of its average value t−1Z(t)
exists. For instance, Z(t) might denote a cumulative utility (e.g., cost or re-
ward) associated with a system, and one is interested in the utility per unit
time t−1Z(t) for large t. The following theorem relates the limit of the time
average t−1Z(t) to the limit of the embedded interval average n−1Z(Tn).
The main assumption is that the maximum fluctuation Mn of Z(t) in the
interval (Tn−1, Tn] does not increase faster than n as n →∞, a rather weak
assumption.

Theorem 2.7. Suppose the real-valued stochastic process Z(t) is either
increasing, or it satisfies

n−1Mn ≡ n−1 sup
Tn−1<t≤Tn

|Z(t)− Z(Tn−1)| → 0, a.s. as n →∞.

Assume the limit µ ≡ limn→∞ n−1Tn exists a.s. and is a positive constant.
Then the following statements are equivalent, for a ∈ <:

n−1Z(Tn) → a, a.s. as n →∞.(2.8)
t−1Z(t) → a/µ, a.s. as t →∞.(2.9)

Proof. Suppose (14.6) holds, and consider

t−1Z(t) = t−1Z(TN(t)) + t−1[Z(t)− Z(TN(t))].

By Theorem 2.2, we know N(t)/t → 1/µ, and so N(t) →∞. These proper-
ties and supposition (14.6) yield

t−1Z(TN(t)) = [Z(TN(t))/N(t)][N(t)/t] → a/µ.

In light of these observations, to prove t−1Z(t) → a/µ, it remains to show
r(t) ≡ t−1[Z(t) − Z(TN(t))] → 0. In case Z(t) is increasing, (14.6) and
N(t)/t → 1/µ ensure that

|r(t)| ≤ [Z(TN(t)+1)− Z(TN(t))]
N(t)

N(t)
t

→ 0.
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Also, in the other case in which n−1Mn → 0,

|r(t)| ≤ [MN(t)+1/(N(t) + 1)][(N(t) + 1)/t] → 0.

Thus r(t) → 0, which completes the proof that (14.6) implies (14.7).
Conversely, if (14.7) is true then (14.6) follows since

n−1Z(Tn) = T−1
n Z(Tn)(Tn/n) → a.

¤

We will see a number of applications of Theorem 2.7 throughout this
chapter. Here are two elementary examples.

Example 2.10. Renewal Reward Process. Suppose N(t) is a renewal
process associated with a system in which a reward Yn (or cost or utility
value) is received at time Tn, for n ≥ 1. Then the total reward in (0, t] is

Z(t) =
∞∑

n=1

Yn1(Tn ≤ t) =
N(t)∑

n=1

Yn, t ≥ 0.

For the last sum, one uses the convention
∑0

n=1(·) = 0. For instance, Yn

might be claims received by an insurance company at times Tn, and Z(t)
would represent the cumulative claims.

The process Z(t) is a renewal reward process if the pairs (ξn, Yn), n ≥ 1,
are i.i.d. (ξn and Yn may be dependent). Under this assumption, it follows
by Theorem 2.7 that the average reward per unit time is

lim
t→∞ t−1Z(t) = EY1/Eξ1, a.s.,

provided the expectations are finite. This result is very useful for practition-
ers in many diverse contexts. One only has to justify the renewal conditions
and evaluate the expectations. In complicated systems with many activities,
a little thought may be needed to identify the renewal times as well as the
associated rewards.

Example 2.11. Cyclic Renewal Process. Let X(t) be a cyclic renewal
process on 0, . . . , K − 1 as in Example 1.9. Recall the entrance times to
state 0 form a renewal process, and the mean inter-renewal time is µ =
µ0 + · · · + µK−1, where µi is the mean sojourn time in state i. Suppose a
cost or value f(i) per unit time is incurred whenever X(t) is in state i. Then
the average cost per unit time is

(2.12) lim
t→∞ t−1

∫ t

0
f(X(s))ds =

1
µ

K−1∑

i=0

f(i)µi.

This follows by applying Theorem 2.7 to Z(t) =
∫ t
0 f(X(s))ds and noting

that EZ(T1) =
∑K−1

i=0 f(i)µi.
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A particular case of (2.12) says that the portion of time X(t) spends in
a subset of states J is

lim
t→∞ t−1

∫ t

0
1(X(s) ∈ J)ds =

∑

j∈J

µj/µ.

3. The Renewal Function

Throughout this section, N(t) will denote a renewal process with inter-
renewal distribution F and finite mean µ. Its renewal function is defined
as

(3.1) U(t) ≡
∞∑

n=0

Fn?(t), t ≥ 0,

where F 0?(t) = 1 or 0 according as t ≥ 0 or t < 0. That is, U(t) =
EN(t) + 1, for t > 0, is viewed as the expected number of renewals up
to time t including a fictitious renewal at time 0. Although the renewal
function U(t) is ostensibly very simple, it has some remarkable uses as we
will now explore.

Note that U(t) is similar to a distribution function in that it is nonde-
creasing and right-continuous; however U(t) ↑ ∞ as t → ∞. Keep in mind
that U(t) has a unit jump at t = 0.

The next result says that when the inter-renewal times are continuous,
the renewal function has a density; this implies that the probability of a
renewal at any time is 0. For example, if N(t) is a Poisson process with rate
λ, then U ′(t) = λ, for t > 0, and P{N(t) > N(t−)} = 0, for each t.

Proposition 3.2. Suppose the inter-renewal distribution F has a den-
sity f . Then U(t) also has a density for t > 0, and it is

U ′(t) =
∞∑

n=1

fn?(t).

In addition, P{N(t) > N(t−)} = 0, for each t.

Proof. The first assertion follows since U(t) =
∑∞

n=0 Fn?(t), and the
derivative of Fn?(t) is fn?(t). The second assertion, which is equivalent
to N(t) − N(t−) = 0 a.s., will follow if E[N(t) − N(t−)] = 0. But the
last equality is true since by the monotone convergence theorem (see the
Appendix, Theorem 8.6) and the continuity of U ,

EN(t−) = E[lim
s↑t

N(s)] = lim
s↑t

EN(s) = U(t) = EN(t).

¤
Some of the results below will be slightly different when the inter-arrival

distribution is arithmetic. The distribution F is arithmetic (or periodic)
if it is piecewise constant and its points of increase are contained in a set
{0, d, 2d, . . .}, and the largest d > 0 with this property is the span. In
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this case, it is clear that the distributions Fn? and the renewal function
U(t) also have this arithmetic property. If F is not arithmetic, we call it
non-arithmetic. A distribution with a continuous part is necessarily non-
arithmetic.

The expectation of a function g : <+ → < on the interval [a, b] with
respect to F will be expressed as the Riemann-Stieltjes integral

∫

[a,b]
g(t)dF (t), a < b ≤ ∞.

The Appendix describes this type of integral and its role for representing
expectations. All the functions in this book like g are assumed to be measur-
able (see the Appendix); for simplicity, we will not repeat this assumption
unless emphasis is needed. Riemann-Stieltjes integrals with respect to U are
defined similarly , since U is nondecreasing and right-continuous just like a
distribution function (although U(t) →∞ as t →∞). An example is

∫

[0,b]
g(t)dU(t) = g(0) +

∫

(0,b]
g(t)dU(t).

The right-hand side highlights that g(0)U(0) = g(0) is the contribution from
the unit jump of U at 0.

An important property of the renewal function U(t) is that it uniquely
determines the distribution F . To see this, we will use Laplace transforms.
The Laplace-Stieltjes or simply the Laplace transform of F is defined by

F̂ (α) ≡
∫

<+

e−αtdF (t), α ≥ 0.

A basic property is that the transform F̂ uniquely determines F and vice
versa. The Laplace transform Û(α) of U(t) is defined similarly. Now, taking
the Laplace transform of both sides in (3.1), we have

Û(α) =
∞∑

n=0

F̂n?(α) =
∞∑

n=0

F̂ (α)n = 1/(1− F̂ (α)).

This yields the following result.

Proposition 3.3. The Laplace transforms Û(α) and F̂ (α) determine
each other uniquely by the relation Û(α) = 1/(1 − F̂ (α)). Hence U and F
uniquely determine each other.

One can sometimes use this result for identifying that a renewal process
is of a certain type, such as a Poisson process, whose renewal function has
the form U(t) = λt + 1.

Remark 3.4. A renewal process N(t), whose inter-renewal times have
a finite mean, is a Poisson process with rate λ if and only if EN(t) = λt, for
t ≥ 0.
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Two other renewal processes with tractable renewal functions are ones
whose inter-renewal distribution is a convolution or mixture of exponential
distributions; see Exercises 5 and 12. Sometimes the Laplace transform
Û(α) = 1/(1 − F̂ (α)) can be inverted to determine U(t). Unfortunately,
nice expressions for renewal processes are the exception rather than the
rule.

In addition to characterizing renewal processes as discussed above, re-
newal functions arise naturally in expressions for probabilities and expecta-
tions of functions associated with renewal processes. Such expressions are
the focus of much of this chapter.

The next result describes an important family of functions of point pro-
cesses as well as renewal processes. Expression (3.6) is a special case of
Campbell’s formula in the theory of point processes.

Theorem 3.5. Let N(t) be a simple point process with point locations
Tn such that η(t) ≡ E[N(t)] is finite for each t. Then for any function
f : <+ → <,

(3.6) E
[ N(t)∑

n=1

f(Tn)
]

=
∫

[0,t]
f(s)dη(s), t ≥ 0,

provided the integral exists.

Proof. The following is a standard approach for proving properties of
integrals. For convenience, denote the equality (3.6) by Σ(f) = I(f). First,
consider the simple piecewise-constant function

f(s) =
m∑

k=1

ak1(s ∈ (sk, tk]),

for fixed 0 ≤ s1 < t1 < . . . < sm < tm ≤ t. In this case,

Σ(f) = E
[ m∑

k=1

ak[N(tk)−N(sk)]
]

=
m∑

k=1

ak[η(tk)− η(sk)] = I(f).

Next, for any nonnegative function f one can define simple functions
fm as above such that fm(s) ↑ f(s) as m → ∞ for each s. For instance,
fm(s) = m ∧ (b2mf(s)c/2m). Then by the monotone convergence theorem
(see the Appendix, Theorem 8.6) and the first part of this proof,

Σ(f) = lim
m→∞Σ(fm) = lim

m→∞ I(fm) = I(f).

Thus, (3.6) is true for nonnegative f .
Finally, (3.6) is true for a general function f , since f(s) = f(s)+−f(s)−

and the preceding part of the proof for nonnegative functions yield

Σ(f) = Σ(f+)− Σ(f−) = I(f+)− I(f−) = I(f).
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¤
Some applications of formula (3.6) take the following form.

Corollary 3.7. Let N(t) be a simple point process with point locations
Tn such that η(t) ≡ E[N(t)] is finite for each t. Suppose X1, X2, . . . are
random variables defined on the same probability space as the process N(t),
and there is a function f : <+ → < such that E[Xn|Tn = s] = f(s),
independent of n. Then

(3.8) E
[ N(t)∑

n=1

Xn

]
=

∫

[0,t]
f(s)dη(s), t ≥ 0,

provided the integral exists.

Proof. It suffices to prove the assertion for nonnegative Xn. Condi-
tioning on Tn, we have

E
[ N(t)∑

n=1

Xn

]
=

∞∑

n=1

E[Xn1(Tn ≤ t)]

=
∞∑

n=1

∫

[0,t]
f(s)dFn?(s) = E

[ N(t)∑

n=1

f(Tn)
]
.

Then applying (3.6) to the last term yields (3.8). ¤
Remark 3.9. Theorem 3.5 and Corollary 3.7 apply to renewal processes.

For a renewal process N(t), it is convenient to express (3.6) as

E
[ N(t)∑

n=0

f(Tn)
]

=
∫

[0,t]
f(s)dU(s).

This includes a value f(0) on both sides of the equality — recall U(t)
has a unit jump at t = 0. Similarly, (3.8) would be E

[∑N(t)
n=0 Xn

]
=∫

[0,t] f(s)dU(s).

Here is a particular application of (3.8) for renewal processes. It is a
special case of a general Wald identity for stopping times, which is covered
in the theory of martingales.

Corollary 3.10. (Wald Identity for Renewals) The renewal process
N(t) satisfies

E[TN(t)+1] = µE[N(t) + 1], t ≥ 0.

Proof. Since TN(t)+1 =
∑N(t)

n=0 ξn+1, an application of (3.8) with Xn ≡
ξn+1, where E[ξn+1|Tn] = µ, yields

E[TN(t)+1] = µU(t) = µE[N(t) + 1].

¤
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In light of this result, one might suspect that E[TN(t)] = µE[N(t)].
However, this is not the case. In fact, ETN(t) ≤ µEN(t); and this is a strict
inequality for a Poisson process; see Exercise 22.

Example 3.11. Discounted Rewards. Suppose a renewal process N(t)
has rewards associated with it such that a reward (or cost) Yn is obtained
at the nth renewal time Tn. The rewards are discounted continuously over
time and if a reward y occurs a time t, it has a discounted value of ye−αt.
Then the total discounted reward up to time t is

N(t)∑

n=1

Yne−αTn .

As in Corollary 3.7, assume there is a function f : <+ → < such that
E[Yn|Tn = s] = f(s), independent of n. Then applying (3.8) to Xn =
Yne−αTn yields

E
[ N(t)∑

n=1

Yne−αTn

]
=

∫

[0,t]
e−αsf(s)dU(s).

The next examples describe several systems modelled by renewal pro-
cesses with the same type of inter-renewal distribution shown in (3.13) below
(also see Exercise 16).

Example 3.12. Single-Server System. Pallets are scheduled to arrive
at an automatically guided vehicle (AGV) station according to a renewal
process N(t) with inter-arrival distribution F . The station is attended by a
single AGV, which can transport only one pallet at a time. Pallets scheduled
to arrive when the AGV is already busy transporting a pallet are diverted
to another station. Assume the transportation times are independent with
common distribution G.

Let us consider the times T̃n at which the AGV begins to transport a
pallet (the times at which pallets arrive and the AGV is idle). For simplicity,
assume a transport starts at time 0. To describe T̃1, let τ denote a transport
time for the first pallet. Then T̃1 equals τ plus the waiting time TN(τ)+1− τ
for the next pallet to arrive after transporting the first pallet. That is,
T̃1 = TN(τ)+1. When the next pallet arrives at time TN(τ)+1, the system
is renewed and these cycles are repeated indefinitely. Thus T̃n are renewal
times.

The inter-renewal distribution of T̃1 and its mean have reasonable ex-
pressions in terms of the arrival process. Indeed, conditioning on τ , which
is independent of N(t), yields

(3.13) P{T̃1 ≤ t} =
∫

<+

P{TN(x)+1 ≤ t}dG(x).
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Also, if F has a finite mean µ, then by Wald’s identity,

E[T̃1] =
∫

<+

E[TN(x)+1]dG(x) = µ

∫

<+

U(x)dG(x).

Example 3.14. GI/G/1/1 System. Consider a system in which cus-
tomers arrive at a processing station according to a renewal process with
inter-arrival distribution F and are processed by a single server. The pro-
cessing or service times are independent with the common distribution G,
and are independent of the arrival process. Also, customer arrivals during
a service time are blocked from being served — they either go elsewhere or
go without service. In this context the times T̃n at which customers begin
services are renewal times as in the preceding example with inter-renewal
distribution (3.13). This system is called a GI/G/1/1 system: GI/G means
the inter-arrival and service times are i.i.d. (with general distributions) and
1/1 means there is one server and at most one customer in the system.

Example 3.15. Geiger Counters. A classical model of a Geiger counter
assumes that electronic particles arrive at the counter according to a Poisson
or renewal process. Upon recording an arrival of a particle, the counter
is locked for a random time during which arrivals of new particles are not
recorded. The times of being locked are i.i.d. and independent of the arrivals.
Under these assumptions, it follows that the times T̃n at which particles are
recorded are renewal times, and have the same structure as those for the
GI/G/1/1 system described above. This so-called Type I model assumes
that particles arriving while the counter is locked do not affect the counter.

A slightly different Type II Geiger counter model assumes that whenever
the counter is locked and a particle arrives, that particle is not recorded, but
it extends the locked period by another independent locking time. The times
at which particles are registered are renewal times, but the inter-renewal
distribution is more intricate than that for the Type I counter.

4. Future Expectations

We have just seen the usefulness of the renewal function for characteriz-
ing a renewal process and for describing some expected values of the process.
In the following sections, we will discuss the major role a renewal function
plays in describing the limiting behavior of probabilities and expectations
associated with renewal and regenerative phenomena. This section outlines
what to expect in the next three sections, which cover the heart of renewal
theory.

The analysis to follow will use convolutions of functions with respect to
the renewal function U(t), such as

U ? h(t) =
∫

[0,t]
h(t− s)dU(s) = h(0) +

∫

(0,t]
h(t− s)dU(s),
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where h is bounded on finite intervals and equals 0 for t < 0. As with
distributions, we extend the domain of U to the entire real line, setting
U(t) = 0 for t < 0.

Many probabilities and expectations associated with a renewal process
N(t) can be expressed as a function H(t) that satisfies a recursive equation
of the form

H(t) = h(t) +
∫ t

0
H(t− s)dF (s), t ≥ 0.

This “renewal equation”, under minor technical conditions given in the next
section, has a unique solution of the form H(t) = U ? h(t).

The next topic we address is the limiting behavior of such functions as
t →∞. We will present Blackwell’s theorem, and an equivalent key renewal
theorem, which establish

lim
t→∞U ? h(t) =

1
µ

∫

<+

h(s)ds.

This is for non-arithmetic F ; an analogous result holds for arithmetic F .
Also, the integral is slightly different than the standard Riemann integral.

We cover the topics outlined above — Renewal Equations, Blackwell’s
Theorem and the Key Renewal Theorem — in the next three sections.
Thereafter, we discuss applications of these theorems that describe the lim-
iting behavior of probabilities and expectations associated with renewal,
regenerative and Markov processes.

5. Renewal Equations

We begin our discussion of renewal equations with a concrete example.

Example 5.1. Let X(t) be a cyclic renewal process on 0, 1, . . . ,K − 1,
and consider the probability H(t) ≡ P{X(t) = i} as a function of time,
for a fixed state i. To show H(t) satisfies a renewal equation, the standard
approach is to condition on the time T1 of the first renewal (the first entrance
to state 0). The result is

(5.2) H(t) = P{X(t) = i, T1 > t}+ P{X(t) = i, T1 ≤ t},
where the last probability, conditioning on the renewal at T1, is

∫ t

0
P{X(t) = i|T1 = s}dF (s) =

∫ t

0
H(t− s)dF (s).

Therefore, the recursive equation (5.2) that H(t) satisfies is the renewal
equation

H(t) = h(t) + F ? H(t),

where h(t) = P{X(t) = i, T1 > t}.
With this example in mind, we are now ready for a formal definition of

a renewal equation. Let h(t) be a real-valued function on < that is bounded
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on finite intervals and equals 0 for t < 0. The renewal equation for h(t) and
the distribution F is

(5.3) H(t) = h(t) +
∫ t

0
H(t− s)dF (s), t ≥ 0,

where H(t) is a real-valued function. That is H = h + F ? H. We say H(t)
is a solution of this equation if it satisfies the equation, and is bounded on
finite intervals and equals 0 for t < 0.

Proposition 5.4. The function U ? h(t) is the unique solution to the
renewal equation (5.3).

Proof. Clearly U ? h(t) = 0 for t < 0, and it is bounded on finite
intervals since

sup
s≤t

|U ? h(s)| ≤ sup
s≤t

|h(s)|U(t) < ∞, t ≥ 0.

Also, U ? h is a solution to the renewal equation, since by the definition of
U and F 0? ? h = h,

U ? h =
(
F 0? + F ?

∞∑

n=1

F (n−1)?
)

? h = h + F ? (U ? h).

To prove U ? h is the unique solution, let H(t) be any solution to the
renewal equation, and consider the difference D(t) = H(t)−U ? h(t). From
the renewal equation, we have D = F ? D, and so iterating this yields
D = Fn? ? D. Now, the finiteness of U(t) implies Fn?(t) → 0, as n → ∞,
and hence D(t) = 0 for each t. This proves that U ? h(t) is the unique
solution of the renewal equation. ¤

The standard approach for deriving a renewal equation is by condition-
ing on the first renewal time, as illustrated above in Example 5.1. Upon
establishing that a function H(t) satisfies a renewal equation, one immedi-
ately obtains H(t) = U ?h(t) by Proposition 5.4. For instance, Example 5.1
showed the probability P{X(t) = i} for a cyclic renewal process satisfies a
renewal equation, and so by Proposition 5.4, P{X(t) = i} = U ?h(t), where
h(t) = P{X(t) = i, T1 > t}.

Note that P{X(t) = i} = U ? h(t) is a “recursive” formula for the
probability since part of the probability information appears in h(t). Only
in special cases are such recursive formulas for stochastic processes tractable
enough for computations. On the other hand, H(t) = U ? h(t) does provide
a framework for analyzing the limit of H(t) as we will soon see.

We will shed more light on these functions by answering the following
questions: “What types of time-dependent probabilities and expected values
can be expressed as H(t) = U ? h(t)?” Can one derive such functions
directly without using a renewal equation? In summary, the answers are
H(t) = U?h(t) is “universally” applicable, and one can derive such functions
without using a renewal equation. Here are more details.
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Remark 5.5. If H(t) is bounded on finite intervals and is 0 for t < 0,
then H(t) = U ? h(t), where h(t) = H(t) − F ? H(t). This follows since
U = F 0? + U ? F , and so

H = F 0? ? H = U ? (H − F ? H).

Although H(t) = U ? h(t) is universally applicable, it may not be useful
(e.g., for limit theorems) without linking it to a renewal process. A rather
general linking condition is given by (5.7) below, which we call a “crude-
regeneration” property (its importance will be seen in Section 8).

Remark 5.6. Bypassing a Renewal Equation. Suppose X(t) is a real-
valued stochastic process such that H(t) = E[X(t)] is bounded on finite
intervals, and

(5.7) E[X(T1 + t)|T1] = E[X(t)], t ≥ 0.

Then E[X(t)] = U ? h(t) where h(t) = E[X(t)1(T1 > t)]. This follows by
the preceding remark since

h(t) = H(t)− F ? H(t) = E[X(t)]−
∫ t

0
E[X(t− s)]dF (s)

= E[X(t)]−
∫ t

0
E[X(t)|T1 = s]dF (s) = E[X(t)1(T1 > t)].

6. Blackwell’s Theorem

The next issue is to characterize the limit of functions of the form H(t) =
U ? h(t) as t → ∞. Their limiting behavior is intimately related to the
limiting behavior of U(t), which we now consider.

Throughout this section, we assume N(t) is a renewal process with re-
newal function U(t) and mean inter-renewal time µ, which we allow to be
finite or infinite. In Section 2, we saw that N(t)/t → 1/µ a.s., and so N(t)
behaves asymptotically like t/µ as t →∞. This suggests U(t) = EN(t) + 1
should also behave asymptotically like t/µ. Here is a confirmation.

Theorem 6.1. (Elementary Renewal Theorem)

t−1U(t) → 1/µ, as t →∞.

Here, 1/µ = 0 when µ = ∞.

Proof. For finite µ, using t < TN(t)+1 and Wald’s identity (Corol-
lary 3.10), we have

t < E[TN(t)+1] = µU(t).

This yields the lower bound 1/µ < t−1U(t). Also, this inequality hold
trivially when µ = ∞. With this bound in hand, to finish proving the
assertion it suffices to show

(6.2) lim sup
t→∞

t−1U(t) ≤ 1/µ.
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To this end, for a constant b, define a renewal process N(t) with inter-
renewal times ξn = ξn ∧ b. Define Tn and U(t) accordingly. Clearly, U(t) ≤
U(t). Also, by Wald’s identity and TN(t)+1 ≤ t+b (since the ξn are bounded
by b),

E[ξ1 ∧ b]U(t) = E[TN(t)+1] ≤ t + b.

Consequently,

t−1U(t) ≤ t−1U(t) ≤ 1 + b/t

E[ξ1 ∧ b]
.

Letting t → ∞ and then letting b → ∞ (whereupon the last fraction tends
to 1/µ, even when µ = ∞), we obtain (6.2), which finishes the proof. ¤

A more definitive description of the asymptotic behavior of U(t) is given
in the following major result. Its proof is sketched in Section 15 below.

Theorem 6.3. (Blackwell) For non-arithmetic F and a > 0,

U(t + a)− U(t) → a/µ, as t →∞.

If F is arithmetic with span d, the preceding limit holds with a = md for
any integer m.

This theorem says that the renewal function U(t) is asymptotically lin-
ear. Note that when µ = ∞, the increments of the renewal function are
asymptotically 0. We now address the issue: “Does the asymptotic linearity
of U(t) determine a nice limit for functions of the form U ? h(t)?”

Before addressing this question, let us investigate the limit of U ? h(t)
for a simple piecewise-constant function

h(s) =
m∑

k=1

ak1(s ∈ (sk, tk]),

where 0 ≤ s1 < t1 < s2 < t2 < . . . sm < tm < ∞. In this case,

U ? h(t) =
∫

[0,t]
h(t− s)dU(s) =

m∑

k=1

ak

∫ t

0
1(t− s ∈ (sk, tk])dU(s)

=
m∑

k=1

ak[U(t− sk)− U(t− tk)].(6.4)

The last equality follows since the integral is over s ∈ (t − tk, t − sk], and
U(t) = 0 when t < 0. By Theorem 6.3, we know

U(t− sk)− U(t− tk) → (tk − sk)/µ.

Applying this to (6.4) yields

(6.5) lim
t→∞U ? h(t) =

1
µ

m∑

k=1

ak(tk − sk) =
1
µ

∫

<+

h(s)ds.

This result suggests that a limit of this form would also be true for general
functions h(t). That is what we will establish in the next section.
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7. Key Renewal Theorem

This section will complete our development of renewal functions and
solutions of renewal equations. As above, we will consider a function U?h(t),
typical of those satisfying a renewal equation. The issue is to determine the
limit of this function as t →∞.

To proceed, we will need a subtle condition concerning the integral of
the function h on <+. For such a function the Riemann integral

∫ t
0 h(s)ds,

when it exits, is the limit of the Riemann sums in Definition 2 below on
[0, t] as δ → 0. The integral exists when h is continuous on [0, t], or it has
at most a countable number of discontinuity points. Furthermore, the usual
Riemann integral of h on <+ is defined as the limit

(7.1)
∫

<+

h(s)ds = lim
t→∞

∫ t

0
h(s)ds,

provided the limit exits.
For our purposes, we need a stronger notion of a Riemann integral de-

fined “directly” on <+ as follows.

Definition 2. Similarly to the definition of a Riemann integral on a
finite interval, it is natural to approximate the integral of a real-valued
function h(t) on the entire domain <+ over a grid 0, δ, 2δ, . . . by the upper
and lower Riemann sums

Iδ(h) = δ
∞∑

k=0

sup{h(s) : kδ ≤ s < (k + 1)δ},

Iδ(h) = δ

∞∑

k=0

inf{h(s) : kδ ≤ s < (k + 1)δ}.

The function h(t) is directly Riemann integrable (DRI) if Iδ(h) and Iδ(h) are
finite for each δ, and they both converge to the same limit as δ → 0. The
limit is necessarily the usual Riemann integral

∫
<+

h(s)ds, since this integral

is defined by (15.5), where
∫ t
0 h(s)ds is the limit of the Riemann sums on

[0, t].

A DRI function is clearly Riemann integrable in the usual sense, but the
converse is not true; see Exercise 30. From the definition, it is clear that
h(t) is DRI if it is Riemann integrable and it is 0 outside a finite interval.
Also, h(t) is DRI if and only if its positive and negative parts h+(t) and
h−(t) are both DRI. Further criteria for DRI are given in Proposition 7.8
below and Exercise 31.

We are now ready for the main result.

Theorem 7.2. (Key Renewal Theorem) If h(t) is DRI and F is non-
arithmetic, then

(7.3) lim
t→∞U ? h(t) =

1
µ

∫

<+

h(s)ds.
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Proof. Fix δ > 0 and define hk = sup{h(s) : kδ ≤ s < (k + 1)δ} and

h(t) =
∞∑

k=0

hk1(kδ ≤ t < (k + 1)δ).

Define h(t) and hk similarly, with sup replaced by inf. Obviously,

(7.4) U ? h(t) ≤ U ? h(t) ≤ U ? h(t).

Letting dk(t) ≡ U(t− kδ)− U(t− (k + 1)δ), we can write (like (6.4))

U ? h(t) =
∞∑

k=0

hkdk(t).

Now limt→∞ dk(t) = δ/µ by Theorem 6.3, and dk(t) ≤ U(δ) by Exer-
cise 27. Then by the dominated convergence theorem (see the Appendix,
Theorem 8.7) and the DRI property of h,

lim
δ→0

lim
t→∞U ? h(t) = lim

δ→0

δ

µ

∞∑

k=0

hk

= lim
δ→0

1
µ

Iδ(h) =
1
µ

∫

<+

h(s)ds.

This (double) limit is the same with the replacement of h(t) and Iδ(h) by
h(t) and Iδ(h). Therefore, the upper and lower bounds in (7.4) for U ? h(t)
have the same limit 1/µ

∫
<+

h(s)ds, and so U ? h(t) must also have this
limit. ¤

Remark 7.5. The key renewal theorem is equivalent to Blackwell’s re-
newal theorem. Indeed, the proof above showed that Blackwell’s theorem
implies the key renewal theorem, and the reverse implication follows by ap-
plying (7.3) with h(t) ≡ 1(0 ≤ t + a < a).

An analogous key renewal theorem for arithmetic F is as follows. It can
also be proved by Blackwell’s renewal theorem — with fewer technicalities
— as suggested in Exercise 29.

Theorem 7.6. (Arithmetic Key Renewal Theorem) If F is arithmetic
with span d, then for any u < d,

(7.7) lim
n→∞U ? h(u + nd) =

d

µ

∞∑

k=0

h(u + kd),

provided the sum exists.

We end this section with criteria for a function to be DRI.

Proposition 7.8. Any one of the following conditions is sufficient for
h(t) to be DRI.
(a) h(t) ≥ 0 is decreasing and is Riemann integrable on <+.
(b) h(t) is Riemann integrable on [0, a] for each a, and Iδ(h) < ∞ for some
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δ > 0.
(c) h(t) is continuous except possibly on a set of Lebesgue measure 0, and
|h(t)| ≤ b(t), where b(t) is DRI.

Proof. Suppose condition (a) holds. Since the usual Riemann integral
of h on <+ exists, we have

Iδ(h) ≤
∫

<+

h(s)ds ≤ Iδ(h).

Also, the decreasing property of h(t) implies Iδ(h) − Iδ(h) = δh(0) → 0 as
δ → 0. These observations prove h(t) is DRI.

Next, suppose (b) holds. We will write

Iδ(h) = Iδ[0, a/δ) + Iδ[a/δ,∞),

where Iδ[x,∞) = δ
∑∞

k=dx−1e sup{h(s) : kδ ≤ s < (k + 1)δ}. We will use
a similar expression for Iδ(h). Since h(t) is Riemann integrable on [0, a], it
follows that Iδ[0, a/δ) and Iδ[0, a/δ) both converge to

∫ a
0 h(s)ds as δ → 0.

Therefore,

(7.9) Iδ(h)− Iδ(h) = o(1) + Iδ[a/δ,∞)− Iδ[a/δ,∞), as δ → 0.

Let γ be such that Iγ(h) < ∞. Then for any ε > 0, there is a large enough
a such that Iγ [a/γ,∞) < ε. Then clearly, for sufficiently small δ,

Iδ[a/δ,∞) ≤ Iδ[a/δ,∞) ≤ Iγ [a/γ,∞) < ε.

Using this in (7.9), we have

Iδ(h)− Iδ(h) ≤ o(1) + 2ε, as δ → 0.

Since this holds for any ε, it follows that h(t) is DRI.
Finally, if (c) holds, then (b) is satisfied since Iδ(h) ≤ Iδ(b). Thus h(t)

is DRI. ¤

8. Regenerative Processes

The primary use of the key renewal theorem is in providing limit the-
orems for regenerative processes and their relatives. Such theorems will
be our focus for a while. This section covers regenerative and crudely re-
generative processes, and the next three sections cover Markov processes,
Markov-renewal processes, and processes with regenerative increments.

Loosely speaking, a continuous- or discrete-time stochastic process is
regenerative if there is a renewal process such that the segments of the
process between successive renewal times are i.i.d.

We will describe regenerative processes with the following notation. Let
{X(t) : t ≥ 0} denote a continuous-time stochastic process with a state
space S that is a metric space (e.g., the Euclidean space <d or a Polish
space; see the Appendix). This process need not be a jump process like the
Markov processes we have been discussing. However, we assume that the
sample paths of X(t) are right-continuous with left-hand limits a.s. This
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ensures that the sample paths are continuous except possibly on a set of
Lebesgue measure 0.

Let N(t) denote a renewal process on <+, defined on the same proba-
bility space as X(t), with renewal times Tn and inter-renewal times ξn =
Tn − Tn−1. For simplicity, assume throughout this section that the inter-
renewal distribution F is non-arithmetic and has a finite mean µ.

Definition 3. For the two-dimensional process {(N(t), X(t)) : t ≥ 0},
its sample path in the time interval [Tn−1, Tn), called the nth segment of the
process, is

(8.1) ζn = (ξn, {X(Tn−1 + t) : 0 ≤ t < ξn}).
The X(t) is a regenerative process over the times Tn if its segments ζn are
independent and identically distributed.

In the preceding definition, the process X(t) is a delayed regenerative
process if ζn are independent, and ζ2, ζ3, . . . have the same distribution,
which is different from the distribution of ζ1. We discuss more general
regenerative-like processes with stationary segments in Section 19.

Classic examples of regenerative processes are ergodic Markov chains
and continuous-time ergodic Markov and Markov-renewal processes. We
will discuss these examples in the next section. Keep in mind that any
theorem for regenerative processes will apply to these Markovian processes.

Regenerative process have the useful “inheritance property” that a func-
tion of a regenerative process is also regenerative. Specifically, if X̃(t) with
state space S̃ is regenerative over Tn, then X(t) = f(X̃(t)) is also regen-
erative over Tn, for any f : S̃ → S. Because of this fact, we can describe
the limit of many probabilities and expectations of regenerative processes
in terms of real-valued regenerative processes (e.g., P{X̃(t) ∈ B} = EX(t),
where X(t) = 1(X̃(t) ∈ B)).

We will also use the following regeneration-like property for expectations.

Definition 4. A real-valued process X(t) is crudely regenerative at T1

if

(8.2) E[X(T1 + t)|T1] = EX(t), t ≥ 0,

and these expectations are finite.

If X(t) is regenerative over Tn, then (8.2) holds, but the converse is
clearly not true. We will now see that (8.2) is the essential property of
regenerative processes needed for applying the key renewal theorem. Keep
in mind that throughout this section T1 is assumed to have a non-arithmetic
distribution.

Theorem 8.3. Suppose X(t) is a real-valued process that is crudely re-
generative at T1, and define M ≡ sup{|X(t)| : t ≤ T1}. If the expectations
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of M and MT1 are finite, then

(8.4) lim
t→∞EX(t) =

1
µ

∫

<+

h(s)ds,

where h(t) = E[X(t)1(T1 > t)].

Proof. By Remark 5.6, EX(t) = U ? h(t), where h(t) = E[X(t)1(T1 >
t)]. Thus (8.4) will follow by the key renewal theorem provided h(t) is DRI.
To prove this, note that |h(t)| ≤ b(t) ≡ E[M1(T1 > t)]. Now b(t) ↓ 0
since EM < ∞; and

∫
<+

b(s)ds = E[MT1] < ∞. Then b(t) is DRI by
Proposition 7.8 (a), and hence h(t) is also DRI by Proposition 7.8 (c). ¤

We will now apply Theorem 8.3 to characterize the limiting distribution
of a regenerative process. For a process X(t) on a countable state space S,
a probability measure P(·) on S is the limiting distribution of X(t) if

(8.5) lim
t→∞P{X(t) ∈ B} = P(B), B ⊂ S.

This definition, however, is too restrictive for uncountable S, where (8.5)
is not needed for all subsets B. In particular, when the state space S is
the Euclidean space <d, then P(·) on S = <d is defined to be the limiting
distribution of X(t) if (8.5) holds for B ∈ E (the Borel sets of S) such that
P(δB) = 0, where δB is the boundary of B. An equivalent definition is that
P(·) on S is the limiting distribution of X(t) if

(8.6) lim
t→∞E[f(X(t))] =

∫

S
f(x)P(dx),

for any continuous function f : S → [0, 1]. This means the distribution of
X(t) converges weakly to P (see Section 8 in the Appendix for more details
on weak convergence).

Theorem 8.7. Suppose the process X(t) with a metric state space S
(e.g. Ed) is a regenerative process over Tn. If f : S → < is such that the
expectations of M ≡ sup{|f(X(t))| : t ≤ T1} and MT1 are finite, then

(8.8) lim
t→∞E[f(X(t))] =

1
µ

E
[ ∫ T1

0
f(X(s))ds

]
.

In particular, the limiting distribution of X(t) is

(8.9) P(B) ≡ 1
µ

E
[ ∫ T1

0
1(X(s) ∈ B)ds

]
, B ∈ E .

Proof. Assertion (8.8) follows by Theorem 8.3, since f(X(t)) is regen-
erative over Tn and therefore it satisfies the crude-regeneration property.

In particular, (8.8) holds for any continuous function f : S → [0, 1].
Then by (8.6), we know that (8.9) is the limiting distribution of X(t). ¤

Theorems 8.3 and 8.7 provide a framework for characterizing limits of
expectations and probabilities of regenerative processes. For expectations,
one must check that the maximum M of the process during an inter-renewal
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interval has a finite mean. The main step in applying these theorems, how-
ever, is to evaluate the integrals

∫
<+

h(s)ds or
∫
S f(x)P(dx). Keep in mind

that one need not set up a renewal equation or check the DRI property for
each application — these properties have already been verified in the proof
of Theorem 8.3.

Theorem 8.7 and most of those to follow, are true, with slight modifi-
cations, for delayed regenerative processes. This is due to the property in
Exercise 40 that the limiting behavior of a delayed regenerative process is
the same as the limiting behavior of the process after its first regeneration
time T1. Here is an immediate consequence of Theorem 8.7 and Exercise 40.

Corollary 8.10. (Delayed Regenerations) Suppose the process X(t)
with a metric state space S is a delayed regenerative process over Tn. If
f : S → < is such that the expectations of M ≡ sup{|f(X(t))| : T1 ≤ t ≤ T2}
and Mξ2 are finite, then

lim
t→∞E[f(X(t))] =

1
µ

E
[ ∫ T2

T1

f(X(s)) ds
]
.

In particular, the limiting distribution of X(t) is

P(B) ≡ 1
µ

E
[ ∫ T2

T1

1(X(s) ∈ B)ds
]
, B ∈ E .

We end this section with applications of Theorem 8.7 to three regener-
ative processes associated with a renewal process.

Definition 5. Renewal Process Trinity. For a renewal process N(t),
we define

A(t) = t− TN(t), the backward recurrence time at t,

(or the age), which is the time since the last renewal prior to t;

B(t) = TN(t)+1 − t, the forward recurrence time at t,

(or the residual renewal time), which is the time to the next renewal after
t; and

L(t) ≡ ξN(t)+1 = A(t) + B(t), length of the renewal interval covering t.

For instance, a person arriving at a bus stop at time t would have to wait
B(t) minutes for the next bus to arrive, or a call-center operator returning
to answer calls at time t would have to wait for a time B(t) before the next
call. Also, if a person begins analyzing an information string at a location
t looking for a certain character (or pattern), then A(t) and B(t) would be
the distances to the left and right of t where the next character occurs.

Note that the three-dimensional process (A(t), B(t), L(t)) is regenerative
over Tn, and so is each process by itself. Each of the processes A(t) and B(t)
is a continuous-time Markov process with piece-wise deterministic paths on
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the state space <+; see Exercises 32 and 33. A convenient expression for
their joint distribution is, for 0 ≤ x < t, y ≥ 0,

(8.11) P{A(t) > x, B(t) > y} = P{N(t + y)−N((t− x)−) = 0}.
This is simply the probability of no renewals in [t− x, t + y]. Although this
probability is generally not tractable, one can show it is the solution of a
renewal equation, and hence it has the form U ? h(t); see Exercises 34 and
35.

One can obtain the limiting distributions of A(t) and B(t) separately
from Theorem 8.7. Instead, we will derive their joint limiting distribution.
Since (A(t), B(t)) is regenerative over Tn, Theorem 8.3 yields

(8.12) lim
t→∞P{A(t) > x, B(t) > y} = 1− 1

µ

∫ x+y

0
[1− F (s)]ds,

since

h(t) = P{A(t) > x,B(t) > y, T1 > t} = P{T1 > t + y}1(t > x).

From (8.12), it immediately follows that

(8.13) lim
t→∞P{A(t) ≤ x} = lim

t→∞P{B(t) ≤ x} =
1
µ

∫ x

0
[1− F (s)]ds.

This limiting distribution is the equilibrium distribution associated with F .
We will see its significance in Section 15, for stationary renewal processes.

One can also obtain the limiting distribution of L(t) = A(t) + B(t) by
Theorem 8.7. Namely,

(8.14) lim
t→∞P{L(t) ≤ x} =

1
µ

∫ x

0
sdF (s),

since

h(t) = P{L(t) ≤ x, T1 > t} = P{T1 ≤ x, T1 > t} = (F (x)− F (t))1(x > t).

Alternatively, one can derive (8.14) directly from (8.12).
Additional properties of the three regenerative processes A(t), B(t) and

L(t) are in Exercises 32– 39. These processes are especially nice for a Poisson
process.

Example 8.15. Poisson Recurrence Times. If N(t) is a Poisson process
with rate λ, then from (8.11)

(8.16) P{A(t) > x, B(t) > y} = e−λ(x+y), 0 ≤ x < t, y ≥ 0,

which is the Poisson probability of no renewals in an interval of length x+y.
In particular, setting x = 0, and then y = 0, yields

P{B(t) > y} = e−λy, P{A(t) > x} = e−λx1(x < t).

Thus B(t) is exponentially distributed with rate λ; this also follows by the
memoryless property of the exponential distribution. Note that A(t) has
the same exponential distribution, but it is truncated at x = t. The limiting
distribution of each of these processes, however, is exponential with rate λ.
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Since L(t) = A(t) + B(t), its distribution can be obtained from (8.16); its
mean is shown in Exercise 37.

Even though recurrence time processes A(t) and B(t) are typically not
tractable for a fixed t, their equilibrium distribution may be nice.

Example 8.17. Uniform Distribution. Suppose N(t) is a renewal pro-
cess with uniform inter-renewal distribution F (x) = x, for x ∈ [0, 1]. It
associated equilibrium distribution (8.13) is simply Fe(x) = 2x − x2. In-
terestingly, Fe(x) ≥ F (x) for each x. That is, the distribution Fe for the
forward recurrence time B(t) in equilibrium is greater than the distribution
F of the forward recurrence time B(0) = ξ1 at time 0. This means that B(t)
in equilibrium is stochastically smaller than B(0). This is due to fact that
the failure rate F ′(x)/(1 − F (x)) = 1/(1 − x) of F is increasing. Compare
this property with the inspection paradox in Exercise 37.

9. Limiting Distributions for Markov Processes

This section covers the important role of renewal theory in characteriz-
ing the limiting distributions of discrete- and continuous-time Markov pro-
cesses. The results here follow from the limit theorems in the preceding
section, which are manifestations of the key renewal theorem for regenera-
tive processes.

For the next two results, assume Xn is an ergodic Markov chain on a
countable state space S. For each i ∈ S, let 0 < ν1(i) < ν2(i) < . . . denote
the times at which Xn enters state i. The Markov property ensures that Xn

is a (discrete-time) delayed regenerative process over νn(i). The following
theorem establishes the existence of the limiting distribution

πj ≡ lim
n→∞P{Xn = j}, j ∈ S,

which does not depend on X0. Here we write Ei[ · ] ≡ E[ · |X0 = i].

Theorem 9.1. (Markov Chains) The ergodic Markov chain Xn has a
unique limiting distribution given as follows: for a fixed i ∈ S,

(9.2) πj =
1

Ei[ν1(i)]
Ei

[ ν1(i)−1∑

n=0

1(Xn = j)
]
, j ∈ S.

Another expression for this probability is

(9.3) πj =
1

Ej [ν1(j)]
, j ∈ S.

Proof. Since Xn is a delayed regenerative process over νn(i), assertion
(9.2) follows by Corollary 8.10. Setting i = j in (9.2) yields (9.3), since the
sum in (9.2) is the sojourn time in state j, which is 1. ¤

Many expected costs or utility values that the Markov chain Xn accrues
between successive entrances to a fixed state, e.g., Ei[

∑ν1(i)−1
n=0 f(Xn)] can

be expressed in terms of its limiting distribution.
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Proposition 9.4. (Cycle Values) Suppose Vn is a random variable as-
sociated with Xn and there is a g : S → < such that

Ei[Vn|Xn, γn] = g(Xn)γn, n ≥ 0,

where γn = 1(ν1(i) > n). Then, providing the following sums exist,

(9.5) Ei[
ν1(i)−1∑

n=0

Vn] = π−1
i

∑

j∈S

g(j)πj , i ∈ S.

In particular, if Yn, n ≥ 0, are i.i.d. random variables (or random elements)
independent of the Xn and f : S ×< → <, then

(9.6) Ei

[ ν1(i)−1∑

n=0

f(Xn, Yn)
]

= π−1
i

∑

j∈S

E[f(j, Y0)]πj , i ∈ S,

provided the sum exists.

Proof. Conditioning the nth term on Xn, γn, the left-hand side of (9.5)
equals

∑

j∈S

Ei

[ ∞∑

n=0

Ei[Vn1(Xn = j)γn

∣∣∣Xn, γn]
]

=
∑

j∈S

g(j)Ei

[ ν1(i)−1∑

n=0

1(Xn = j)
]
.

But this equals the right-hand side of (9.5) by (9.2). ¤
We will now introduce continuous-time Markov processes and describe

their limiting distributions. Consider a continuous-time stochastic process
{X(t) : t ≥ 0} with a countable state space S. Assume the process changes
its state at times τn that form a simple point process on <+. That is,

(9.7) X(t) = Xn if τn ≤ t < τn+1 for some n,

where Xn is the state of the process during the time interval [τn, τn+1). Then
X(t) is a jump process with piecewise-constant, right-continuous paths.

Assume the states Xn it visits is an ergodic Markov chain on S with
transition probabilities pij . Furthermore, assume that a sojourn time Sn+1 ≡
τn+1 − τn in state Xn = i has an exponential distribution with rate qi,
independent of everything else. In other words, (Xn, Sn) is a Markov chain
on the space I ×<+ with transition probabilities

P{Xn+1 = j, Sn+1 ≤ t|Xn = i, Sn = s} = pij(1− e−qit).

Finally, for a fixed state i, denote the first entrance time to state i by
T1(i) = inf{t > τ1 : X(t) = i} and assume µi ≡ E[T1(i)|X(0) = i] (the
expected time between entrances to i) is finite.

Definition 6. The process X(t) described above is an ergodic Markov
process. The sequence of states Xn it visits is the embedded Markov chain,
and qi are the rates of the exponential sojourn times in the states. More
details on this important class of Markov jump processes will be covered in
Chapters 4 and 5.
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For a fixed state i, let T1(i) < T2(i) < . . . denote the times at which
X(t) enters state i. The Markov property of (Xn, Sn) ensures that X(t) is
a delayed regenerative process over Tn(i).

The rest of this section is devoted to describing the limiting distribution
of the ergodic Markov process X(t) defined above. For this development,
we let πj denote the limiting distribution of Xn described in Theorem 9.1,
and define µi = Ei[T1(i)], the mean time between entrances to i. We begin
by giving expressions for µi and other cycle values in the spirit of Proposi-
tion 9.4.

Example 9.8. More Cycle Values. Suppose {V (t) : t ≥ 0} is a cost (or
value) process associated with the ergodic Markov process X(t) such that

Ei

[ ∫ τn+1

τn

V (t) dt
∣∣∣Xk, k ≥ 0

]
= h(Xn), n ≥ 0,

for some h : S → <. Then the expected cost between visits of X(t) to state
i is

(9.9) Ei

[ ∫ T1(i)

0
V (t) dt

]
= π−1

i

∑

j∈S

h(j)πj .

This follows from Proposition 9.4 since
∫ T1(i)

0
V (t) dt =

ν1(i)−1∑

n=0

∫ τn+1

τn

V (t) dt.

Special cases of (9.9) are

Ei

[ ∫ T1(i)

0
1(X(t) = j) dt

]
= π−1

i πjq
−1
j ,(9.10)

µi = π−1
i

∑

j∈S

πjq
−1
j .(9.11)

Expression (9.10) follows from (9.9) since

h(Xn) = Ei

[ ∫ τn+1

τn

1(X(t) = j) dt
∣∣∣X(s), s ≥ 0

]

= 1(Xn = j)Ei[τn+1 − τn|Xn] = 1(Xn = j)q−1
Xn

.

Also, (9.11) follows by (9.10) since

µi = Ei[T1(i)] =
∑

j∈S

Ei

[ ∫ T1(i)

0
1(X(s) = j)ds

]
.

The next result gives three expressions for the limiting distribution

pj ≡ lim
t→∞P{X(t) = j}

of the Markov process X(t). Expressions (9.13) and (9.14) below are use-
ful in theoretical arguments, or for applications when the expressions can
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be evaluated. The main formula, (9.15), involves only qi and the limiting
distribution πi for the embedded Markov chain Xn.

Theorem 9.12. (Markov Processes) The ergodic Markov process X(t)
described above has a unique limiting distribution given as follows: for a
fixed i ∈ S,

(9.13) pj =
1
µi

Ei

[ ∫ T1(i)

0
1(X(s) = j)ds

]
, j ∈ S.

In other words,

(9.14) pj =
1

qjµj
, j ∈ S.

Furthermore, this distribution is

(9.15) pj = πjq
−1
j /

∑

`∈S

π`q
−1
` , j ∈ S.

Proof. Since X(t) is a delayed regenerative process over the Tn(i), and
Tn(i) has a non-arithmetic distribution due to the exponential sojourn times
in states, the first assertion follows by Corollary 8.10. Then (9.13) and (9.10)
yield (9.14). Also, (9.15) follows by (9.14) with µj = π−1

j

∑
`∈S π`q

−1
` from

(9.11). ¤

10. Markov-Renewal Processes

A distinguishing feature of an ergodic Markov jump process is that the
sojourn time in a state i has an exponential distribution with rate qi de-
pending on the state. In many applications, however, the sojourn time in
a state has a general non-exponential distribution depending on the state
and the next state at the end of the sojourn. We will now describe a class
of processes with this feature called Markov-renewal processes, and present
limit theorems for them.

Throughout this section, {X(t) : t ≥ 0} will denote a continuous-time
stochastic jump process with a countable state space S that changes its
state at times τn that form a simple point process on <+. Assume the
states it visits forms an ergodic Markov chain Xn on S with transition
probabilities pij and limiting distribution πj . Also, assume the sojourn time
Sn+1 = τn+1− τn in state Xn = i ending with a jump to state Xn+1 = j has
a distribution Fij , independent of everything else. In this case, (Xn, Sn) is
a Markov chain on the space I ×<+ with transition probabilities

P{Xn+1 = j, Sn+1 ≤ t|Xn = i, Sn = s} = pijFij(t).

Next, assume the sojourn time distributions Fij have finite means µij .
Then the mean sojourn time in state i is

E[Sn+1|Xn = i] =
∑

j∈S

pijµij .
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Let T1(i) denote the time of the first entrance to state i. Since T1(i) is the
sum of the sojourn times in all states until i is reached, it follows by arguing
as in Example 9.8 (Exercise 45) that

µi ≡ Ei[T1(i)] = π−1
i

∑

j∈S

πj

∑

`∈S

pj`µj`.

Assume this is finite. Finally, assume for simplicity that at least one of these
distributions Fij is non-arithmetic, which ensures that the distribution of
T1(i) is also non-arithmetic.

Under these assumptions, the process X(t) is an ergodic Markov-Renewal
Process with transition probabilities pij and sojourn distributions Fij . (It
is sometimes called a semi-Markov process.) Of course, X(t) is an ergodic
Markov process when each Fij is an exponential distribution independent of
j. A non-Markovian example is a cyclic renewal process.

The Markov-renewal process X(t) is a delayed regenerative process, and
so all the results in this chapter for delayed regenerative processes apply to
X(t). For instance, the following is analogous to Theorem 9.12 for Markov
processes. The proof is Exercise 45.

Theorem 10.1. (Markov-renewal Processes) The ergodic Markov-renewal
process X(t) has a unique limiting distribution pj given by (9.13). An alter-
native expression is

(10.2) pj =
1
µj

∑

`∈S

pj`µj`, j ∈ S.

Furthermore,

(10.3) pj = πj

∑

`∈S

pj`µj`/
∑

i,`∈S

πipi`µi`, j ∈ S.

These expressions for the limiting distribution are essentially the same
form as (9.14) and (9.15) for Markov processes. The only difference is that
the mean sojourn time in state i is now

∑
j∈S pijµij instead of q−1

i for Markov
processes.

11. Processes with Regenerative Increments

In Section 2, we discussed laws of large numbers for cumulative processes
Z(t) associated with renewal processes. We will now continue that discussion
for cumulative utility processes (e.g., reward or cost processes) associated
with Markovian and regenerative processes.

The focus will be on the following processes.

Definition 7. Let Z(t) be a real-valued process with Z(0) = 0 defined
on the same probability space as a renewal process N(t). The increments
of Z(t) are regenerative over Tn if the increments of (N(t), Z(t)) after time
Tn, namely

({ξk : k ≥ n + 1}, {Z(Tn + t)− Z(Tn) : t ≥ 0}),
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are independent of the past {N(t), Z(t) : t ≤ Tn}, and the distribution of this
set of increments is independent of n. A process with delayed regenerative
increments is defined in the obvious way.

Primary examples of such processes are cumulative functionals of regen-
erative processes, such as Z(t) =

∫ t
0 f(X(s))ds, where X(t) is regenerative

over Tn and f(i) is a utility rate when the process X(t) is in state i.
Throughout this section, we assume Z(t) is a process with regenerative

increments over Tn such that µ ≡ ET1 and a ≡ E[Z(T1)] are finite. Keep in
mind that Z(0) = 0. Note that (ξn, Z(Tn)− Z(Tn−1)) are i.i.d. This is the
main property leading to the following results.

The distribution and mean of Z(t) are generally not tractable for com-
putations. However, we do have a Wald identity for some expectations.

Proposition 11.1. (Wald Identity for Regenerations) For the process
Z(t) with regenerative increments described above,

(11.2) E[Z(TN(t)+1)] = aE[N(t) + 1], t ≥ 0.

Proof. Apply Corollary 3.7 to Z(TN(t)+1) =
∑N(t)

n=0 [Z(Tn+1)− Z(Tn)].
¤

The next result describes the limiting behavior of t−1Z(t). By the clas-
sical SLLN, we know

n−1Z(Tn) = n−1
n∑

k=1

[
Z(Tk)− Z(Tk−1)

] → a, a.s. as n →∞.

This extends to Z(t) as follows.

Theorem 11.3. For the process Z(t) with regenerative increments de-
scribed above, assume the mean of Mn ≡ supTn−1<t≤Tn

|Z(t) − Z(Tn−1)| is
finite. Then

t−1Z(t) → a/µ, a.s. as t →∞.

Proof. It suffices by Theorem 2.7 to show n−1Z(Tn) → a and n−1Mn →
0. However, we have noted above that n−1Z(Tn) → a, and by the classical
SLLN

n−1Mn = n−1[
n∑

k=1

Mk −
n−1∑

k=1

Mk] → 0.

¤

The next result is a special case of Theorem 11.3 for a functional of a
regenerative process, where the limiting average is expressible in terms of
the limiting distribution of the regenerative process. The convergence of the
expected value per unit time is also shown in (11.6); a refinement of this is
given by Theorem 16.7.
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Theorem 11.4. Let X(t) be a regenerative process over Tn with state
space S = <d, and let P denote the limiting distribution of X(t) given by
(8.9), where µ = ET1. Suppose f : S → < is such that E[

∫ T1

0 |f(X(s))|ds]
and E|f(X)| are finite, where X has the distribution P . Then

(11.5) lim
t→∞ t−1

∫ t

0
f(X(s))ds = E[f(X)], a.s..

If, in addition, E[T1

∫ T1

0 |f(X(s))|ds] is finite, and T1 has a non-arithmetic
distribution, then

(11.6) lim
t→∞ t−1E

[ ∫ t

0
f(X(s))ds

]
= E[f(X)].

Proof. Assertion (11.5) follows since Theorem 11.3 with Z(t) =
∫ t
0 f(X(s))ds

and EMn ≤ E[
∫ T1

0 |f(X(s))|ds] yields t−1Z(t) → EZ(T1)/µ; and by expres-
sions (8.9) and (??) for P ,

EZ(T1)/µ =
1
µ

E
[ ∫ T1

0
f(X(s))ds

]

=
∫

S
f(x)dP (x) = E[f(X)].

To prove (11.6), note that E[f(X(t))] → E[f(X)] by Theorem 8.7. Then
(11.6) follows by the property t−1

∫ t
0 g(s)ds → c if g(t) → c. ¤

Remark 11.7. Limiting Averages as Expected Values. The limit (11.5)
as an expected value is a common feature of many SLLN’s when f(X(t)) d→
f(X). However, limit statements for expectations like (11.6) may not be
true for a non-regenerative process.

Here is an example of Theorem 11.4 for Markov processes.

Example 11.8. Functionals of Markov Processes. Let X(t) denote an
ergodic Markov process as in Theorem 9.12 with transition probabilities pij ,
exponential sojourn rates qi and limiting distribution pi. Let f(i) denote a
value (reward, cost utility) per unit time when the process X(t) is in state
i. Then by Theorem 11.4, the average value per unit time is

(11.9) lim
t→∞ t−1

∫ t

0
f(X(s))ds =

∑

i∈S

pif(i), a.s.,

provided the sum exists.
Next, suppose g(i, j) is a value for the process to jump from state i to

state j. Then the value up to time t is

Z(t) =
∑

n

g(Xn−1, Xn)1(τn ≤ t),
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where Xn is the embedded markov chain with limiting distribution πi.
Therefore, by Theorem 11.4 and Proposition 9.4, the average value is

(11.10) lim
t→∞ t−1Z(t) =

1
µi

E[Z(T1)] =
∑

j∈S

pjqj

∑

`∈S

pj`g(j, `), a.s.,

provided the sums exist. For the last equality, see Exercise 44.

Remark 11.11. Functionals of Markov-Renewal Processes. The two
limit statements in Example 11.8 for functionals of Markov processes are
also valid for Markov-renewal processes. One simply uses (10.3) as the
limiting distribution, and uses 1/µj` instead of qj in (11.10).

12. Average Sojourn Times via Little Laws

This section describes Little laws that apply to a large class of queueing
processes and other non-queueing contexts as well. A Little law is essentially
a SLLN for a queueing process, which follows by SLLN’s like those discussed
above.

Consider a general service system or input-output system where discrete
items (e.g., customers, jobs, data packets) are processed, or simply visit for
a while. The items arrive to the system at times τn that form a point process
N(t) on <+ (it need not be a renewal process). Let Wn denote the total
time the nth item spends in the system. In a production system, the waiting
or sojourn time Wn includes the item’s service time plus any delay waiting
in queue for service. The item exits the system at time τn + Wn. Then the
quantity of items in the system at time t is

Q(t) =
∞∑

n=1

1(τn ≤ t < τn + Wn), t ≥ 0.

There are no assumptions concerning the processing or visits of the items
or the stochastic nature of the variables Wn and τn, other than their exis-
tence. For instance, items may arrive and depart in batches, an item may
reenter for multiple services, or the items may be part of a larger network
that affects their sojourns.

We will consider the following three standard system performance pa-
rameters:

L ≡ lim
t→∞ t−1

∫ t

0
Q(s)ds average quantity in the system

λ ≡ lim
t→∞ t−1N(t) arrival rate

W ≡ lim
n→∞n−1

n∑

k=1

Wk average waiting time

There are many diverse systems in which λ and L exist, and the issue
is whether W exists. The waiting times Wn typically have a complicated
stochastic structure and may not even be regenerative. We will consider the
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existence of W under the following assumption, which is very natural for
most queueing systems.
Empty-System Assumption. Let Tn denote the nth time at which an item
arrives to an empty system, i.e., Q(Tn−) = 0 and Q(Tn) > 0. Assume the
times Tn form a point process on <+ such that the limit

µ ≡ lim
n→∞n−1Tn

exists and is positive. This says the system empties out infinitely often, at
an asymptotically constant rate.

Theorem 12.1. (Little Law) Suppose the system described above sat-
isfies the empty-system assumption. If L and λ exist, then W exists, and
L = λW .

Proof. With no loss in generality, we may assume the system is empty
at time 0 and an item arrives. First observe that in the time interval [0, Tn),
all of the νn ≡ N(Tn−) items that arrive in the interval also depart by the
empty-system time Tn, and their total waiting time is

(12.2)
νn∑

k=1

Wk =
∞∑

k=1

∫ Tn

0
1(τk ≤ s < τk + Wk)ds =

∫ Tn

0
Q(s)ds.

The first equality follows since the system is empty just prior to Tn, and the
second equality follows from the definition of Q(t).

We will apply a discrete-time version of Theorem 2.7 to Z(n) ≡ ∑n
k=1 Wk

and the discrete-time indices νn. Since n−1Tn → µ (by the empty-system
assumption) and L exists, it follows, in light of (12.2), that

n−1Z(νn) = (n−1Tn)
(
T−1

n

∫ Tn

0
Q(s)ds

)
→ µL, a.s. as t →∞.

Also, since t−1N(t) → λ, we have

n−1νn = T−1
n N(Tn−)(n−1Tn) → λµ.

Then by Theorem 2.7, W = limn→∞ n−1Z(n) = L/λ. Thus L = λW . ¤

Here are some examples.

Example 12.3. Regenerative Queueing System. Suppose the system de-
scribed above satisfies the empty-system assumption, and Q(t) is a regenera-
tive process over the empty-system times Tn. Assume ET1 and E[

∫ T1

0 Q(s)ds]
are finite. Then by Theorem 2.7 with Z(t) =

∫ t
0 Q(s)ds, we have L =

E[
∫ T1

0 Q(s)ds]/ET1. Assume the arrival process is a renewal process with
a finite mean µ. By the SLLN for renewal processes, the arrival rate is
λ = 1/µ. Therefore, the average waiting time W exists by Theorem 12.1
and L = λW .

In some queueing systems, this Little law for averages is a law of ex-
pectations. Specifically, in addition to the preceding assumptions, assume



12. AVERAGE SOJOURN TIMES VIA LITTLE LAWS 37

the sequence of sojourn times Wn is regenerative over the discrete times
νn = N(Tn−). Since Q(t) and Wn are regenerative,

Q(t) d→ Q as t →∞, and Wn
d→ W as n →∞,

where the distributions of Q and W are described in Theorem 8.7. Further-
more, by Theorem 11.4,

L = lim
t→∞ t−1

∫ t

0
Q(s)ds = EQ,

W = lim
n→∞n−1

n∑

k=1

Wk = EW, a.s.

Also, the renewal arrival rate λ can be represented as λ = EÑ(1), where
Ñ(t) is a stationary version of N(t) as described in Theorem 15.3. Then the
Little law

L = λW is equivalent to EQ = EÑ(1)EW.

Example 12.4. GI/G/1 Queueing System. A general example of a
regenerative queueing system is the GI/G/1 system, where arrivals form
a renewal process with mean inter-arrival time 1/λ, the services times are
i.i.d., independent of the arrivals, and customers are served by a single server
under a first-in-first-out (FIFO) discipline. When the mean service time is
less than the mean inter-arrival time, ET1 and E[

∫ T1

0 Q(s)ds] are finite, but
this will not be verified here. Also, the sojourn times Wn are regenerative
over νn = N(Tn−). Then the Little laws in the preceding example are true.

Special cases of the GI/G/1 system are a M/G/1 system when the
arrival process is a Poisson process, a GI/M/1 system when the service
times are exponentially distributed, and a M/M/1 system when the arrivals
are Poisson and the service times are exponential.

Theorem 12.1 also yields expected waiting times in Jackson networks,
which we discuss in Chapter 5.

There are several Little laws for input-output systems and general util-
ity processes that need not be related to queueing [32]. The next result
is an elementary but very useful example. For this, we let X(t) be a re-
generative process over Tn with state space S. Assume X(t) is a pure
jump process (piecewise constant paths, etc.) with a limiting distribution
P (B) = limn→∞ P{X(t) ∈ B}, which is known. Let B denote a fixed subset
of the state space whose complement Bc is not empty. The expected number
of times that X(t) enters B between regenerations is

α(B) = E
[∑

n

1(X(τn−1) ∈ Bc, X(τn) ∈ B, τn ∈ (T1, T2]
]
,

where τn is the time of the nth jump of X(t). The expected number of
transitions of X(t) between regenerations is α(S), which we assume if finite.
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Consider the average sojourn time of X(t) in B defined by

W (B) ≡ lim
n→∞n−1

n∑

k=1

Wk(B)

where Wn(B) is its sojourn time in B at its nth visit to the set.

Proposition 12.5. (Sojourns in Regenerative Processes) For the regen-
erative process X(t) defined above, its average sojourn time in B exists and
equals W (B) = P (B)α(S)/α(B).

Proof. Consider Q(t) = 1(X(t) ∈ B) as an artificial queueing process
that only takes values 0 or 1. Clearly Q(t) is regenerative over Tn, since X(t)
is regenerative over Tn; and Q(t) satisfies the empty-system assumption.
Now, the limiting average of Q(t) is

L = lim
t→∞ t−1

∫ t

0
1(X(s) ∈ B) ds = P (B).

The arrival rate λ is the rate α(B)/α(S) at which X(t) enters B. Thus,
Theorem 12.1 yields P (B) = λW (B) = (α(B)/α(S))W (B), which proves
the assertion. ¤

Example 12.6. Sojourns in Markov Processes. Suppose the process
X(t) in Proposition 12.5 is an ergodic Markov process with a countable
state space and limiting distribution pi. Then its average sojourn time in
the set B is

W (B) =
∑

j∈B

pj/
∑

j∈Bc

pjqj

∑

`∈B

pj`,

where pij are the transition probabilities of the embedded chain and qi is
the exponential sojourn rate in state i. The double summation in the de-
nominator equals α(B)α(S) by Exercise 44.

13. Batch-Service Queueing System

This section describes a model that illustrates the use of SLLN’s for
evaluating averages of queueing processes.

For service systems that process items in batches, a basic problem is
to determine when to serve batches and how many items should be in the
batches. This is a dynamic control problem or a Markov decision problem.
We will address this problem for a particular setting and show how to obtain
certain control parameters by using renewal processes.

Consider a single-server station that serves items or customers in batches
as follows. Items arrive to the station according to a Poisson process with
rate λ and they enter a queue where they wait to be served. The server
can serve items in batches, and the number of items in a batch can be any
number less than or equal to a fixed number K ≤ ∞ (the service capacity).
The service times of the batches are independent, identically distributed and
do not depend on the arrival process or the batch size (think of a computer,
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bus, or truck). Only one batch can be served at a time and, during a service,
additional arrivals join the queue.

The server observes the queue length at the times at which an arrival
occurs and the server is idle, or whenever a service is completed. At each of
these observation times, the server takes one of the following actions:
• No items are served.
• A batch consisting of all or a portion of the items waiting is served (the
batch size cannot exceed i ∧K, where i is the queue length).

These actions control the batch sizes and the timing of the services. If
the server takes the first action, the next control action is taken when the
next item arrives, and if the server takes the second action to serve a batch,
the next control action is taken when the service is completed. A control
policy is a rule for selecting one of these actions at each observation time.
The general problem is to find a control policy that minimizes the average
cost (or discounted cost) of serving items over an infinite time horizon.

This Markov decision problem was solved in [13] for natural holding and
service cost functions for both the average-cost and discounted-cost criteria.
In either case, the main result is that there is an optimal M -policy of the
following form: At each observation time when the queue length is i, do not
serve any items if i < M , and serve a batch of i ∧K items if i ≥ M . Here
M is an “optimal” level that is a function of the costs.

We will now describe an optimal level M for a special case. Suppose the
system is to operate under the preceding m-policy (M = m for notational
convenience), where the capacity K is infinite, and the service times are
exponentially distributed with rate γ. Assume there is cost C for serving a
batch and a cost hi per unit time for holding i items in the queue.

Theorem 13.1. Under the preceding assumptions, the average cost per
unit time is minimized by setting the level M to be

(13.2) M = min{m ≥ 0 : m(m + 1) ≥ 2[(λ/γ)2pm + Cλ/h]},
where p = λ/(λ + γ).

Proof. Let Xm(t) denote the number of items in the queue at time
t (where m refers to the m-policy). Let Tn denote the time at which the
server completes the nth service, and let N(t) denote the associated counting
process. For simplicity, assume that a service has just been completed at
time 0, and let T0 = 0.

We will show that, under the m-policy with exponential service times,
the Tn are renewal times; and the service plus holding cost in [0, t] is

Zm(t) ≡ CN(t) + h

∫ t

0
Xm(s) ds.

Next, we will establish the existence of the average cost

f(m) ≡ lim
t→∞ t−1Zm(t),
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and then show that f(m) is minimized at the M specified in (13.2).
Let Qn ≡ Xm(Tn) denote the queue length at the nth service completion

time Tn, for n ≥ 0. Note that Qn is just the number of arrivals that occur
during the nth service period, since all the waiting items are served in the
batch. Because of the exponential service times, Qn, for n ≥ 1, are i.i.d.
with

(13.3) P{Qn = i} =
∫

<+

(λt)ie−λt

i!
γe−γt dt = pi(1− p), i ≥ 0.

For notational convenience, assume the initial queue length Q0 has this
distribution and is independent of everything else.

Next, observe that the quantity Qn determines the time ξn+1 = Tn+1−Tn

until the next service completion. Specifically, if Qn ≥ m, then ξn+1 is
simply a service time; and if Qn = i < m, then ξn+1 is the time it takes
for m − i more item to arrive plus a service time. Since the Qn are i.i.d.,
it follows that Tn are renewal times. Furthermore, conditioning on Q0, the
inter-arrival distribution is

P{ξ1 ≤ t} = P{Q0 ≥ m}Gγ(t) +
m−1∑

i=0

P{Q0 = i}G(m−i)?
λ ? Gγ(t),

where Gλ is an exponential distribution with rate λ.
Then using the distribution (13.3), the inter-arrival distribution and its

mean (indexed by m) are:

P{ξ1 ≤ t} = pmGγ(t) + (1− p)
m−1∑

i=0

piG
(m−i)?
λ ? Gγ(t),

µm = γ−1 + mλ−1 − (1− pm)γ−1.(13.4)

(
∑k

i=1 ipi−1 = d
dp(

∑k
i=0 pi) is used for the last formula.)

Now, the increasing process Zm(t) is such that Zm(Tn) − Z(Tn−1), for
n ≥ 1, are i.i.d. with mean

E[Zm(T1)] = C + hE
[ ∫ T1

0
Xm(s) ds

]
.

Then by Theorem 2.7, the average cost, as a function of m, is

f(m) ≡ lim
t→∞ t−1Zm(t) = µ−1

m E[Zm(T1)].

To evaluate this limit, let Ñ(t) denote the Poisson arrival process with
exponential inter-arrival times ξ̃n, and let τ denote an exponential service
time with rate γ. Then we can write

(13.5)
∫ T1

0
Xm(s) ds = Q0τ +

∫ τ

0
Ñ(s) ds+

m−1∑

i=0

1(Q0 = i)
m−i∑

k=1

(i+k−1)ξ̃k.

The first two terms on the right-hand side represent the holding time of
items during the service period, and the last term represents the holding
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time of items (which is 0 if Q0 ≥ m) prior to the service period. Then from
the independence of Q0 and τ and Exercise 14,

E
[ ∫ T1

0
Xm(s) ds

]
=

[
1/(1− p)γ + λ/γ2 + (1− p)λ−1

m−1∑

i=0

pi
m−i∑

k=1

(i + k− 1)
]
.

Substituting this in the expression above for f(m), it follows from lengthy
algebraic manipulations that

f(m + 1)− f(m) = h(1− pm+1)Dm/(λ2µmµm+1),

where Dm = m(m + 1)− 2[(λ/γ)2pm + Cλ/h]. Now, Dm is increasing in m
and the other terms in the preceding display are positive. Therefore f(m)
is monotone decreasing and then increasing and has a unique minimum at
M ≡ min{m : Dm ≥ 0}, which is equivalent to (13.2).

¤
Analysis similar to that above yields a formula for the optimal level M

when the service capacity K is finite. In this case, the service completion
times Tn are “not” renewal times. However, (Qn, Tn) is a Markov-renewal
process. The Qn is a Markov chain with transition probabilities

pij =
{

pj(1− p) if i < K
pj−i−K(1− p) if K ≤ i ≤ j −K

and pij = 0 otherwise. One would then evaluate the average cost by applying
a Markov-renewal result as mentioned in Remark 11.11.

14. Central Limit Theorems

For a real-valued process Z(t) with regenerative increments over Tn, we
know that under the conditions in Theorem 11.3,

Z(t)/t → a ≡ EZ(T1)/ET1 a.s. as t →∞.

In other words, Z(t) behaves asymptotically like at. This section presents a
complementary central limit theorem that describes an approximate normal
distribution for the difference Z(t) − at, when t is large. Special cases are
CLT’s for renewal and Markovian processes.

As one might suspect, CLT’s for regenerative processes are basically
applications of the following classical CLT for sums of independent random
variables (which is proved in standard probability texts). The analysis in
this section involves the notion of convergence in distribution of random
variables; further properties of this mode of convergence are discussed in
Section 8 in the Appendix.

Theorem 14.1. (Classical CLT) Suppose X1, X2, . . . are independent,
identically distributed random variables with a finite mean µ and variance
σ2, and define Sn =

∑n
k=1 Xk − nµ. Then

P{Sn/n1/2 ≤ x} →
∫ x

−∞

e−y2/(2σ2)

σ
√

2π
dy, x ∈ <.
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This convergence in distribution is denoted by Sn/n1/2 d→ N(0, σ2), as n →
∞, where N(0, σ2) is a normal random variable with mean 0 and variance
σ2.

We will also use the following result for randomized sums; see for instance
p.216 in [10].

Theorem 14.2. (Anscombe) In the context of Theorem 14.1, let N(t)
be an integer-valued process defined on the same probability space as the Xn,
where N(t) may depend on the Xn. If t−1N(t) d→ c, where c is a positive
constant, then

SN(t)/t1/2 d→ N(0, cσ2), as t →∞.

The following is a regenerative analogue of the classical CLT.

Theorem 14.3. (Regenerative CLT) Suppose Z(t) is a real-valued pro-
cess with regenerative increments over Tn such that µ ≡ ET1, ET 2

1 , and a ≡
EZ(T1)/µ are finite. In addition, let Mn ≡ supTn−1<t≤Tn

|Z(t)− Z(Tn−1)|,
and assume EMn, E[T1M1], and σ2 ≡ Var(Z(T1) − aT1) are finite, and
σ > 0. Then

(14.4) (Z(t)− at)/t1/2 d→ N(0, σ2/µ), as t →∞.

Proof. The process Z(t) is “asymptotically close” to Z(TN(t)) because
their difference is bounded by MN(t)+1, which is a regenerative process that
is 0 at regeneration times. Consequently, the normalized process

Z̃(t) ≡ (Z(t)− at)/t1/2

should have the same limit as the process

Z ′(t) ≡ (Z(TN(t))− aTN(t))/t1/2.

Based on this conjecture, we will prove

(14.5) Z ′(t) d→ N(0, σ2/µ), as t →∞,

(14.6) |Z̃(t)− Z ′(t)| d→ 0, as t →∞.

Then it will follow by a standard property of convergence in distribution
that

Z̃(t) = Z ′(t) + (Z̃(t)− Z ′(t)) d→ N(0, σ2/µ).

To prove (14.5), note that Z ′(t) = SN(t)/t1/2 where

Sn ≡
n∑

k=1

Xk ≡
n∑

k=1

[Z(Tk)− Z(Tk−1)− aξk].

Since Z(t) has regenerative increments over Tn, the Xk are i.i.d. with mean
0 and variance σ2. Also, t−1N(t) → 1/µ by the SLLN for renewal processes.
In light of these observations, Anscombe’s theorem above yields (14.5).
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The prove (14.6), we use the inequality

(14.7) |Z̃(t)− Z ′(t)| ≤ t−1/2X(t) ≡ t−1/2[MN(t)+1 + aξN(t)+1].

Clearly X(t) is regenerative over Tn, and by Theorem 8.7,

lim
t→∞EX(t) =

1
µ

E
[ ∫ T1

0
X(s)ds

]
< ∞.

Then by Markov’s inequality,

P{t−1/2X(t) > ε} ≤ 1
t1/2ε

EX(t).

This bound tends to 0 as t →∞, and so t−1/2X(t) d→ 0. Applying this limit
to (14.7) yields (14.6). ¤

To apply the preceding result to a regenerative process that satisfies the
main assumptions, one only needs to evaluate the normalization constants
a and σ. Here are some examples.

Example 14.8. CLT for Renewal Processes. If N(t) is a renewal process
whose inter-renewal distribution has a finite mean µ and variance σ2, then

(N(t)− t/µ)/t1/2 d→ N(0, σ2/µ3), as t →∞.

This follows by Theorem 14.3 with Z(t) = N(t), a = 1/µ, and Var(Z(T1)−
aT1) = σ2µ−2.

Example 14.9. CLT for Markov Chains. Let Xn be an ergodic Markov
chain with limiting distribution πj , j ∈ S. Consider the sum

Zn =
n∑

k=1

f(Xk), n ≥ 0,

where f(j) is a real-valued cost or utility for the process being in state j.
For simplicity, fix an i ∈ S and assume X0 = i a.s. Then Zn has regenerative
increments over the discrete times νn at which Xn enters state i. We will
apply a discrete-time version of Theorem 14.3 to Zn.

Accordingly, assume µi = Eν1, Eν2
1 , and E

[
max1≤n≤ν1 |Zn|

]
are finite.

The latter is true when E
[ ∑ν1

n=1 |f(Xn)|
]

is finite. In addition, assume

a ≡ 1
µi

Ei[Zν1 ] =
∑

j∈S

πjf(j), and σ2 ≡ 1
µi

Var(Zν1 − aν1)

are finite and σ > 0. Letting f̃(j) = f(j)− a, Exercise 53 shows that

(14.10) σ2 = E[f̃(X0)2] + 2
∞∑

n=1

E[f̃(X0)f̃(Xn)],

where P{X0 = i} = πi. Then Theorem 14.3 (in discrete time) yields

(14.11) (Zn − an)/n1/2 d→ N(0, σ2), as n →∞.
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This result also applies to Markov chains in random environments as
follows (see Exercise 54 for a related continuous-time version). Suppose

Zn =
n∑

k=1

f(Xk, Yk), n ≥ 0,

where f : S × S′ → <, and Yk are conditionally independent given Xn

(n ≥ 0), and P{Yk ∈ B|Xn, n ≥ 0} only depends on Xk and B ∈ S ′. In this
setting, the cost or utility f(Xk, Yk) at time k is partially determined by the
auxiliary or environmental variable Yk. Then the argument above yields the
CLT (14.11). In this case, a =

∑
j∈S πjm(j) where m(j) = E[f(j, Y1)], and

σ2 = E[(f(X0, Y1)−m(X0))2] + 2
∞∑

n=1

E[m(X0, Xn)],

where m(j, k) = E[(f(j, Y1)−m(j))(f(k, Y2)−m(k))].

15. Stationary Renewal Processes

Recall that a basic property of an ergodic Markov chain is that it is sta-
tionary if the distribution of its state at time 0 is its stationary distribution
(which is also its limiting distribution). This section addresses the analo-
gous issue of determining an appropriate starting condition for a delayed
renewal process so that its increments are stationary in time. Part of the
analysis can be viewed as an introduction to the use of time-shift operators
for establishing properties of stationary processes.

We begin by defining the notion of stationarity for stochastic processes
and point processes. A continuous-time stochastic process X ≡ {X(t) : t ≥
0} on a general space is stationary if its finite-dimensional distributions are
invariant under any shift in time: for each 0 ≤ s1 < . . . < sk and t ≥ 0,

(15.1) (X(s1 + t), . . . , X(sk + t)) d= (X(s1), . . . , X(sk)).

Now, consider a point process N(t) =
∑

n 1(τn ≤ t) on <+. Another
way of representing this process is by the family N ≡ {N(B) : B ∈ B(<+)},
where N(B) =

∑
n 1(τn ∈ B) is the number of points τn in the set B. We

also define B + t = {s + t : s ∈ B}. The process N is stationary (i.e., it has
stationary increments) if, for any B1, . . . , Bk ∈ B(<+),

(15.2) (N(B1 + t), . . . , N(Bk + t)) d= (N(B1), . . . , N(Bk)), t ≥ 0.

We are now ready to characterize stationary renewal processes. Assume
N(t) is a delayed renewal process, where the distribution of ξ1 is G, and
the distribution of ξn, n ≥ 2, is F , which has a finite mean µ. The issue
is how to select the initial distribution G such that N is stationary. The
answer, according to (iv) below, is to select G to be Fe, which is the limiting
distribution of the forward and backward recurrence times for a renewal
process with inter-arrival distribution F . The following result also shows
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that the stationarity of N is equivalent to the stationarity of its forward
recurrence time process.

Theorem 15.3. The following statements are equivalent.
(i) The delayed renewal process N is stationary.
(ii) The forward recurrence time process B(t) = TN(t)+1 − t is stationary.
(iii) EN(t) = t/µ, for t ≥ 0.
(iv) G(x) = Fe(x) ≡ 1

µ

∫ x
0 [1− F (s)]ds.

When these statements are true, P{B(t) ≤ x} = Fe(x), for t ≥ 0.

Example 15.4. Suppose the inter-renewal distribution for the delayed
renewal process N is the beta distribution

F (x) = 30
∫ x

0
y2(1− y)2 dy, x ∈ [0, 1].

Then by Theorem 15.3, N is stationary if and only if

G(x) = 2x− 5x4 + 6x5 − 2x6, x ∈ [0, 1],

which is the equilibrium distribution Fe associated with F .

One consequence of Theorem 15.3 is that Poisson processes are the
only non-delayed renewal processes (whose inter-renewal times have a finite
mean) that are stationary.

Corollary 15.5. A renewal process N(t) with no delay is stationary if
and only if it is a Poisson process.

Proof. By Theorem 15.3, N(t) is stationary if and only if EN(t) = t/µ,
t ≥ 0, which is equivalent to N(t) being a Poisson process by Remark 3.4. ¤

Here is another useful stationarity property.

Remark 15.6. If N(t) is a stationary renewal process, then

E
[ N(t)∑

n=1

f(Tn)
]

=
1
µ

∫ t

0
f(s)ds.

This follows by Theorem 3.5 and EN(t) = t/µ.

The rest of this section is devoted to proving Theorem 15.3. To sim-
plify our discussion, we will use time-shift operators to describe stationarity.
Specifically, the defining property (15.1) for a process X(t) to be stationary
will be expressed as

StX
d= X, t ≥ 0,

where StX ≡ {X(s + t) : s ≥ 0} is the process X with the time shifted
by t. Analogously, the defining property (15.2) for a point process N to be
stationary will be expressed as

StN
d= N, t ≥ 0,
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where StN = {N(B+t) : B ∈ B(<+)} is the process N with the time shifted
by t.

We will need two properties of stationary processes. The first deals with
functions of stationary processes. From the definition of stationarity, it is
clear that if X(t) is stationary, then so is the process Y (t) = f(X(t)), for
any function f on the state space of X to another space. This inheritance
of stationarity also holds under more general functions described as follows.

Proposition 15.7. Suppose X is stationary and

Y (t) = g(StX), t ≥ 0,

where g is a function on the space of sample paths of X to some space. Then
Y is stationary.

Proof. By the nature of the time-shift operator St, and the stationarity
of X, we know Su+tX = Su(StX) d= SuX. Therefore,

StY = {g(Su+tX) : u ≥ 0} d= {g(SuX) : u ≥ 0} = Y.

Thus Y is stationary. ¤

The second property we need is that the mean value function of a sta-
tionary point process is linear.

Proposition 15.8. If N is a stationary point process and EN(1) is
finite, then

EN(t) = tEN(1), t ≥ 0.

Proof. To see this, consider

EN(s + t) = EN(s) + E[N(s + t)−N(s)] = EN(s) + EN(t).

This is a linear equation f(s+t) = f(s)+f(t), s, t ≥ 0. The only measurable
function that satisfies this linear equation is f(t) = ct for some c. In our
case, c = f(1) = EN(1), and hence EN(t) = tEN(1). ¤

We are now ready to prove Theorem 15.3 above, which we restate here.

Theorem 15.9. The following statements are equivalent.
(i) The delayed renewal process N is stationary.
(ii) The forward recurrence time process B(t) = TN(t)+1 − t is stationary.
(iii) EN(t) = tµ, for t ≥ 0.
(iv) G(x) = Fe(x) ≡ 1

µ

∫ x
0 [1− F (s)]ds.

When these statements are true, P{B(t) ≤ x} = Fe(x), for t ≥ 0.

Proof. We will show (i) ⇔ (ii), and then (i) ⇒ (iii) ⇒ (iv) ⇒ (ii).
(i) ⇒ (ii): Using Tn = inf{u : N(u) = n}, we have

B(t) = TN(t)+1 − t = inf{u− t : N(u) = N(t) + 1}
= inf{t′ : N(t′ + t)−N(t) = 1} = inf{t′ : StN(t′) = 1}.
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That is, B(t) = g(StN), where g(N) = inf{t′ : N(t′) = 1}. Then the
stationarity of N implies that B is stationary by Proposition 15.7 (with N
in place of X).

(ii) ⇒ (i): Since N counts the number of times B(t) jumps upward, we
can write

StN(A) =
∑

u∈A

1(StB(u) > StB(u−)).

That is StN = g(StB), where g maps each sample path b(t) of B to the
counting measure g(b)(A) =

∑
u∈A 1(b(u) > b(u−)). Then the stationarity

of B implies that N is stationary by Proposition 15.7 (with N in place of
Y ).

(i)⇒ (iii): If N is stationary, Proposition 15.8 ensures EN(t) = tEN(1).
Also, EN(1) = 1/µ since t−1EN(t) → 1/µ by Proposition 6.1. Therefore,
EN(t) = t/µ.

(iii) ⇒ (iv): Assume EN(t) = t/µ. Exercise 52 shows U ? Fe(t) = t/µ,
and so EN(t) = U ? Fe(t). Another expression for this expectation is

EN(t) =
∞∑

n=1

G ? F (n−1)?(t) = G ? U(t).

Equating these expressions we have U ?Fe(t) = G?U(t). Taking the Laplace
transform of this equality, we have

(15.10) Û(α)F̂e(α) = Ĝ(α)Û(α),

where the hat symbol denotes Laplace transform; e.g., Ĝ(α) =
∫∞
0 e−αtdG(t).

By Remark 3.3, we know Û(α) = 1/(1 − F̂ (α)) is positive. Using this in
(15.10) yields F̂e(α) = Ĝ(α). Since these Laplace transforms uniquely de-
termine the distributions, we obtain G = Fe.

(iv) ⇒ (ii): By direct computation as in Exercise 35, it follows that

(15.11) P{B(t) > x} = 1−G(t + x) +
∫

[0,t]
[1− F (t + x− s)]dV (s),

where V (t) ≡ EN(t) = G ? U(t). Now, the assumption G = Fe, along with
U ? Fe(t) = t/µ from Exercise 52, yield

V (t) = G ? U(t) = U ? G(t) = U ? Fe(t) = t/µ.

Using this in (15.11), along with a change of variable in the integral, we
have

(15.12) P{B(t) > x} = 1−G(t + x) + Fe(x + t)− Fe(x).

Since G = Fe, this expression is simply P{B(t) > x} = 1− Fe(x), t ≥ 0.
We will use this property to show B(t) is stationary. At this point, one

could justify B(t) is a Markov process and then invoke the basic result that a
Markov process is stationary if its distribution at any time t is independent
of t. Instead, we will prove the stationarity of B(t) directly (which amounts
to proving the two properties in the preceding sentence).
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To prove B(t) is stationary, it suffices to show, for any si, xi and t, the
probability of the event

Γt ≡ {B(s1 + t) ≤ x1, . . . , B(sk + t) ≤ xk}
is independent of t. Conditioning on B(t), we have

P{Γt} =
∫ ∞

0
P{Γt|B(t) = x}dFe(x).

Knowing B(t) = x, the delayed renewal process on [t,∞) behaves like a
delayed renewal process starting at time 0 with x as its forward recurrence
time. Consequently, P{Γt|B(t) = x} = P{Γ0|B(0) = x}, independent of t,
and so P{Γt} is also independent of t. ¤

Since a stationary renewal process N(t) has a stationary forward recur-
rence time process, it seems reasonable that the backward recurrence time
process A(t) = t − TN(t) would also be stationary. This is not true, since
the distribution of A(t) is not independent of t; in particular, A(t) = t, for
t < T1. However, there is stationarity in the following sense.

Remark 15.13. Stationary Backward Recurrence Time Process. Sup-
pose the stationary renewal process is extended to the negative time axis
with (artificial or virtual) renewals at times . . . < T−1 < T0 < 0. One
can think of the renewals occurring since the beginning of time at −∞.
Consistent with the definition above, the backward recurrence process is

A(t) = t− Tn, if t ∈ [Tn, Tn+1), for some n ∈ IN.

Assuming N is stationary on <+, the time A(0) = T1 to the first renewal
has the distribution Fe. Then one can show, as we proved (i) ⇔ (ii) in
Theorem 15.3, that the process {A(t) : t ∈ <} is stationary with distribution
Fe.

16. Refined Limit Laws*

We will now describe applications of the key renewal theorem for func-
tions that are not asymptotically constant.

The applications of the renewal theorem we have been discussing are
for limits of functions H(t) = U ? h(t) that converge to a constant (i.e.,
H(t) = c + o(1)). However, there are many situation in which H(t) tends
to infinity, but the key renewal theorem can still be used to describe limits
of the form H(t) = v(t) + o(1) as t → ∞, where the function v(t) is the
asymptotic value of H(t).

For instance, a SLLN Z(t)/t → b suggests EZ(t) = bt + c + o(1) might
be true, where the constant c gives added information on the convergence.
In this section, we discuss such limit theorems.

We first note that an approach for considering limits H(t) = v(t)+o(1) is
simply to consider a renewal equation for the function H(t)−v(t) as follows.
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Lemma 16.1. Suppose H(t) = U?h(t) is a solution of a renewal equation
for a non-arithmetic distribution F , and v(t) is a real-valued function on <
that is bounded on finite intervals and is 0 for negative t. Then

(16.2) H(t) = v(t) +
1
µ

∫

<+

h(s) ds + o(1), as t →∞,

provided h(t) ≡ h(t) − v(t) + F ? v(t) is DRI. In particular, for a linear
function v(t) = bt,

(16.3) H(t) = bt +
b(σ2 + µ2)

2µ
+

1
µ

∫

<+

(h(s)− bµ) ds + o(1), as t →∞,

where σ2 is the variance of F , provided h(t)− bµ is DRI.

Proof. Clearly H − v satisfies the renewal equation

H − v = (h− v + F ? v) + F ? (H − v).

Then H − v = U ? h by Proposition 5.4, and its limit (16.2) is given by the
key renewal theorem.

Next, suppose v(t) = bt and h(t) − bµ is DRI. Then using µ =
∫
<+

[1 −
F (x)] dx and the change of variable x = t− s in the integral below, we have

h(t) = h(t)− bt + b

∫ t

0
F (t− s) ds

= h(t)− bµ + bg(t).

where g(t) =
∫∞
t [1− F (x)] dx. Now g(t) is continuous and decreasing and

(16.4)
∫ ∞

0
g(t) dt =

1
2

∫

<+

t2dF (t) =
σ2 + µ2

2
.

Then g(t) is DRI by Proposition 7.8 (a), and hence h(t) = h(t)− bµ + bg(t)
is DRI. Thus, by what we already proved, (16.2) is true but it reduces to
(16.3) in light of (16.4). ¤

Our first use of the preceding remark is a refinement of the result
t−1U(t) → 1/µ from Proposition 6.1.

Proposition 16.5. If N(t) is a renewal process whose inter-renewal
times have a non-arithmetic distribution with mean µ and variance σ2, then

U(t) = t/µ + (σ2 + µ2)/2µ2 + o(1), as t →∞.

Proof. This follows by Lemma 16.1 with H(t) = U(t), h(t) = 1, and
v(t) = t/µ (here h(t)− bµ = 0 being DRI is not an issue). ¤

We will now apply Lemma 16.1 to a rather general stochastic process.
Suppose Tn are renewal times whose inter-renewal distribution F is non-
arithmetic with finite mean µ and variance σ2. Consider a real-valued pro-
cess Z(t) that has regenerative increments over Tn, or, more generally, has
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crude regenerative increments at T1 in the sense that

(16.6) E[Z(T1 + t)− Z(T1)|T1] = EZ(t), t ≥ 0.

In addition, assume the sample paths of Z(t) are right-continuous with left-
hand limits a.s.

Theorem 16.7. For the process Z(t) defined above, let

M ≡ sup{|Z(T1)− Z(t)| : t ≤ T1}.
If the expectations of M , MT1, T 2

1 , |Z(T1)|, and
∫ T1

0 |Z(s)|ds are finite, then

(16.8) EZ(t) = at/µ + a(σ2 + µ2)/2µ2 + c + o(1), as t →∞,

where a = EZ(T1) and c = 1
µE

[ ∫ T1

0 Z(s)ds− T1Z(T1)
]
.

Proof. Because Z(t) has crude regenerative increments, we anticipate
that t−1EZ(t) → a/µ. So to prove (16.8), we will apply Lemma 16.1 with
v(t) = at/µ.

The first step is to derive a renewal equation for EZ(t). Conditioning
on T1,

EZ(t) = E[Z(t)1(T1 > t)] +
∫ t

0
E[Z(t)|T1 = s]dF (s).

Using E[Z(t)|T1 = s] = EZ(t − s) + E[Z(s)|T1 = s], from assumption
(16.6), and some algebra, it follows that the preceding is a renewal equation
H = h + F ? H, where H(t) ≡ EZ(t) and

h(t) = a + E
[
(Z(t)− Z(T1))1(T1 > t)

]
.

Now, by Lemma 16.1 for v(t) = at/µ, we have

(16.9) EZ(t) = at/µ +
σ2 + µ2

2µ2
+

1
µ

∫

<+

g(s) ds + o(1), as t →∞,

provided g(t) ≡ h(t)− a = E
[
(Z(t)− Z(T1))1(T1 > t)

]
is DRI. Clearly

|g(t)| ≤ b(t) ≡ E[M1(T1 > t)].

Now, b(t) ↓ 0 and
∫

<+

b(s)ds = E
[ ∫ T1

0
M ds

]
= E[MT1] < ∞.

Then b(t) is DRI by Proposition 7.8 (a). Hence g(t) is also DRI by Propo-
sition 7.8 (c). Finally, observe that

∫

<+

g(t) dt = E
[ ∫ T1

0
Z(s)ds− T1Z(T1)]

]
.

Substituting this formula in (16.9) proves (16.8). ¤

Here is a refinement of the Markov process limit in Example 11.8.
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Example 16.10. Suppose X(t) is an ergodic Markov process on a count-
able state space S, and let pi denote its limiting distribution. Assume the
time between entrances to a fixed state i has a finite variance σ2

i ; the mean
of this time, by (9.14), is µi = 1/qipi, where qi is the rate of the exponential
sojourn time in state i. Let f : S → < be such that

∫ t
0 E|f(X(s))|ds and∑

i∈S |f(i)|pi are finite. Then Theorem 16.7 for Z(t) =
∫ t
0 f(X(s))ds says

E
[ ∫ t

0
f(X(s))ds

]
= [t + (σ2

i + µ2
i )/2µi]

∑

i∈S

f(i)pi

−
∑

i∈S

f(i)pi/qi + o(1), as t →∞.(16.11)

Here, the constants in Theorem 16.7 are a = µ
∑

i∈S f(i)pi and

c = − 1
µ

E
[ ∫ T1

0
sf(X(s))ds

]
= −

∑

i∈S

f(i)pi/qi.

The first equality follows by calculus manipulations and the second equality
follows by (9.9) in Example 9.8 and pi = 1/qiµi.

As a particular case of (16.11), the expected time spent in state i has
the asymptotic behavior

E
[ ∫ t

0
1(X(s) = i)ds

]
= tpi + pi[(σ2 + µ2)/2µ− 1/qi] + o(1), as t →∞.

17. Terminating Renewal Processes*

In this section, we discuss renewal processes that terminate after a ran-
dom number of renewals. Analysis of these terminating (or transient) re-
newal processes can be done with renewal equations and the key renewal
theorem applied a little differently than above.

Consider a sequence of renewal times Tn with inter-arrival distribution
F . Suppose that at each time Tn (including T0 = 0), the renewals terminate
with probability 1− p, or continue until the next renewal epoch with prob-
ability p. These events are independent of the preceding renewal times, but
may depend on the future renewal times.

Under these assumptions, the total number of renewals ν over the entire
time horizon <+ has the distribution

P{ν ≥ n} = pn, n ≥ 0,

and Eν = p/(1− p). Now, the number of renewals in [0, t] is given by

N(t) =
∞∑

n=1

1(Tn ≤ t, ν ≥ n), t ≥ 0.

Of course N(t) → ν a.s. Another quantity of interest is the time Tν at which
the renewals terminate.
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An equivalent formulation of this terminating renewal process is to as-
sume N(t) counts renewals in which the independent inter-renewal times
have an improper distribution G(t), with p ≡ G(∞) < 1. Then 1 − p =
1 − G(∞) is the probability that an inter-renewal time is “infinite”, which
terminates the renewals, and p is the probability of another renewal. In
this setting, G(t) = pF (t), where F as described above is the conditional
distribution of an inter-renewal time given that it is allowed (or is finite).

Similarly to renewal processes, we will address issues about the process
N(t) with the use of its renewal function

V (t) ≡
∞∑

n=0

Gn?(t) =
∞∑

n=0

pnFn?(t).

Note that V (t) → 1/(1 − p) as t → ∞ (Example 17.7 below describes the
convergence rate); this differs from the infinite limit for regular renewal
functions.

We first observe that the distribution and mean of the counting process,
and of the termination time (which is finite a.s.) are

(17.1) P{N(t) ≥ n} = Gn?(t), EN(t) = V (t)− 1,
P{Tν ≤ t} = (1− p)V (t), ETν = pµ/(1− p).

To establish these formulas, recall that the events ν = n (to terminate at n)
and ν > n (to continue to the n+1st renewal) are assumed to be independent
of T1, . . . , Tn. Then

P{N(t) ≥ n} = P{ν ≥ n, Tn ≤ t} = pnFn?(t) = Gn?(t),

EN(t) =
∞∑

n=1

P{N(t) ≥ n} = V (t)− 1.

Similarly, using the independence and Tν =
∑∞

n=0 1(ν = n)Tn,

P{Tν ≤ t} =
∞∑

n=0

P{ν = n, Tn ≤ t} = (1− p)
∞∑

n=0

pnFn?(t),

ETν =
∞∑

n=1

P{ν = n}ETn = µp/(1− p).

We will now discuss limits of certain functions associated with the termi-
nating renewal process. As in Proposition 5.4, it follows that H(t) = V ?h(t)
is the unique solution to the renewal equation

H(t) = h(t) + G ? H(t).

We will consider the limiting behavior of H(t) for the case in which the limit

h(∞) ≡ lim
t→∞h(t)

exists, which is common in applications. Since V (t) → 1/(1− p) and h(t) is
bounded on compact sets and converges to h(∞), it follows by dominated
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convergence that

H(t) = h ? V (t) = h(∞)V (t) +
∫

[0,t]
[h(t− s)− h(∞)]dV (s)(17.2)

= h(∞)/(1− p) + o(1), as t →∞.

The next result describes the rate of this convergence under a few more
technical conditions. Assume there is a positive β such that

∫

<+

eβtdG(t) = 1.

The existence of a unique β is guaranteed under the weak condition that
g(β) ≡ ∫

<+
eβtdG(t) is finite for β ≥ 0. Indeed, since g is continuous and

increasing to∞, it must equal 1 for some β. We also assume the distribution

F#(t) ≡
∫

[0,t]
eβsdG(s)

is non-arithmetic and has a mean µ#.

Theorem 17.3. In addition to the preceding assumptions, assume the
function eβt[h(t)− h(∞)] is DRI. Then

(17.4) H(t) = h(∞)/(1− p) + ce−βt/µ# + o(e−βt), as t →∞,

where c =
∫
<+

eβs(h(s)− h(∞)) ds− h(∞)/β.

Proof. Multiplying the renewal equation H = h + G ? H by eβt yields
the renewal equation H# = h# + F# ? H# where H#(t) = eβtH(t) and
h#(t) = eβth(t).

We can now describe the limit of H(t) − h(∞)/(1 − p) by the limit of
H#(t)− v(t) where v(t) ≡ eβth(∞)/(1− p). From Lemma 16.1, we know

(17.5) H#(t) = v(t) +
1

µ#

∫

<+

h(s) ds + o(1), as t →∞,

provided h(t) ≡ h#(t)− v(t) + F# ? v(t) is DRI. In this case,

(17.6) h(t) = eβt[h(t)− h(∞)]−
[h(∞)eβt

1− p
(p−G(t))

]
.

Now, the first term on the right-hand side is DRI by assumption. Also,

eβt(p−G(t)) ≤
∫

(t,∞)
eβsdG(s) = 1− F#(t).

This bound is decreasing to 0 and its integral is µ#, and so the last term
in brackets in (17.6) is DRI. Thus h(t) is DRI. Finally, an easy check shows
that

∫
<+

h(s) ds = c, the constant in (17.4). Substituting this in (17.5) and
dividing by eβt yields (17.4). ¤
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Example 17.7. Under the assumptions preceding Theorem 17.3,

V (t) = 1/(1− p)− e−βt/(βµ#) + o(e−βt),

P{Tν > t} = (1− p)e−βt/(βµ#) + o(e−βt), as t →∞.

The first line follows by Theorem 17.3 with h(t) = 1, since by its definition,
V (t) = 1 + G ? V (t). The second follows from the first line and (17.1).

Example 17.8. Waiting Time for a Gap in a Poisson Process. Consider
a Poisson process with rate λ that terminates at the first time a gap of size
≥ c occurs. That is, the termination time is Tν , where ν = min{n : ξn+1 ≥
c}, where ξn = Tn − Tn−1 and Tn are the occurrence times of the Poisson
process. Now, at each time Tn, the process either terminates if ξn+1 ≥ c,
or it continues until the next renewal epoch if ξn+1 < c. These events are
clearly independent of T1, . . . , Tn.

Then the probability of terminating is

1− p ≡ P{ξn+1 ≥ c} = e−λc.

The conditional distribution of the next renewal period beginning at Tn is

F (t) = P{ξn+1 ≤ t|ξn+1 < c} = p−1(1− e−λt), 0 ≤ t ≤ c.

Then from (17.1), the waiting time for a gap of size c has a mean E[Tν ] =
(eλc − 1)/λ, and its distribution is

P{Tν ≤ t} = e−λcV (t).

Now, assume λc > 1. Then the condition
∫
<+

eβtpdF (t) = 1 discussed
above for defining β reduces to

λe(β−λ)c = β, for λ < β.

Using this formula and integration by parts, we have

µ# =
∫

[0,c]
teβtpdF (t) = p(cβ − 1)/(β − λ).

Then by Example 17.7,

P{Tν > t} =
(1− β/λ

1− βc

)
e−βt + o(e−βt), as t →∞.

Example 17.9. Cramér-Lundberg Risk Model. Consider an insurance
company that receives capital at a constant rate c from insurance premi-
ums, investments, interest etc. The company uses the capital to pay claims
that arrive according to a Poisson process N(t) with rate λ. The claim
amounts X1, X2, . . . are independent, identically distributed positive ran-
dom variables with mean µ, and are independent of the arrival times. Then
the company’s capital at time t is

Zx(t) = x + ct−
N(t)∑

n=1

Xn, t ≥ 0,
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where x is the capital at time 0.
An important performance parameter of the company is the probability

R(x) ≡ P{Zx(t) ≥ 0, t ≥ 0},
that the capital does not go negative (the company is not ruined). We are
interested in approximating this survival probability when the initial capital
x is large. Exercise 24 shows that R(x) = 0, regardless of the initial capital
x, when c < λµ (the capital input rate is less than the payout rate).

We will now consider the opposite case c > λµ. Conditioning on the
time and size of the first claim, one can show (e.g., see [14, 28, 29]) that
R(x) satisfies a certain differential equation whose corresponding integral
equation is the renewal equation

(17.10) R(x) = R(0) + R ? G(x),

where R(0) = 1− λµ/c and

G(y) = λc−1

∫ y

0
P{X1 > u} du.

The G is a defective distribution with G(∞) = λµ/c < 1. Then applying
(17.2) to R(x) = h ? V (x) = R(0)V (x), we have

R(x) → R(0)/(1− λµ/c) = 1, as x →∞.

We now consider the rate at which the “ruin” probability 1 − R(x)
converges to 0 as x →∞. Assume there is a positive β such that

λc−1

∫

<+

eβxP{X1 > x} dx = 1,

and that

µ# ≡ λc−1

∫

<+

xeβxP{X1 > x} dx < ∞.

Then by Theorem 17.3 (with R(x), R(0) in place of H(t), h(t)), the proba-
bility of ruin has the asymptotic form

1−R(x) =
1

βµ#
(1− λµ/c)e−βx + o(e−βx), as x →∞.

18. Sketch of the Proof of Blackwell’s Theorem*

This section describes a coupling proof of Blackwell’s theorem. The
classical proof of Blackwell’s theorem based on analytical properties of the
renewal function and integral equations is in Feller (1971). Lindvall (1977)
and Athreya, McDonald and Ney (1978) gave another probabilistic proof
involving “coupling” techniques. A nice review of various applications of
coupling is in Lindvall (1992). A recent refinement of the coupling proof is
given in Durrett (2005). The following is a sketch of his presentation when
the inter-renewal time has a finite mean (he gives a different proof for the
case of an infinite mean).
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Let N(t) be a renewal process with renewal times Tn whose inter-renewal
times ξn have a non-arithmetic distribution and a finite mean µ. For conve-
nience, we will write Blackwell’s theorem (Theorem 6.3) as

(18.1) lim
t→∞E[N(t, t + a]] = a/µ,

where N(t, t+a] ≡ N(t+a)−N(t). Now, this statement would trivially hold
if N(t) were a stationary renewal process, since in this case E[N(t, t + a]]
would equal a/µ by Proposition 15.8. So if one could construct a version of
N(t) that approximates a stationary process as close as possible, then (18.1)
would be true. That is the approach in the proof, which we now describe.

On the same probability space as N(t), let N ′(t) be a stationary renewal
process with renewal times T ′n, whose inter-renewal ξ′n times for n ≥ 2 have
the same distribution as the ξn. The first and most subtle part of the proof
is to construct a third renewal process N ′′(t) on the same probability space
that is equal in distribution to the original process N(t) and approximates
the stationary process N ′(t).

Specifically, for a fixed ε > 0, the proof begins by defining random in-
dices ν and ν ′ such that |Tν − Tν′ | < ε. Then a third renewal process
N ′′(t) is defined (on the same probability space) with inter-renewal times
ξ1, . . . , ξν , ξ

′
ν′ , ξ

′
ν′+1 . . .. This process has the following properties:

(a) {N ′′(t) : t ≥ 0} d= {N(t) : t ≥ 0} (i.e., their finite-dimensional distribu-
tions are equal).
(b) On the event {Tν ≤ t},
(18.2) N ′(t + ε, t + a− ε] ≤ N ′′(t, t + a] ≤ N ′(t− ε, t + a + ε].

This is an epsilon-coupling in that N ′′(t) is a coupling of N(t) that is within
ε of the targeted stationary version N ′(t) in the sense of condition (b).

With this third renewal process in hand, the rest of the proof is as
follows. Consider the expectation

(18.3) E[N(t, t + a]] = E[N ′′(t, t + a]] = V1(t) + V2(t),

where

V1(t) = E
[
N ′′(t, t + a]1(Tν ≤ t)

]
, V2(t) = E

[
N ′′(t, t + a]1(Tν > t)

]
.

Condition (b) and E[N ′(c, d]] = (d− c)/µ (due to the stationarity) ensure

V1(t) ≤ E
[
N ′(t− ε, t + a + ε]1(Tν ≤ t)

]
≤ (a + 2ε)µ.

Next, observe E[N ′′(t, t + a]|Tν > t] ≤ E[N ′′(a)], since the worse-case sce-
nario is that there is a renewal at t. This and condition (b) yield

V2(t) ≤ P{Tν > t}E[N ′′(a)].

Similarly,

V1(t) ≥ E
[
N ′(t + ε, t + a− ε]−N ′′(t, t + a]1(Tν > t)

]

≥ (a− 2ε)/µ− P{Tν > t}E[N ′′(a)].
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Here we take ε < a/2, so that t + ε < t + a − ε. Combining the preceding
inequalities with (18.3), and using P{Tν > t} → 0 as t →∞, it follows that

(a− 2ε)/µ + o(1) ≤ E[N(t, t + a]] ≤ (a + 2ε)/µ + o(1).

Since this is true for arbitrarily small ε, we obtain E[N(t, t + a]] → a/µ,
which is Blackwell’s result.

19. Stationary-Cycle Processes*

Most of the results above for regenerative processes also apply to a wider
class of regenerative-like processes that we will now describe.

For this discussion, suppose {X(t) : t ≥ 0} is a continuous-time stochas-
tic process with a general state space S, and N(t) is a renewal process on
the same probability space. As in Section 8, we let

ζn = (ξn, {X(Tn−1 + t) : 0 ≤ t < ξn})
denote the segment of these processes on the interval [Tn−1, Tn). Then
{ζn+k : k ≥ 1} is the future of (N(t), X(t)) beginning at time Tn. This
is what an observer of the processes would see beginning at time Tn.

Definition 8. The process X(t) is a stationary-cycle process over the
times Tn if the future {ζn+k : k ≥ 1} of (N(t), X(t)) beginning at any
time Tn is independent of T1, . . . , Tn, and the distribution of this future is
independent of n. Discrete-time and delayed stationary-cycle processes are
defined similarly.

The defining property ensures that the segments ζn form a stationary
sequence, whereas for a regenerative process, the segments are i.i.d. Also,
for a regenerative process X(t), its future {ζn+k : k ≥ 1} beginning at any
time Tn is independent of the entire past {ζk : k ≤ n} (rather than only
T1, . . . , Tn as in the preceding definition).

All the strong laws of large numbers in this chapter for regenerative
processes also hold for stationary-cycle processes. The only difference is that
a law’s limiting value would be random instead of a constant when stationary
segments of the process does not satisfy a technical ergodic property. We
will not get into this topic.

As in Section 11, one can define processes with stationary-cycle incre-
ments. Most of the results above such as the CLT have obvious extensions
to these more complicated processes.

We end this section by by commenting on limiting theorems for proba-
bilities and expectations of stationary-cycle processes.

Remark 19.1. Theorem 8.7 and Corollary 8.10 are also true for stationary-
cycle processes. This follows since such a process satisfies the crude-regeneration
property in Theorem 8.3 leading to Theorem 8.7 and Corollary 8.10.

There are many intricate stationary-cycle processes that arise naturally
from systems that involve stationary and regenerative phenomena. Here is
an elementary illustration.
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Example 19.2. Regenerations in a Stationary Environment. Consider a
process X(t) = g(Y (t), Z(t)) where Y (t) and Z(t) are independent processes
and g is a function on their product space. Assume Y (t) is a regenerative
process over the times Tn (e.g., an ergodic Markov process) with state space
S = <d and limiting distribution P , as in Theorem 8.7. Assume Z(t) is a
stationary process. One can regard X(t) = g(Y (t), Z(t)) as a regenerative-
stationary reward process, where g(y, z) is the reward rate from operating
a system in state y in environment z. Now, the segments ζn defined above
form a stationary process, and hence X(t) is a stationary-cycle process.

In light of Remark 19.1, we can describe the limiting behavior of X(t) as
we did for regenerative processes. Specifically, assuming for simplicity that
g is real-valued and bounded, we have

(19.3) lim
t→∞EX(t) =

∫

<d

E[g(y, Z(0))]P (dy).

Indeed, from Theorem 8.7 for stationary-cycle processes,

lim
t→∞EX(t) =

1
µ

E
[ ∫ T1

0
g(Y (s), Z(s))ds

]
.

Then conditioning on {N(t), Y (t) : t ≥ 0}, which is independent of the
process Z(t), the last expectation equals the integral in (19.3).

Also, as in Theorem 11.4 it follows that, for any real-valued bounded
function f on the state space of X(t),

lim
t→∞

∫ t

0
E[f(X(s))], ds =

∫

<d

E[f(g(y, Z(0)))]P (dy).

20. Exercises

1. For a nonnegative random variable X with distribution F , show

EX =
∫

<+

(1− F (x))dx.

This reduces to EX =
∑∞

n=1 P{X ≥ n} for integer-valued X. One approach
is to use EX =

∫
<+

( ∫ x
0 dy

)
dF (x). For a general random variable X with

finite mean, use X = X+ −X− to obtain

EX =
∫

<+

(1− F (x))dx−
∫ 0

−∞
F (x)dx.

2. An exponential random variable X satisfies the memoryless property

P{X > s + t|X > s} = P{X > t}, s, t, > 0.

Prove the analogue P{X > τ + t|X > τ} = P{X > t}, for t > 0, where τ
is a positive random variable independent of X. Show that, for a Poisson
process N(t) with rate λ, the forward recurrence time B(t) = TN(t)+1 − t
at time t has an exponential distribution with rate λ. One approach is to
condition on TN(t).
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Consider the forward recurrence time B(τ) at a random time τ inde-
pendent of the Poisson process. Show that B(τ) also has an exponential
distribution with rate λ.

3. A system consists of two components with independent lifetimes X1

and X2, where X1 is exponentially distributed with rate λ, and X2 has a
uniform distribution on [0, 1]. The components operate in parallel, and the
system lifetime is max{X1, X2} (the system is operational if and only if
at least one component is working). When the system fails, it is replaced
by another system with an identical and independent lifetime, and this is
repeated indefinitely. The number of system renewals over time forms a re-
newal process N(t). Find the distribution and mean of the system lifetime.
Find the distribution and mean of N(t) (reduce your formulas as much as
possible). Determine the portion of time that (a) two components are work-
ing, (b) only type 1 component is working, and (c) only type 2 component
is working.

4. Continuation. In the context of the preceding exercise, a typical
system initially operates for a time Y = min{X1, X2} with two components
and then operates for a time Z = max{X1, X2} − Y with one component.
Thereupon it fails. Find the distributions and means of Y and Z. Find the
distribution of Z conditioned that X1 > X2. You might want to use the
memoryless property of the exponential distribution in Exercise 2. Find the
distribution of Z conditioned that X2 > X1.

5. Let N(t) denote a renewal process with inter-renewal distribution
F and consider the number of renewals N(T ) in an interval (0, T ] for some
random time T independent of N(t). For instance, N(T ) might represent the
number of customers that arrive at a service station during a service time T .
Find general expressions for the mean and distribution of N(T ). Evaluate
these expressions for the case in which T has an exponential distribution
with rate µ and F = G2?, where G is an exponential distribution with rate
λ.

6. Consider the cyclic renewal process X(t) described in Example 1.9,
where F0, . . . , FK−1 are the sojourn distributions in states 0, 1, . . . , K − 1.
Assume p ≡ F0(0) > 0, but Fi(0) = 0, for i = 1, . . . ,K − 1. Let Tn denote
the times at which the process X(t) jumps from state K−1 directly to state
1 (i.e., it spends no time in state 0). Justify that the Tn form a delayed
renewal process with inter-renewal distribution

F (t) = p
∞∑

j=0

F1 ? · · · ? FK−1 ? F̃ j?(t),

where F̃ (t) = F̃0 ?F1 ? · · ·?FK−1(t), and F̃0(t) is the conditional distribution
of the sojourn time in state 0 given it is positive. Specify a formula for F̃0(t),
and describe what F̃ (t) represents.
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7. Large Inter-renewal Times. Let N(t) denote a renewal process with
inter-renewal distribution F . Of interest are occurrences of inter-renewal
times that are greater than a value c, assuming F (c) < 1. Let T̃n denote
the subset of times Tn for which ξn > c. So T̃n equals some Tk if ξk > c.
(Example 17.8 addresses a related problem of determining the waiting time
for a gap of size c in a Poisson process.) Show that T̃n are delayed renewal
times and the inter-renewal distribution has the form

F̃ (t) =
∞∑

k=0

F k?
c ? G(t),

where Fc(t) = F (t)/F (c), 0 ≤ t ≤ c (the conditional distribution of an
inter-renewal time given that it is ≤ c), and specify the distribution G(t) as
a function of F .

8. Bernoulli Process. Consider a sequence of independent Bernoulli tri-
als in which each trial results in a success or failure with respective prob-
abilities p and q = 1 − p. Let N(t) denote the number of successes in t
trials, where t is an integer. Show that N(t) is a discrete-time renewal pro-
cess, called a Bernoulli Process. (The parameter t may denote discrete-time
or any integer referring to sequential information.) Justify that the inter-
renewal times have the geometric distribution P{ξ1 = n} = qn−1p, n ≥ 1.
Find the distribution and mean of N(t), and do the same for the renewal
time Tn. Show that the moment generating function of Tn is

(20.1) E[eαTn ] =
( peα

1− qeα

)n
, 0 < α < − log q.

9. Partitioning and Thinning of a Renewal Process. Let N(t) be a re-
newal process with inter-renewal distribution F . Suppose each renewal time
is independently assigned to be a type i renewal with probability pi, for
i = 1, . . . , m, where p1 + · · · + pm = 1. Let Ni(t) denote the number of
type i renewals up to time t. These processes form a partition of N(t) in
that N(t) =

∑m
i=1 Ni(t). Each Ni(t) is a thinning of N(t), where pi is the

probability that a point of N(t) is assigned to Ni(t).
Show that Ni(t) is a renewal process with inter-renewal distribution

Fi(t) =
∞∑

k=1

(1− pi)k−1piF
k?(t).

Show that, for n = n1 + · · ·nm,

P{N1(t) = n1, . . . , Nm(t) = nm}
= [F (n)?(t)− F (n+1)?(t)]

n!
n1! · · ·nm!

pn1
1 · · · pnm

m .

Give an example of F with m = 2 for which N1(t) and N2(t) are not inde-
pendent.
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10. Multi-type Renewals. An infinite number of jobs are to be processed
one-at-a-time by a single server. There are m types of jobs, and the proba-
bility that any job is of type i is pi, where p1 + · · · + pm = 1. The service
time of a type i job has a distribution Fi with mean µi. The service times
and types of the jobs are independent. Let N(t) denote the number of jobs
completed by time t. Show that N(t) is a renewal process and specify its
inter-arrival distribution and mean. Let Ni(t) denote the number of type i
jobs processed up to time t. Show that Ni(t) is a delayed renewal process
and specify limt→∞ t−1N(t).

11. Continuation. In the context of Exercise 10, let X(t) denote the type
of job being processed at time t. Find the limiting distribution of X(t). Find
the portion of time devoted to type i jobs.

12. Continuation. Consider the multi-type renewal process with two
types of renewals that have exponential distributions with rates λi, and
type i occurs with probability pi, , i = 1, 2. Show that the renewal function
has the density

U ′(t) =
λ1λ2 + p1p2(λ1 − λ2)2e−(p1λ2+p2λ1)t

p1λ2 + p2λ1
, t > 0.

13. System Availability. The status of a system is represented by an
alternating renewal process X(t), where the mean sojourn time in a working
state 1 is µ1 and the mean sojourn time in a non-working state 0 is µ0. The
system availability is measured by the portion of time it is working, which
is limt→∞ t−1

∫ t
0 X(s)ds. Determine this quantity and show that it is equal

to the cycle-availability measured by limn→∞ T−1
n

∫ Tn

0 X(s)ds.

14. Integrals of Renewal Processes. Suppose N(t) is a renewal process
with renewal times Tn and µ = ET1. Prove

E
[ ∫ Tn

0
N(s) ds

]
= µn(n− 1)/2.

For any non-random t > 0, it follows by Fubini’s theorem that

E
[ ∫ t

0
N(s) ds

]
=

∫ t

0
EN(s) ds.

Assuming τ is an exponential random variable with rate γ, prove

(20.2) E
[ ∫ τ

0
N(s) ds

]
=

∫

<+

e−γtEN(t) dt.

Show that if N is a Poisson process with rate λ, then the expectation in
(20.2) is λ/γ2. (Integrals like these are used to model holding costs; see
Section 13 and the next exercise.)

15. Continuation. Items arrive to a service station according to a Poisson
process N(t) with rate λ. The items are stored until m have accumulated.
Then the m items are served in a batch. The service time is exponentially
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distributed with rate γ. During the service, items continue to arrive. There
is a cost hi per unit time of holding i customers in the system. Assume
the station is empty at time 0. Let C1 denote the expected cost of holding
the customers until m have arrived, and let C2 denote the expected costs
for holding the added arrivals in the system during the service. Determine
these expected costs.

16. Customers arrive to a service system according to a Poisson process
with rate λ. The system can only serve one customer at a time and, while it is
busy serving a customer, arriving customers are blocked from getting service
(they may seek service elsewhere or simply go unserved). Assume the service
times are independent with common distribution G and are independent of
the arrival process. For instance, a contractor may only be able to handle
one project at a time (or a vehicle can only transport one item at a time).

Determine the following quantities: (a) The portion of time the system
is busy. (b) The portion of time the system is not busy. (c) The number of
customers per unit time that are served. (d) The portion of customers that
are blocked from service.

17. Delayed Renewals. A point process N(t) is a m-step delayed renewal
process if the inter-occurrence times ξm+k, for k ≥ 1, are independent with a
common distribution F , and no other restrictions are placed on ξ1, . . . , ξm.
That is, Nm(t) ≡ N(t)−N(Tm), for t ≥ Tm is a renewal process. Show that
Corollary 2.5 and Theorem 2.7 hold for such processes. Use the fact that
N(t) is asymptotically equivalent to Nm(t) in that

Nm(t)/N(t) = 1−N(Tm)/N(t) → 1, a.s. as t →∞.

18. For a point process N(t) that is not simple, prove t−1N(t) → 1/µ as
t → ∞ implies n−1Tn → µ, as n → ∞. Hint: For a fixed positive constant
c, note that N((Tn− c)+) ≤ n ≤ N(Tn). Divide these terms by Tn and take
limits as n →∞ to obtain (2.3).

19. Age Replacement Model. An item (e.g., battery, vehicle, tool, or
electronic component) whose use is needed continuously is replaced whenever
it fails or reaches age a, whichever comes first. The successive items are
independent and have the same lifetime distribution G. The cost of a failure
is cf dollars and the cost of a replacement at age a is cr. Show that the
average cost per unit time is

C(a) = [cfG(a) + cr(1−G(a))]/
∫ a

0
(1−G(s)]ds.

Find the optimal age a that minimizes this average cost.

20. Point Processes as Jump Processes. Consider a point process N(t) =∑∞
k=1 1(Tk ≤ t), where T1 ≤ T2 ≤ · · · . It can also be formulated as an

integer-valued jump process of the form

N(t) =
∞∑

n=1

νn1(T̂n ≤ t),
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where T̂n are the “distinct” times at which N(t) takes a jump, and νn is the
size of the jump. That is, T̂n = min{Tk : Tk > T̂n−1}, where T̂0 = 0, and
νn =

∑∞
k=1 1(Tk = T̂n), n ≥ 1.

For instance, suppose Tn are times at which customers arrive to a service
system. Then T̂n are the times at which batches of customers arrive to a
service system, and at time T̂n, a batch of νn customers arrive. Suppose
T̂n are renewal times, and νn are i.i.d. and independent of the T̂n. Show
that the number of customers that arrive per unit time is E[ν1]/E[T̂1] a.s.,
provided these expectations are finite. Next, assume T̂n form a Poisson
process with rate λ, and νn has a Poisson distribution. Find EN(t) by
elementary reasoning, and then show N(t) has a Poisson distribution.

21. Batch Renewals. Consider times Tn =
∑n

k=1 ξk, where the ξk are
i.i.d. with distribution F , where F (0) = P{ξk = 0} > 0. The associated
point process N(t) is a renewal process with instantaneous renewals (or
batch renewals). In the notation of Exercise 20, N(t) =

∑∞
n=1 νn1(T̂n ≤

t), where νn is the number of renewals exactly at time T̂n. Specify the
distribution of νn. Are the νn i.i.d.? Are they independent of T̂n? Specify
the distribution of T̂1 in terms of F .

22. Prove E[TN(t)] = µE[N(t) + 1] − E[ξN(t)]. If N(t) is a Poisson
process, show that E[TN(t)] < µE[N(t)].

23. Superpositions of Renewal Processes. Let N1(t) and N2(t) be in-
dependent renewal processes with the same inter-renewal distribution, and
consider the sum N(t) = N1(t) + N2(t) (sometimes called a superposition).
Suppose N(t) is a renewal process. Prove N(t) is a Poisson process if and
only N1(t) and N2(t) are Poisson processes.

24. Production-Inventory Model. Consider a production-inventory sys-
tem that produces a product at a constant rate of c units per unit time and
the items are put in inventory to satisfy demands. The products may be
discrete or continuous (e.g., oil, chemical). Demands occur according to a
Poisson process N(t) with rate λ, and the demand quantities X1, X2, . . . are
independent, identically distributed positive random variables with mean µ,
and are independent of the arrival times. Then the inventory level at time
t would be

Zx(t) = x + ct−
N(t)∑

n=1

Xn, t ≥ 0,

where x is the initial inventory level. Consider the probability R(x) ≡
P{Zx(t) ≥ 0, t ≥ 0} of never running out of inventory. Show that if c < λµ,
then R(x) = 0 no matter how high the initial inventory level x is. Hint:
apply a SLLN to show that Zx(t) → −∞ as t → ∞ if c < λµ, where x is
fixed. Find the limit of Zx(t) as t → ∞ if c > λµ. (The process Zx(t) is a
classical model of the capital of an insurance company; see Example 17.9.)
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25. Derive a renewal equation that H(t) = E[N(t)−N(t− a)1(a ≤ t)]
satisfies.

26. Non-homogeneous Renewals. Suppose N(t) is a point process on <+

whose inter-point times ξn = Tn − Tn−1 are independent with distributions
Fn. Prove EN(t) =

∑∞
n=1 F1 ? · · · ? Fn(t).

27. Subadditivity of Renewal Function. Prove the subadditivity property

U(t + a) ≤ U(a) + U(t), a, t ≥ 0.

Use a ≤ TN(a)+1 in the expression

N(t + a)−N(a) =
∞∑

k=1

1(TN(a)+k ≤ t + a).

28. Elementary Renewal Theorem via Blackwell. Prove the elementary
renewal theorem (Theorem 6.1) by an application of Blackwell’s theorem.
One approach, for non-arithmetic F , is to use

EN(t) =
dte∑

k=1

[U(k)− U(k − 1)] + EN(dte)− EN(t).

Then use the fact n−1
∑n

k=1 ck → c when ck → c.

29. Arithmetic Key Renewal Theorem. Represent U ?h(u+nd) as a sum
like (6.4), and then prove Theorem 7.6 by applying Blackwell’s theorem.

30. Prove the following function is Riemann integrable, but not DRI:

h(t) =
∞∑

n=1

an1(n− εn ≤ t < n + εn),

where an →∞ and 1/2 > εn ↓ 0 such that
∑∞

n=1 anεn < ∞.

31. Prove that a continuous function h(t) ≥ 0 is DRI if and only if
Iδ(h) < ∞ for some δ > 0.

The next eight exercises concern the renewal process trinity: the back-
ward and forward recurrence times A(t) = t−TN(t), B(t) = TN(t)+1− t, and
the length L(t) = ξN(t)+1 = A(t) + B(t) of the renewal interval containing
t. Assume the inter-renewal distribution is non-arithmetic.

32. Draw a typical sample path for each of the processes A(t), B(t), and
L(t).

33. Prove B(t) is a Markov process by showing it satisfies the Markov
property

P{B(t+u) ≤ y|B(s) : s < t, B(t) = x} = P{B(u) ≤ y|B(0) = x}, x, y, t, u ≥ 0.

34. Formulate a renewal equation that P{B(t) > x} satisfies.
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35. Bypassing a renewal equation. Use Remark 5.6 (without using a
renewal equation) to prove

P{B(t) > x} =
∫

[0,t]
[1− F (t + x− s)]dU(s).

36. Prove EB(t) = µE[N(t) + 1]− t. Assuming F has a finite variance
σ2, prove

lim
t→∞EA(t) = lim

t→∞EB(t) =
σ2 + µ2

2µ
.

Is this limit also the mean of the limiting distribution Fe(t) = 1
µ

∫ t
0 [1 −

F (s)]ds of A(t) and B(t)?

37. Inspection Paradox. Consider the length L(t) = ξN(t)+1 of the re-
newal interval at any time t (this is what an inspector of the process would
see at time t). Prove the paradoxical result that L(t) is stochastically larger
than the length ξ1 of a typical renewal interval; that is

(20.3) P{L(t) > x} ≥ P{ξ1 > x}, t, x ≥ 0.

This inequality is understandable upon observing that the first probabil-
ity is for the event that a renewal interval bigger than x “covers” t, and this
is more likely to happen than a fixed renewal interval being bigger than x. A
consequence of this result is EL(t) ≥ Eξ1, which is often a strict inequality.

Suppose µ = ET1 and σ2 = VarT1 are finite. Recall from (8.14) that
the limiting distribution of L(t) is 1

µ

∫ x
0 sdF (s). Derive the mean of this

distribution (as a function of µ and σ2), and show it is ≥ µ.
Show that if N(t) is a Poisson process with rate λ, then

EL(t) = λ−1(2− (1 + λt)e−λt).

In this case, EL(t) > Eξ1.

38. Prove

lim
t→∞P{A(t)/L(t) ≤ x} = x, 0 ≤ x ≤ 1.

Prove this result with B(t) in place of A(t).

39. Prove

lim
t→∞E[A(t)kB(t)`(A(t) + B(t))m] =

E[T k+`+m
1 ]

µ(k + ` + 1)
(
k+`
k

) .

Find the limiting covariance, limt→∞Cov(A(t), B(t)).

40. Delayed Versus Non-delayed Regenerations. Let X̃(t) be a real-
valued, bounded, delayed regenerative process over Tn. Then X(t) ≡ X̃(T1+
t), t ≥ 0 is a regenerative process. Show that if limt→∞EX(t) exists (such as



66 2. RENEWAL AND REGENERATIVE PROCESSES

by Theorem 8.7), then EX̃(t) has the same limit. Take the limit as t →∞
of

EX̃(t) =
∫

[0,t]
E[X(t− s)]dF (s) + E[X̃(t)1(T1 > t)].

41. Dispatching System. Items arrive at a depot (warehouse or com-
puter) at times that form a renewal process with finite mean µ between
arrivals. Whenever M items accumulate, they are instantaneously removed
(dispatched) from the depot. Let X(t) denote the number of items in the
depot at time t. Find the limiting probability that there are pj items in the
system (j = 0, . . . ,M − 1). Find the average number of items in the system
over an infinite time horizon.

Suppose the batch size M is to be selected to minimize the average cost
of running the system. The relevant costs are a cost C for dispatching the
items, and a cost h per unit time for holding an item in the depot. Let C(M)
denote the average dispatching plus holding cost for running the system with
batch size M . Find an expression for C(M). Show that the value of M that
minimizes C(M) is an integer adjacent to the value M∗ =

√
2C/hµ.

42. Continuation. In the context of the preceding exercise, find the aver-
age time W that a typical item waits in the system before being dispatched.
Find the average waiting time W (i) in the system for the ith arrival in the
batch.

43. Consider an ergodic Markov chain Xn with limiting distribution πi.
Prove

lim
n→∞P{Xn = j, Xn+1 = `} = πjpj`.

One can show that (X,Xn+1) is a two-dimensional Markov chain that is
ergodic with the preceding limiting distribution. However, establish the
limit above only with the knowledge that Xn has a limiting distribution.

44. For the Markov process X(t) in Theorem 9.12, show that

Ei

[ ∞∑

n=0

g(X(τn−1), X(τn))1(τn ≤ T1(i))
]

= π−1
i

∑

j∈I

πj

∑

`∈I

pj`g(j, `)

=
1

piqi

∑

j∈I

pjqj

∑

`∈I

pj`g(j, `).



20. EXERCISES 67

45. Suppose X(t) is the ergodic Markov-renewal process as in Theo-
rem 10.1. Arguing as in Example 9.8, show that

Ei

[ ∫ T1(i)

0
1(X(t) = j) dt

]
= π−1

i πj

∑

`∈S

pj`µj`,

Ei[T1(i)] = π−1
i

∑

j∈S

πj

∑

`∈S

pj`µj`

Ei

[ ∫ T1(i)

0
f(X(t)) dt

]
= π−1

i

∑

j∈I

πjf(j)
∑

`∈I

pj`µj`

.

Use these formulas to prove Theorem 10.1.

46. For the Markov process X(t) in Example 16.10, show that

E
[ ∫ T1

0
s1(X(s) = i)ds

]
= pi/qi.

47. Items with volumes V1, V2, . . . are loaded on a truck one at a time
until the addition of an arriving item would exceed the capacity V of the
truck. Then the truck leaves to deliver the items. The number of items
that can be loaded in the truck before its volume V is exceeded is N(V ) =
min{n :

∑n
k=1 Vk > V }. Assume the Vn are independent with identical

distribution F that has a mean µ and variance σ2. Suppose V is large
compared to µ. Specify a single value that would be a good approximation
for N(V ). What would be a good approximation for EN(V )? Specify how
to approximate the distribution of N(V ) by a normal distribution. Assign
specific numerical values for µ, σ2, and V , and use the normal distribution
to approximate the probability P{a ≤ N(V ) ≤ b} for a few values of a and
b.

48. Limiting Distribution of a Cyclic Renewal Process. Consider a cyclic
renewal process X(t) on the states 0, 1, . . . , K − 1 as described in Exam-
ple 1.9. Its inter-renewal distribution is F = F0 ? · · · ? FK−1, where Fi is
distribution of a sojourn time in state i having a finite mean µi. Assume
one of the Fi is non-arithmetic. Show that F is non-arithmetic. Prove

lim
t→∞P{X(t) = i} =

µi

µ0 + . . . + µK−1
.

Is this limiting distribution the same as limt→∞ t−1E[
∫ t
0 1(X(s) = i)ds], the

average expected time spent in state i? State any additional assumptions
needed for the existence of this limit.

49. Consider a GI/G/1 system as in Example 12.4. Let W ′
n denote the

length of time the nth customer waits in the queue prior to obtaining service.
Determine a Little Law for the average wait W ′ = limn→∞ n−1

∑n
k=1 W ′

k.
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50. System Down Time. Consider an alternating renewal process that
represents the up and down states of a system. Suppose the up times have
a distribution G with mean µ and variance σ2, and the down times have a
distribution G0 with mean µ0 and variance σ2

0. Let D(t) denote the length of
time the system is down in the time interval [0, t]. Find the average expected
down time β ≡ limt→∞ t−1ED(t). Then show (D(t) − βt)/t1/2 d→ N(0, γ2)
and specify γ.

51. Congestion in a Road Race. The following model was developed by
Georgia Tech undergraduate students to assess the congestion in the 10-
kilometer Atlanta Road Race, which is held every July 4th. After the pack
of elite runners begins the race, the rest of the runners start the race a little
later as follows. The runners are partitioned into m groups, with rk runners
assigned to group k, 1 ≤ k ≤ m, depending on their anticipated completion
times (the runners in each group being about equal in ability). The groups
are released every τ minutes, with group k starting the race at time kτ
(the groups are ordered so that the faster runners go earlier). Although the
group sizes rk are random, assume for simplicity that they are not. Typical
numbers are 10 groups of 5000 runners in each group. The basic problem
was to design a model for computing the probability that the congestion is
above a certain level so that the runners have to slow down to a walk. (The
students used this model to determine reasonable group sizes and their start
times under which the runners would start as soon as possible, with a low
probability of runners being forced to walk.)

The students assumed the velocity of each runner is the same throughout
the race, the velocities of all the runners are independent, and the velocity of
each runner in group k has the same distribution Fk. The distributions Fk

were based on empirical distributions from samples obtained in prior races.
Using pictures of past races, it was determined that if the number of runners
in an interval of length ` in the road was greater than b, then the runners
in that interval would be forced to walk.

Under these assumptions, the number of runners in group k that are in
an interval [a, a + `] on the road at time t is

Zk
a (t) ≡

rk∑

n=1

1(Vkn(t− kτ) ∈ [a, a + `]),

where Vk1, . . . , Vkrk
are the independent velocities of the runners in group k

that have the distribution Fk. Then the total number of runners that are in
[a, a + `] at time t is

Za(t) =
m∑

k=1

Zk
a (t).

Specify how one would use the central limit theorem to compute the prob-
ability P{Za(t) > b} that the runners in [a, a + `] at time t would be forced
to walk.
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52. Consider a delayed renewal process N(t) with initial distribution
Fe(x) = 1

µ

∫ x
0 [1− F (s)]ds. Prove EN(t) = U ? Fe(t) = t/µ by a direct eval-

uation of the integral representing the convolution, where U =
∑∞

n=0 Fn?.

53. Justify expression (14.10), which in expanded form is

σ2 = µ−1
i Var(Zν1 − aν1) =

∑

j∈S

πj f̃(j)2 + 2
∑

j∈S

πj f̃(j)
∑

k∈S

∞∑

n=1

pn
jkf̃(k).

First show that E[Zν1 − aν1)] = 0, and then and use the expansion

Var(Zν1 − aν1) = Ei

[
[

ν1∑

n=1

f̃(Xn)]2
]

= Ei

[ ν1∑

n=1

f̃(Xn)2
]

+ 2Ei

[ ν1∑

n=1

Vn

]
,(20.4)

where Vn = f̃(Xn)
∑ν1

`=n+1 f̃(X`). Apply Proposition 9.4 to the last two
expressions in (20.4)(noting that

∑ν1
n=1 Vn =

∑ν1−1
n=0 Vn). Use the fact that

Ei[Vn|Xn = j, ν1 ≥ n] = f̃(j)h(j),

where h(j) = Ej [
∑ν1

n=1 f̃(Xn)] satisfies the equation

h(j) =
∑

k∈S

pjkf̃(k) +
∑

k∈S

pjkh(k),

and hence h(j) =
∑

k∈S

∑∞
n=1 pn

jkf̃(k).

54. CLT for Markov Processes. Let X(t) denote an ergodic Markov
process with exponential sojourn rates qi and limiting distribution pi =
πi/qi/

∑
j∈S πj/qj , for i ∈ S. Consider the functional Z(t) =

∫ t
0 f(X(s)) ds,

where f(i) denotes a value per unit time when the process X(t) is in state
i. Example 11.8 showed that t−1Z(t) → a ≡ ∑

i∈I pif(i), a.s., provided
the sum exists. For simplicity, fix i ∈ S and assume X(0) = i. Specify
conditions, based on Theorem 14.3, under which

(Z(t)− at)/t1/2 d→ N(0, σ2), as t →∞.

Give an expression for σ2 using ideas in Example 14.9 and

Z(T1)− aT1 =
ν1∑

k=1

[f(Xk)Yk − aYk],

where Xn is the embedded Markov chain, Yn is the sojourn time of X(t) in
state Xn, and ν1 = min{n ≥ 1 : Xn = i}.





CHAPTER 3

Poisson Processes

Poisson processes are used extensively in applied probability models.
Their importance is due to their versatility for representing a variety of
physical processes, and due to the central limit phenomenon that a Poisson
process is a natural model for a sum of many sparse point processes. The
most basic Poisson process is a renewal process on the time axis with expo-
nential inter-renewal times. This type of process is useful for representing
times at which an event occurs, such as the times at which items arrive to
a network, machine components fail, emergencies occur, a stock price takes
a large jump, etc. The limiting behavior of these classical Poisson processes
plus a few more properties were discussed in the preceding chapter. This
discussion is continued in the first part of the present chapter which covers
several characterizations of such processes. A distinguishing feature of a
classical Poisson process is that its point locations (i.e., occurrence times)
on a finite time interval are equal in distribution to order-statistics from a
uniform distribution on the interval.

Applications of classical Poisson processes often involve auxiliary marks
or random elements associated with the event occurrence times. For in-
stance, if items arrive to a network at times that form a Poisson process,
then a typical mark for an arriving item might be a vector denoting its route
in the network and its service times at the nodes on the route. A conve-
nient approach for analyzing such marks is to consider them as part of a
larger “space-time” marked Poisson process on a multidimensional space.
The properties of these processes are similar to those of “spatial” Poisson
processes used for modelling locations of discrete items in the plane or a Eu-
clidean space such as cell phone calls, truck delivery points, disease centers,
geological formations, particles in space, fish colonies, etc.

This chapter describes the structure of contemporary Poisson processes
on general spaces; space-time and spatial Poisson processes being special
cases. The methodology for Poisson processes on general spaces involves
technicalities about counting processes on general spaces, such as determin-
ing their distributions by Laplace functionals. A Poisson process on a general
space is characterized in terms of a mixed binomial process. This is a gen-
eralization of the uniform order-statistic characterization of a homogeneous
Poisson process on the time axis.

Much of the discussion covers summations, partitions, translations and
general transformations of Poisson processes. Included are applications of

71
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space-time Poisson processes for analyzing particle systems and stochastic
networks. One section shows that many properties of Poisson processes read-
ily extend to several related processes; namely, Cox processes (i.e., Poisson
processes with random intensities), compound Poisson processes, and clus-
ter processes. The final results are central limit properties for rare events
or points. They justify that a Poisson process is a natural limit for a col-
lection of many sparse families of random points, i.e., a limit of a sum (or
superposition) of many sparse point processes.

1. Poisson Processes on <+

As in the last chapter, we define a point process N = {N(t) : t ≥ 0} on
<+ as a counting process N(t) =

∑∞
n=1 1(Tn ≤ t), where 0 = T0 ≤ T1 ≤

T2 ≤ . . . are random points (or times) such that Tn → ∞ a.s. as n → ∞.
The point process N is simple when the points are distinct (T0 < T1 < . . .
a.s.).

We will also refer to the point process as the set of random variables
N = {N(B) : B ∈ B+}, where

N(B) =
∞∑

n=1

1(Tn ∈ B), B ∈ B+,

denotes the number of points in the set B, and B+ denotes the Borel sets
in <+ (see Section 1 in the Appendix). Note that N(B) is finite when B is
bounded since Tn →∞ a.s. However, N(B) may be infinite when the set B
is not bounded, and E[N(B)] may be infinite even though N(B) is finite.
In addition, we write

N(a, b] ≡ N((a, b]) = N(b)−N(a), a ≤ b.

In the last chapter, a renewal process with exponential inter-renewal
times was defined to be a Poisson process. This definition, as we show in
the next section, is equivalent to the following one, which is more versatile.

Definition 9. A simple point process N = {N(t) : t ≥ 0} on <+ is a
Poisson process with rate λ > 0 if it has independent increments in that

N(s1, t1], . . . , N(sn, tn] are independent, for s1 < t1 · · · < sn < tn,

and N(s, t] has a Poisson distribution with mean λ(t− s), for any s < t.

Suppose N is a Poisson process with rate λ. It is sometimes called
a homogeneous or time-stationary Poisson process, or a classical Poisson
process. Theorem 2.1 proves, under the preceding definition, that N is also
a renewal process whose inter-renewal times are independent exponentially
distributed with rate λ. A number of elementary properties of N follow from
this renewal characterization. For instance, we saw in Example 1.6 that the
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time Tn of the nth renewal has the distribution

P{Tn ≤ t} = P{N(t) ≥ n} = 1−
n−1∑

k=0

(λt)ke−λt/k!.

The derivative of this expression is f(t) = λn+1tne−λt/n!, and hence Tn has
a gamma distribution with parameters n and λ.

Be mindful that all the properties of renewal processes apply to N . For
instance, t−1N(t) → λ a.s. by Corollary 2.5. Another observation is that
the Poisson process N is also a Markov jump process.

Some applications of Poisson processes involve only elementary proper-
ties of the processes. Here is an example.

Example 1.1. Optimal Dispatching. Consider a system in which discrete
items arrive to a dispatching station according to a Poisson process N with
rate λ during a fixed time interval [0, T ]. The items might represent people to
be bussed, ships to be unloaded, computer data or messages to be forwarded,
material to be shipped, etc. There is a cost of h dollars per unit time of
holding one item in the system. Also, at any time during the period, the
items may be dispatched (or processed) at a cost of c dollars, and a dispatch
is automatically done at time T . A dispatch is performed instantaneously
and all the items in the system at that time are dispatched. Consider a
dispatching policy defined by a vector (n, t1, . . . , tn), where n is the number
of dispatches to make in the period, and t1 < t2 < · · · < tn = T are the times
of the dispatches. The aim is to find a dispatching policy that minimizes
the expected cost.

We will show that the optimal solution is to have n∗ dispatches at the
times t∗i = iT/n∗, where

(1.2) n∗ =
{ bxc if bxcdxe ≥ x2

dxe otherwise,

and x = T (hλ/2c)1/2.
This type of policy is a “static” policy in that it is implemented at

the beginning of the time period and remains in effect during the period
regardless of how the items actually arrive (e.g., there may be 0 items in
a dispatch at a predetermined dispatch time ti). A static policy might
be appropriate when it is not feasible or too costly to monitor the system
and do real-time dispatching. An alternative is to use a “dynamic” control
policy that involves deciding when to make dispatches based on the observed
queue of units. Exercise 4 asks if the policy above is optimal for non-Poisson
processes.

To solve the problem, we will derive expressions for the total cost and
its mean, and then find optimal values of the policy parameters. Under a
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fixed policy (n, t1, . . . , tn), the total cost is

Z(n, t1, . . . , tn) = cn + h
n∑

i=1

Wi,

where Wi is the the amount of time items wait in the system during the time
period (ti−1, ti]. Since N(a, b] is the number of arrivals in a time interval
(a, b], it follows that

Wi =
∫ ti

ti−1

N(ti−1, s] ds.

Using Fubini’s theorem and E[N(a, b]] = λ(b− a),

EWi =
∫ ti

ti−1

E[N(ti−1, s]] ds

= λ

∫ ti

ti−1

(s− ti−1) ds = λ(ti − ti−1)2/2.

Then

E[Z(n, t1, . . . , tn)] = cn +
hλ

2

n∑

i=1

(ti − ti−1)2.

Therefore, the aim is to solve the optimization problem

(1.3) min
n

min
t1,...,tn

E[Z(n, t1, . . . , tn)],

subject to ti−1 < ti and
∑n

i=1(ti − ti−1) = T .
It is well-known that the problem minx1...,xn

∑n
i=1 x2

i , under the con-
straint

∑n
i=1 xi = T , has the solution x∗i = T/n. This result follows by

dynamic programming (backward induction), or by the use of Lagrange
multipliers.

Applying this result to the problem (1.3), it follows that for fixed n, the
subproblem mint1,...,tn E[Z(n, t1, . . . , tn)] has the solution t∗i − t∗i−1 = T/n,
so that t∗i = iT/n. Also, note that

f(n) ≡ E[Z(n, t∗1, . . . , t
∗
n)] = nc + hλT 2/2n.

Then to solve (1.3), it remains to solve minn f(n). Viewing n as a con-
tinuous variable x, the derivative f ′(x) = c− hλT 2/(2x2) is nondecreasing.
Then f(x) is convex and it is minimized at x∗ = T (hλ/2c)1/2. So the integer
that minimizes f(n) is either bx∗c or dx∗e. Now f(bx∗c) ≤ f(dx∗e) if and
only if bx∗cdx∗e ≥ (x∗)2. This yields (1.2).

2. Characterizations of Classical Poisson Processes

The following theorem gives two characterizations of Poisson processes
that provide more insight into their structure. Statement (c) has sometimes
been used in texts as a definition of a Poisson process. It says that a Poisson
process is such that the probability of a point in a small interval is directly
proportional to the interval length and the probability of having more than
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one point in such an interval is essentially 0. These infinitesimal properties
are the basis of the Poisson distribution for the quantities N(a, b].

Theorem 2.1. For a simple point process N = {N(t) : t ≥ 0} on <+

and λ > 0, the following statements are equivalent.
(a) N is a Poisson process with rate λ.
(b) N is a renewal process whose inter-renewal times are exponentially dis-
tributed with rate λ.
(c) N has independent increments and, for any t and h ↓ 0,

P{N(t, t + h] = 1} = λh + o(h), P{N(t, t + h] ≥ 2} = o(h).

Proof. (a) ⇒ (b). Assertion (b) states that ξn = Tn−Tn−1, n ≥ 1, are
independent and have an exponential distribution with rate λ. That is,

(2.2) P{An} = e−λ
∑n

i=1 ti , n ≥ 1,

where An ≡ {ξ1 > t1, . . . , ξn > tn} for ti > 0.
Assuming N is a Poisson process with rate λ, we will prove (2.2) by

induction. It is true for n = 1 since

P{A1} = P{ξ1 > t1} = P{N(t1) = 0} = e−λt1 .

Now assume (2.2) is true for some n− 1. Then

(2.3) P{An} = P{An−1, ξn > tn} = P{An−1}P{ξn > tn|An−1}.
Letting Fn(t) = P{Tn ≤ t|An−1}, and using the Poisson properties of N ,

P{ξn > tn|An−1} =
∫

<+

P{ξn > tn|An−1, Tn = s}dFn(s)

=
∫

<+

P{N(s, s + tn] = 0|Tn = s}dFn(s)

= e−λtn .

Substituting this in (2.3), along with (2.2) for n− 1, yields (2.2) for n.
(b) ⇒ (c). Suppose (b) is true. We will first show that

(2.4) N(s, t] d= N(t− s), s < t.

Let B(s) = TN(s)+1 − s denote the forward renewal recurrence time at time
s. Because of the memoryless property of the exponential distribution (Ex-
ercise 2), B(s) has an exponential distribution with rate λ (another justifi-
cation is Example 8.15). Next, since N is a renewal process, B(s) is inde-
pendent of future renewals of N after time s. Also by the renewal property,
(B(s), N(s, t]) d= (B(0), N(t− s)). Therefore,

(2.5) N(s, t] = N(s + B(s), t] d= N(B(0), t− s] = N(t− s),

which proves (2.4).
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Using (2.4),the exponential distribution of T1, and e−λh = 1−λh+o(h),
we have

P{N(t, t + h] = 1} = P{N(h) = 1} = P{T1 ≤ h, T2 > h}

=
∫ h

0
e−λ(h−s)λe−λsds = λhe−λh = λh + o(h),

P{N(t, t + h] ≥ 2} = 1− P{N(h) = 0} − P{N(h) = 1} = o(h).

The proof of (c) will be complete upon showing that N has independent
increments. We will prove by induction that, for any s1 < t1 < · · · < sn < tn,

(2.6) ζn ≡ (N(si, ti]; i = 1, . . . , n) d= (Ni(ti − si); i = 1, . . . , n), n ≥ 1,

where N1, . . . , Nn are independent renewal processes with Ni
d= N .

Statement (2.6) is true for n = 1 by (2.4). Next, suppose (2.6) is true
for some n − 1, and consider ζn = (ζn−1, N(sn, tn]). Arguing as above, the
forward recurrence time B(sn) at time sn is independent of ζn−1, and an
analogue of (2.5) holds for N(sn, tn]. Therefore, (2.4) is true for n.

(c) ⇒ (a). Assuming (c) is true, (a) will follow by proving N(s, t] has a
Poisson distribution with mean λ(t− s), for each s < t. We begin with the
case s = 0 and prove

pn(t) ≡ P{N(t) = n} = (λt)ne−λt/n!, n ≥ 0.

To establish this, we derive differential equations for the functions pn(t) and
show their solutions are the preceding Poisson probabilities.

Under the assumptions in (c), for n ≥ 1,

pn(t + h) = P{N(t) = n,N(t, t + h] = 0}
+P{N(t) = n− 1, N(t, t + h] = 1}
+P{N(t) = n,N(t, t + h] ≥ 2}.

Since the last probability is ≤ P{N(t, t + h] ≥ 2} = o(h), and N has
independent increments, the preceding is

pn(t + h) = pn(t)p0(h) + pn−1(t)p1(h) + o(h).

In light of this expression, pn(t) is right-continuous on <+. Substituting
p1(h) = λh + o(h), and p0(h) = 1− p1(h) + o(h) in the preceding expression
yields

(pn(t + h)− pn(t))/h = −λpn(t) + λpn−1(t) + o(h)/h.

Similar reasoning shows that pn(t) is left-continuous on (0,∞) and

(pn(t)− pn(t− h))/h = −λpn(t− h) + λpn−1(t− h) + o(h)/h.

Then letting h ↓ 0, yields the differential equations

p′n(t) = −λpn(t) + λpn−1(t), n ≥ 1.

By a similar argument,
p′0(t) = −λp0(t).
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To solve this family of differential-difference equations, with boundary
conditions pn(0) = 1(n = 0), first note that p0(t) = e−λt satisfies the last
differential equation. Then using this function and induction on n ≥ 1 it
follows that pn(t) = (λt)ne−λt/n!. This proves that N(t) has a Poisson
distribution with mean λt. Furthermore, by the same argument, one can
show that N(s, t] has a Poisson distribution with mean λ(t−s) for any s < t
(in this case, one uses pn(t) ≡ P{N(s, t] = n}). ¤

3. Location of Points

Many applications of Poisson processes involve knowledge about the lo-
cations of their points. Assertion (c) in Theorem 2.1 above suggests that
the points of a Poisson process are located independently in a uniform sense
on <+. This section gives a precise description of this property based on a
multinomial characterization of Poisson processes.

We first note that, for a Poisson process N with rate λ, the probabil-
ity that it has a point at any fixed location t is 0 (P{N({t}) = 1} = 0).
This property follows from Proposition 3.2 for renewal processes or Propo-
sition 7.6 below. Consequently, N(a, b] d= N(I), where I equals (a, b), [a, b],
or [a, b), for a < b. In light of this observation and Definition 9, it follows
that N is a Poisson process with rate λ if and only if N(I1), . . . , N(In) are
independent, for disjoint finite intervals I1, . . . , In, and N(I) has a Poisson
distribution with mean λ|I| for any finite interval I. Here |I| denotes the
length of I.

The next result is a characterization of a Poisson process involving a
multinomial distribution (3.2) of the numbers of its points in disjoint in-
tervals. Interestingly, (3.2) is independent of the rate λ. The analogous
property for Poisson processes on general spaces is given in Theorem 7.3
and Example 7.1.

Theorem 3.1. For a simple point process N = {N(t) : t ≥ 0} on <+

and λ > 0, the following statements are equivalent.
(a) N is a Poisson process with rate λ.
(b) (Multinomial Property) For any t > 0, the quantity N(t) has a Poisson
distribution with mean λt, and, for any disjoint intervals I1, . . . , Ik in [0, t],
and nonnegative integers n1, . . . , nk,

(3.2) P{N(I1) = n1, . . . , N(Ik) = nk|N(t) = n} =
n!

n1! · · ·nk!
pn1
1 · · · pnk

k ,

where n = n1 + · · ·+ nk and pi = |Ii|/t.

Proof. (a) ⇒ (b). Suppose (a) holds. By the discussion above, N has
independent Poisson increments over any disjoint intervals (they need not
be of the form (a, b]). Then letting I0 = [0, t]\ ∪k

i=1 Ii and n0 = 0, the
conditional probability in (3.2) is

P{N(Ii) = ni, 0 ≤ i ≤ k}
P{N(t) = n} =

∏k
i=0(λ|Ii|)nie−λ|Ii|/ni!

e−λt(λt)n/n!
.
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This clearly reduces to the right-hand side of (3.2) since
∑k

i=0 |Ii| = t.
(b) ⇒ (a). Suppose (b) holds. Fix a t and choose any 0 = t0 < t1 <

· · · < tk = t and nonnegative integers n1, . . . , nk such that n = n1 + · · ·+nk.
Define Ii = (ti−1, ti] and Ai = {N(Ii) = ni}. Then under the properties in
(b),

P{∩k
i=1Ai} = P{N(t) = n}P{∩k

i=1Ai|N(t) = n}

=
k∏

i=1

[λ(ti − ti−1)]ni

ni!
e−λ(ti−ti−1) =

k∏

i=1

P{Ai}.

This proves N(I1), . . . , N(Ik) are independent, and N(Ii) has a Poisson dis-
tribution with mean λ(ti − ti−1).

The proof of (a) will be complete upon showing that the increments
N(s1, t1], . . . , N(sk, tk] are independent, for any s1 < t1 < · · · < sk < tk = t.
However, this independence follows because these increments are a subset
of the increments N(0, s1], N(s1, t1], N(t1, s2], . . . , N(sk, tk] over all the ad-
jacent intervals, which are independent as we just proved. ¤

A special case of (3.2) is the binomial property: For I ⊂ [0, t] and k ≤ n,

P{N(I) = k|N(t) = n} =
(

n

k

)
(|I|/t)k(1− |I|/t)n−k.

The multinomial property also yields the joint conditional distribution of
point locations in [0, t] given N(t) = n, as shown in (3.4) below.

Theorem 3.3. (Order Statistic Property) Suppose N is a Poisson pro-
cess with rate λ. Then, for any disjoint intervals I1, . . . , In in [0, t]

(3.4) P
{

T1 ∈ I1, . . . , Tn ∈ In

∣∣∣N(t) = n
}

=
n!
tn

n∏

i=1

|Ii|.

Hence, the joint conditional density of T1, . . . , Tn given N(t) = n is

(3.5) fT1,...,Tn

(
t1, t2, . . . , tn

∣∣∣N(t) = n
)

=
n!
tn

, 0 < t1 < · · · < tn < t.

The density (3.5) is the density of the order statistics of n independent
uniformly distributed random variables on [0, t] (see Proposition 3.7 below).

Proof. Expression (3.4) follows since the conditional probability in it
equals P{N(Ii) = 1, 1 ≤ i ≤ n|N(t) = n}, which in turn equals the right-
hand side of (3.4) by the multinomial property (3.2).

Next, note that (3.4), for a1 < b1 < · · · < an < bn < t, is

P
{

Ti ∈ (ai, bi], 1 ≤ i ≤ n
∣∣∣N(t) = n

}
=

∫ b1

a1

· · ·
∫ bn

an

n!
tn

dt1 · · · dtn.

Then the integrand n!/tn is the conditional density as asserted in (3.5). ¤
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Example 3.6. Marginal Distributions. From (3.4), (3.5) and Exer-
cise 18,

P{Tk ≤ s|N(t) = n} =
k∑

j=k

(
n

j

)
(s/t)j(1− s/t)n−j ,

fTk
(s|N(t) = n) =

n!
(k − 1)!(n− k)!

(s/t)k−1(1/t)(1− s/t)n−k, 0 ≤ s ≤ t.

Also, E[Tk|N(t) = n] = kt/(n + 1). In particular, for a single point,

P{T1 ≤ s|N(t) = 1} = s/t, 0 ≤ s ≤ t.

This is a uniform distribution on [0, t].

We referred to (3.5) as the density of n order statistics of independent
uniformly distributed random variables on [0, t]. This is justified by the
following formula for the density of order statistics of a random sample with
a general density.

Proposition 3.7. (Order Statistics) Suppose X1, . . . , Xn are indepen-
dent continuous random variables with density f , and let X(1) < · · · < X(n)

denote the quantities X1, . . . , Xn in increasing order. These order statistics
X(1), . . . , X(n) have the joint density

(3.8) f(x1, . . . , xn) = n!f(x1) · · · f(xn), x1 < · · · < xn.

Proof. Choose any a1 < b1 < · · · < an < bn, and let Ii = (ai, bi],
1 ≤ i ≤ n. Since X(1), . . . , X(n) is equally likely to be any one of the n!
permutations of X1, . . . , Xn,

P{X(i) ∈ Ii, 1 ≤ i ≤ n} = n!P{Xi ∈ Ii, 1 ≤ i ≤ n}

= n!
n∏

i=1

P{Xi ∈ Ii}

= n!
∫ b1

a1

· · ·
∫ bn

an

f(x1) · · · f(xn) dx1 · · · dxn.

This proves the density formula (3.8). ¤

4. Functions of Points

Typical quantities of interest for a Poisson process N in a time in-
terval [0, t] are deterministic or random functions of the point locations
T1, . . . , TN(t). A classic example is

∑N(t)
n=1 f(Tn), where f : <+ → <. This

section shows how to analyze such functions in terms of random samples.
The following result is an immediate consequence of Theorem 3.3.

Corollary 4.1. (Order Statistic Tool) Let N be a Poisson process with
rate λ, and, for each n ≥ 1, let hn be a function from <n

+ to some Euclidean
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or more general space S, and let h0 ∈ S. Then, for t > 0,

hN(t)(T1, . . . , TN(t))
d= hκ(X(1), . . . , X(κ)),

where X(1) < · · · < X(n) are the n order statistics associated with indepen-
dent random variables X1, . . . , Xn that are uniformly distributed on [0, t] for
each n, and κ is a Poisson random variable with mean λt, independent of
the Xi’s. Furthermore, if each hn(x1, . . . , xn) is symmetric (meaning it is
the same for any permutation of x1, . . . , xn), then

(4.2) hN(t)(T1, . . . , TN(t))
d= hκ(X1, . . . , Xκ).

These expressions enable one to analyze a function of the random-
length, dependent variables T1, . . . , TN(t) by the simpler mixed random sam-
ple X1, . . . , Xκ. The ideas here are related to the characterization of a Pois-
son process by mixed binomial or sample processes in Theorem 7.3 below.

As an example, for f : <+ → R,
N(t)∑

n=1

f(Tn) d=
κ∑

n=1

f(Xn).

In this case, hn(x1, . . . , xn) ≡ ∑n
i=1 f(xi) is symmetric. Here is another

example involving random functions.

Proposition 4.3. (Random Sums) Suppose N is a Poisson process with
rate λ, and define

(4.4) Z(t) =
N(t)∑

n=1

f(Tn, Yn),

where Y1, Y2 . . . are i.i.d. random elements in a space S that are independent
of N , and f : <+ × S → <. Assume φ(α, t) ≡ E[eαf(t,Y1)] exists for α in a
neighborhood of 0. Then the moment generating function of Z(t) is

(4.5) E[eαZ(t)] = e−λt(1−gt(α)),

where gt(α) ≡ t−1
∫ t
0 φ(α, s) ds. Hence,

(4.6) E[Z(t)] = λ

∫ t

0
E[f(s, Y1)] ds.

Proof. First note that

E[eαZ(t)] = E
[
E[eαZ(t)|N(s), s ≤ t]

]

= E
[ N(t)∏

n=1

E[eαf(Tn,Yn)|N(s), s ≤ t]
]

= E
[ N(t)∏

n=1

φ(α, Tn)
]
.

Applying (4.2) with hn(x1, . . . , xn) ≡ ∏n
i=1 φ(α, xi) to the last expression,

E[eαZ(t)] = E
[ κ∏

n=1

φ(α,Xn)
]
.
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Then conditioning on κ, which is independent of the Xn’s, we have

E[eαZ(t)] = E
[ κ∏

n=1

E[φ(α,Xn)]
]
.

Clearly E[φ(α, Xn)] = gt(α), since Xn is uniformly distributed on [0, t].
Using this along with the independence of the Xn’s and the well-known
Poisson generating function E[βκ] = e−λt(1−β), we obtain

E[eαZ(t)] = E[gt(α)κ] = e−λt(1−gt(α)).

This proves (4.5). In addition, (4.6) follows, since the derivative of (4.5)
with respect to α at α = 0 is E[Z(t)] = tλg′t(0)e−λt(1−gt(0)), where gt(0) = 1
and g′t(0) = φ′(0) = t−1

∫ t
0 E[f(x, Y1)] dx. ¤

Example 4.7. Discounted Cash Flows. A special case of the random
sum (4.4) is

Z(t) =
N(t)∑

n=1

Yne−γTn ,

where γ > 0. This is a standard model for discounted costs or revenues,
where γ is a deterministic discount rate. For instance, suppose that sales of
a product occur at times that form a Poisson process N with rate λ. The
amount of revenue from the nth sale is a random variable Yn. Then the
total discounted revenue up to time t is given by Z(t). By (4.5) and (4.6),
the moment generating function and mean of Z(t) are

E[eαZ(t)] = exp{−λt(1− t−1

∫ t

0
E[eαe−γxY1 ] dx)}

E[Z(t)] = λEY1(1− e−γt)/γ.

Example 4.8. Compound Poisson Process. Another example of (4.4)
is Z(t) =

∑N(t)
n=1 Yn. This is like the preceding discounted cash flow, but

without discounting. Letting γ = 0 in the preceding example, it follows that

E[eαZ(t)] = e−λt(1−E[eαY1 ])

E[Z(t)] = λtEY1.

This generating function of Z(t) is that of a compound Poisson distribution
with rate λt and distribution F (y) = P{Y1 ≤ y}, which is

P{Z(t) ≤ z} =
∞∑

n=0

e−λt(λt)nFn?(z)/n!, z ∈ <.

The process {Z(t) : t ≥ t} is called a compound Poisson process; further
properties of it are in Example 13.6.
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5. General Poisson Processes

This section introduces the terminology for point processes and Poisson
processes on general spaces that is needed for the rest of the chapter.

A point process is a counting process that represents a random set of
points in a space. Typical spaces are the real line, the plane, the multi-
dimensional Euclidean space <d, or, more generally, a complete, separable
metric space (a Polish space). Following the standard convention, we will
discuss point processes on a polish space S. The exposition will be under-
standable by thinking of S as an Euclidean space. We let S denote the
family of Borel sets of S (see section 3), and let Ŝ denote the family of
bounded or locally compact Borel sets (a set is bounded if it is contained in
a compact set). We refer to S simply as a space, and denote other spaces of
this type by S′, S̃, etc.

We will represent a set of points in S by a counting measure. Specifi-
cally, suppose that x1, . . . , xk are (deterministic) locations of points (or unit
masses) in S, where k ≤ ∞. There may be more than one point at a lo-
cation, and the order of the subscripts on the locations is invariant under
permutations. These points are represented by the counting measure ν on
S defined by

ν(B) =
k∑

n=1

1(xn ∈ B), B ∈ S,

which denotes the number of point in B. Here ν(S) = k and
∑k

n=1(·) = 0
when k = 0. For simplicity, we write such sums as

(5.1) ν(B) =
∑

n

δxn(B), B ∈ S,

where δx(B) = 1(x ∈ B) is a Dirac measure with unit mass at x.
We will only consider counting measures ν on S that are locally finite,

meaning that they are finite on bounded sets (ν(B) < ∞, B ∈ Ŝ). Let IM
denote the set of all such locally finite counting measures on (S,S). Endow
IM with the σ-field M on IM generated by the sets {ν ∈ IM : ν(B) = n},
for B ∈ S and n ∈ IN+.

Definition 10. A point process N on a space S is a measurable map
from a probability space (Ω,F , P ) to the space (IM,M). The quantity N(B)
is the number of points in the set B ∈ S. From the representation (5.1),

(5.2) N(B) =
∑
n

δXn(B), B ∈ S,

where the Xn denote the locations of the points of N .

For the following discussion, assume that N is a point process on the
space S. Technical properties of the space S are not used explicitly in the
sequel. One can simply think of N as a counting process on S = <d that is
locally finite (N(B) < ∞ a.s. for B ∈ Ŝ, the bounded Borel sets in S).
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The probability distribution of the point process N (i.e., P{N ∈ ·}) is
determined by its finite-dimensional distributions

(5.3) P{N(B1) = n1, . . . , N(Bk) = nk}, B1, . . . , Bk ∈ Ŝ.

In other words, two point processes N and N ′ on S are equal in distribution,
denoted by N

d= N ′, if their finite-dimensional distributions are equal:

(N(B1) . . . , N(Bk))
d= (N ′(B1) . . . , N ′(Bk)), B1, . . . , Bk ∈ Ŝ.

In constructing a point process, it suffices to define the probabilities (5.3)
on sets Bi that generate S. For instance, when S = <d, “rectangles” of the
form (a, b] generate S.

The intensity measure (or mean measure) of the point process N is

µ(B) ≡ E[N(B)], B ∈ S.

Note that µ(B) may be infinite, even if B is bounded. When S = <d, the
intensity is sometimes of the form µ(B) =

∫
B λ(x)dx, where λ(x) is the rate

of N at the location x and dx denotes the Lebesgue measure. We call λ(x)
the location-dependent rate function of N .

We are now ready to define Poisson processes.

Definition 11. A point process N on a space S is a Poisson process
with intensity measure µ that is locally finite if the following conditions are
satisfied.
• N has independent increments: The quantities N(B1), . . . , N(Bn) are in-
dependent for disjoint sets B1, . . . , Bn in Ŝ.
• For each B ∈ Ŝ, the quantity N(B) is a Poisson random variable with
mean µ(B).

This definition uses the convention that N(B) = 0 a.s. when µ(B) = 0.
Note that if µ({x}) > 0, then the number of points N({x}) exactly at
x has a Poisson distribution with mean µ({x}). On the other hand, if
µ({x}) = 0, then N({x}) = 0 a.s. From the definition it follows that the
finite-dimensional distributions of a Poisson process are uniquely determined
by its intensity measure, and vice versa. That is, if N and N ′ are Poisson
processes on S with respective intensities µ and µ′, then N

d= N ′ if and only
if µ = µ′.

Do Poisson processes exit? In other words, does there exist a point
process on a probability space that satisfies the properties in Definition 11?
We will establish the existence after we show in Theorem 7.5 below that
a Poisson process can be characterized by independent random elements,
which do exist. We end this section with a few comments on the earlier
definition of Poisson processes on <+.

Example 5.4. Poisson Processes on <+. A Poisson process N on <+

(or on <) with intensity measure µ is sometimes called a nonhomogeneous
Poisson process. We denote its point locations (as we have been doing) by
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0 < T1 ≤ T2 ≤ . . . instead of Xn, and call them “times” when appropriate.
In particular, N(B) =

∑
n δTn(B) has a Poisson distribution with mean

µ(B). We also write N(t) = N(0, t], for t > 0, and N(a, b] = N((a, b])
and µ(a, b] = µ((a, b]), for a < b. When µ(B) =

∫
B λ(t)dt, we say N is

Poisson with rate function λ(t). In case µ(t) = E[N(t)] = λt, for some
λ > 0, then N a Poisson process with rate λ (consistent with Definition 9);
it is sometimes called a homogeneous Poisson process with rate λ. The
results in the preceding sections for homogeneous Poisson processes have
obvious analogues for nonhomogeneous processes. For instance, N satisfies
the multinomial property (3.2) with pi = µ(Bi)/µ(0, t], and Exercise 19
describes its order statistic property.

6. Integrals and Laplace Functionals of Poisson Processes

Laplace transforms are useful for identifying distributions of nonnegative
random variables and for establishing convergence in distribution of random
variables. The analogous tool for point processes is a Laplace functional.
This section covers a few properties of Laplace functionals and related in-
tegrals of point processes. These are preliminaries needed to establish the
existence of Poisson processes, the topic of the next section. The use of
Laplace transforms and functionals for establishing the convergence of ran-
dom variables and point processes are covered later in Sections 14 and 15.

We begin with a little review. Recall that the Laplace transform of a
nonnegative random variable X with distribution F is

F̂X(α) ≡ E[e−αX ] =
∫

<+

e−αxdF (x), α ≥ 0.

This function uniquely determines the distribution of X in that X
d= Y if

and only if F̂X(·) = F̂Y (·). For instance, the Laplace transform of a Poisson
random variable X with mean λ is

F̂X(α) =
∞∑

n=0

e−αne−λλn/n! = e−λ(1−e−α).

Now, if Y is a nonnegative integer-valued random variable with E[e−αY ] =
e−λ(1−e−α), then Y has a Poisson distribution with mean λ. Here is an
example for sums.

Example 6.1. Sums of Independent Poisson Random Variables. Sup-
pose Y1, . . . , Yn are independent Poisson random variables with respective
means µ1, . . . , µn. Then

∑n
i=1 Yi has a Poisson distribution with mean

µ =
∑n

i=1 µi (which we assume is finite when n = ∞). To see this re-
sult, note that by the independence of the Yi and the form of their Laplace
transforms,

E[e−α
∑n

i=1 Yi ] =
n∏

i=1

E[e−αYi ] = e−µ(1−e−α).



6. INTEGRALS AND LAPLACE FUNCTIONALS OF POISSON PROCESSES 85

We recognize this as being the Laplace transform of a Poisson distribution
with mean µ, and so

∑n
i=1 Yi has this distribution.

The rest of this section covers analogous properties for Laplace function-
als of point processes. Consider a point process N =

∑
n δXn on a space S.

The “integral” of a function f : S → <+ with respect to N is the sum

Nf ≡
∫

S
f(x)N(dx) ≡

∑
n

f(Xn),

provided it is finite. It is finite when f has a compact support (i.e., {x :
f(x) > 0} is contained in a compact set). Similarly, the integral of f : S →
<+ with respect to a measure µ will be denoted by

µf ≡
∫

S
f(x)µ(dx).

We will often use integrals of functions f in the set C+
K(S) of all continuous

functions f : S → <+ with compact support.

Definition 12. The Laplace functional of the point process N is

E[e−Nf ] = E
[
exp{−

∫

<+

f(x)N(dx)}
]
, f : S → <+.

The function f is a “variable” of this expectation (just as the parameter α
is a variable in a Laplace transform E[e−αX ]).

The following result contains the basic property that the Laplace func-
tional of a point process uniquely determines its distribution (the proof is
in [21]). It also justifies that a Laplace functional is uniquely defined on the
set C+

K(S) viewed as “test” functions.

Theorem 6.2. For point processes N and N ′ on S, each one of the
following statements is equivalent to N

d= N ′.
(a) Nf

d= N ′f, f ∈ C+
K(S).

(b) E[e−Nf ] = E[e−N ′f ], f ∈ C+
K(S).

Laplace functionals are often more convenient to use than finite-dimensional
distributions in deriving the distribution of a point process constructed as
a function of random variables or point processes. A standard approach
for establishing that a point process is Poisson is to verify that its Laplace
functional has the following form; this also yields its intensity measure.

Proposition 6.3. (Poisson Laplace Functional) For a Poisson process
N on S with intensity measure µ, and f : S → <+,

E[e−Nf ] = exp[−
∫

S
(1− e−f(x))µ(dx)].
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Proof. First consider the simple function f(x) =
∑k

i=1 ai1(x ∈ Bi),
for some nonnegative a1, . . . , ak and disjoint B1, . . . , Bk in Ŝ. Then

Nf =
k∑

i=1

∫

S
ai1(x ∈ Bi)N(dx) =

k∑

i=1

aiN(Bi).

Using this and the independence of the N(Bi), we have

E[e−Nf ] =
k∏

i=1

E[e−aiN(Bi)] = exp[−
k∑

i=1

µ(Bi)(1− e−ai)]

= exp[−
∫

S
(1− e−f(x))µ(dx)].

Next, for any f : S → <+, there exist simple functions fn ↑ f (e.g., fn(x) =
n ∧ (b2nf(x)c/2n)). Then by the monotone convergence theorem (see the
Appendix, Theorem 8.6) and the first part of this proof,

E[e−Nf ] = lim
n→∞E[e−Nfn ] = lim

n→∞ exp[−
∫

S
(1− e−fn(x))µ(dx)]

= exp[−
∫

S
(1− e−f(x))µ(dx)].

This completes the proof. ¤
Recall that Example 6.1 uses Laplace transforms to prove that a sum

of independent Poisson random variables is Poisson. Here is an analogous
result for a sum of Poisson processes.

Theorem 6.4. (Sums of Independent Poisson Processes) Suppose that
N1, . . . , Nn are independent Poisson processes on S with respective intensity
measures µ1, . . . , µn. Then their sum (or superposition) N =

∑n
i=1 Ni is a

Poisson process with intensity measure µ =
∑n

i=1 µi. This is also true for
n = ∞ provided µ is locally finite.

Proof. One can prove this, as suggested in Exercise 6, by verifying that
N satisfies the defining properties of a Poisson process. Another approach,
using Laplace functionals and Proposition 6.3, is to show that

E[e−Nf ] = e−µh, f ∈ C+
K(S),

where h(x) = 1− e−f(x). But this follows since by the independence of the
Ni and the form of their Laplace functionals in Proposition 6.3,

E[e−Nf ] =
n∏

i=1

E[e−Nif ] =
n∏

i=1

e−µih = e−µh.

¤
Example 6.5. A company that produces a household cleaning fluid has

a bottle-filling production line that occasionally has to stop for repair due to
imperfections in the bottles or due to worker errors. There are four types of
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line stoppages: (1) minor stop (under 30 minutes) due to bottle imperfection,
(2) major stop (over 30 minutes) due to bottle imperfection, (3) minor stop
due to worker error, and (4) major stop due to worker error. These four
types of stoppages occur according to independent Poisson processes with
respective rates λ1, . . . , λ4. Then by Theorem 6.4, line stops due to any of
these causes occur according to a Poisson process with rate λ1 + · · · + λ4.
Similarly, minor stops occur according to a Poisson process with rate λ1+λ3,
and major stops occur according to a Poisson process with rate λ2 + λ4.

We end this section with more insight on integrals Nf =
∑

n f(Xn) with
respect to a point process N . Expressions (6.7) below says the mean of such
an integral equals the corresponding integral with respect to the intensity
measure. Theorem 3.5 for renewal processes is a special case. The variance
of Nf has the nice form (6.8), when N is Poisson.

Theorem 6.6. Let N =
∑

n δXn be a point process on S with intensity
measure µ. For any f : S → <,

(6.7) E
[ ∑

n

f(Xn)
]

=
∫

S
f(x)µ(dx),

provided the integral exists. That is, E[Nf ] = µf . If in addition, N is a
Poisson process, then

(6.8) Var
( ∑

n

f(Xn)
)

=
∫

S
f(x)2µ(dx),

provided the integral exists. That is, Var(Nf) = µf2.

Proof. The proof of (6.7) is similar to that of Theorem 3.5 or Propo-
sition 6.3. Namely, first one shows E[Nf ] = µf is true when f is a simple
function, and then monotone convergence yields the equality for general f ,
which is a monotone limit of simple functions.

To prove (6.8), note that by Proposition 6.3, we have

(6.9) E[e−αNf ] = e−h(α),

where h(α) =
∫
S(1 − e−αf(x))µ(dx). The derivative of this expression at

α = 0, yields
E[Nf ] = h′(0)e−h(0) = µf.

Furthermore, taking the second derivative of (6.9) at α = 0, and using
h(0) = 1 and h′(0) = E[Nf ], we obtain

E[(Nf)2] = lim
α↓0

[
(h′(α))2e−h(α) − h′′(α)e−h(α)

]

= lim
α↓0

[ ∫

S
f(x)2e−αf(x)µ(dx) + (h′(α))2

]

=
∫

S
f(x)2µ(dx) + (E[Nf ])2.

This proves (6.8). ¤



88 3. POISSON PROCESSES

7. Poisson Processes as Mixed Binomial Processes

This section contains a characterization of Poisson processes in terms of
mixed binomial (or sample) processes. The characterization is used to estab-
lish the existence of Poisson processes. It is also used in applications dealing
with point locations of a process like those above in Section 4 involving the
order statistic property of points on <+.

Our goal is to give a constructive description of Poisson in terms of
elementary binomial processes defined as follows.

Definition 13. Suppose X1, X2, . . . are i.i.d. random elements in the
space S with distribution µ(B) ≡ P{X1 ∈ B}. For a fixed n, the point
process N ≡ ∑n

i=1 δXi is a binomial (or sample) process on S based on µ.
Each N(B) has a binomial distribution with parameters n and µ(B). If, in
addition, κ is a nonnegative integer-valued random variable independent of
the Xi, then the point process M ≡ ∑κ

i=1 δXi is a mixed binomial (or mixed
sample) process based on µ and κ.

Example 7.1. Fires occur in a region S of a city at locations X1, X2, . . .
that are independent with distribution F . Then the spatial locations of n
fires in S is given by the binomial process N =

∑n
i=1 δXi . In particular, for

B ∈ S and m ≤ n,

P{N(B) = m} =
(

n

m

)
F (B)m(1− F (B))n−m.

Also, for B1, . . . , Bk in S that form a partition of S, and n = n1 + · · ·+ nk,

P{N(B1) = n1, . . . , N(Bk) = nk} =
n!

n1! · · ·nk!
F (B1)n1 · · ·F (Bk)nk .

Suppose the number of fires in a year is a random variable κ independent
of the locations. Then the spatial locations of these κ fires in S is given by
the mixed binomial process M =

∑κ
i=1 δXi . If κ has a Poisson distribution

with mean λ, then as shown next in Lemma 7.2, M is Poisson with intensity
λF (·).

Our first observation is that a Poisson process with a finite intensity
measure is a special kind of mixed binomial process.

Lemma 7.2. Suppose N is a Poisson process on S with intensity measure
µ such that 0 < µ(S) < ∞. Then N is equal in distribution to a mixed
binomial process M on S based on F and κ, where F (·) ≡ µ(·)/µ(S) and κ
has a Poisson distribution with mean µ(S).

Proof. Consider the representation M =
∑κ

i=1 δXi where Xi are in-
dependent with distribution F and are independent of κ. Then using the
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generating function E[zκ] = e−µ(S)(1−z), it follows that, for any f ∈ C+
K(S),

E[e−Mf ] = E
[
E[e−

∑κ
i=1 f(Xi)|κ]

]

= E
[
E[e−f(X1)]κ

]

= exp{−µ(S)(1−E[e−f(X1)])}
= exp{−

∫

S
(1− e−f(x))µ(dx)}.

We recognize this from Proposition 6.3 as the Laplace functional of the
Poisson process N with intensity µ, and hence M

d= N . ¤

The preceding result extends to the following characterization, which
says that a Poisson process is “locally” a mixed binomial process.

Theorem 7.3. Let N be a point process on S, and let µ be a locally
finite measure on S. The following statements are equivalent.
(i) N is a Poisson process with intensity measure µ.
(ii) N on each B ∈ Ŝ with µ(B) > 0 is equal in distribution to a mixed
binomial process M on B based on F and κ, where F (·) = µ(· ∩ B)/µ(B)
and κ has a Poisson distribution with mean µ(B).

Proof. (i) ⇒ (ii). If N is Poisson with intensity µ, then it is Poisson
with intensity µ on any B ∈ Ŝ with µ(B) > 0. Thus, by Lemma 7.2, N on
B is equal in distribution to M specified in (ii).

(ii) ⇒ (i) To prove N is Poisson with intensity µ, it suffices by Proposi-
tion 6.3 to show

(7.4) E[e−Nf ] = exp{−
∫

S
(1− e−f(x))dµ(x)}, f ∈ C+

K(S).

Choose B ∈ Ŝ that contains {x : f(x) > 0} (the support of f) and µ(B) > 0.
Under the conditions in (ii), N on B is equal in distribution to a mixed
binomial process M on B. Then E[e−Nf ] = E[e−Mf ] by Proposition 6.2.
Furthermore, by Lemma 7.2, M is a Poisson process on B with intensity
measure µ(B)F (·) = µ(· ∩B), and so E[e−Mf ] equals the right-hand side of
(7.4) by Proposition 6.3. These observations prove (7.4). ¤

We are now ready to establish that Poisson processes exist.

Theorem 7.5. (Existence of Poisson Processes) There exists a Poisson
process N on S with intensity measure µ.

Proof. First note that a mixed binomial process exists since it is a
function of an infinite collection of random variables, which exist by The-
orem 6.1 in the Appendix (i.e., one can construct a probability space and
the independent random variables on it). Then a Poisson process N with a
“finite” intensity measure µ exists since it is a mixed binomial process by
Lemma 7.2.
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Next, consider the case when µ is infinite. Choose bounded sets B1, B2, . . .
in S that partition S such that µ(Bn) > 0. By the preceding part of the
proof, there exists a Poisson process Nn on S, for each n with intensity
µn(·) ≡ µ(· ∩ Bn). By Theorem 6.1, we can define these Nn on a common
probability space so that they are independent. Then define N =

∑
n Nn.

By Theorem 6.4, N is a Poisson process on S with intensity
∑

n µn = µ. ¤

We end this section with a criterion for a Poisson process to be simple.
A point process N on S is simple if P{N({x}) ≤ 1, x ∈ S} = 1 (i.e., its
points are distinct).

Proposition 7.6. A Poisson process N with intensity measure µ is
simple if and only if µ({x}) = 0, x ∈ S. Hence any Poisson process on an
Euclidean space is simple its its intensity has the form µ(B) =

∫
B λ(x)dx,

for some rate function λ(x).

Proof. In light of Theorem 7.3, it suffices to prove this when µ is finite.
In this case, N is equal is distribution to a mixed binomial process M =∑κ

i=1 δXi as in Lemma 7.2, where each Xi has distribution F (·) = µ(·)/µ(S)
and κ has a Poisson distribution with mean µ(S). Now

P{N is simple} = P{M is simple} =
∞∑

n=2

P{Dn}P{κ = n},

where Dn ≡ {X1, . . . , Xn are distinct}. Then N is simple if and only if
P{Dn} = 1, for each n ≥ 2. The latter statement is true, by Exercise 28,
if and only if F ({x}) = µ({x})/µ(S) = 0, x ∈ S. Hence N is simple if and
only if µ({x}) = 0, x ∈ S. ¤

8. Deterministic Transformations of Poisson Processes

This section addresses the following issue: If the points of a Poisson
process are mapped to some space by a deterministic map, then do these
points also form a Poisson process? The answer is yes, provided only that
the intensity measure for the new process is locally finite. The next section
proves a similar result for more general random transformations of Poisson
processes.

For the following result, suppose N is a Poisson process on S with inten-
sity measure µ. Consider a transformation of N in which its points in S are
mapped to a space S′ (possibly S). Specifically, suppose that a point of N
located at x ∈ S is mapped to a new location g(x) ∈ S′, where g : S → S′.
Then the number of points mapped into B ∈ S ′ is

N ′(B) ≡
∑

n

δg(Xn)(B), B ∈ S ′.

This N ′ is a point process on S′, provided it is locally finite. This is true,
of course, when the mean measure E[N ′(B)] is locally finite. We say that
N ′ is a transformation of N under the map g.
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It is convenient to represent the transformed process N ′ by the inverse
of g, which is

g−1(B) ≡ {x ∈ S : g(x) ∈ B}, B ∈ S ′.
Noting that δg(Xn)(B) = δXn(g−1(B)), we can write

N ′(B) = N(g−1(B)), B ∈ S ′.
Keep in mind that there may be multiple points at a single location and g
need not be one-to-one.

Theorem 8.1. In the preceding setting, the transformed process N ′ is
a Poisson process on S′ with intensity E[N ′(B)] = µ(g−1(B)), B ∈ S ′,
provided this measure is locally finite.

Proof. For any f : S′ → <+, using Proposition 6.3 and a change of
variable in the integral, we have

E[e−N ′f ] = E[e−
∑

n f(g(Xn))] = E[e−
∫

S f(g(x))N(dx)]

= exp{−
∫

S
(1− e−f(g(x)))µ(dx)} = exp{−

∫

S′
(1− e−f(x′))µg−1(dx)}.

By Proposition 6.3, the last expression is the Laplace functional of a Poisson
process with intensity µg−1(·) and hence N ′ is such a process. ¤

Example 8.2. Suppose N is a Poisson process in the nonnegative quad-
rant S = <2

+ of the plane with intensity measure µ. Let N ′(r) denote the
number of points of N within a distance r from the origin (i.e., in the set
Dr ≡ {(x, y) ∈ S :

√
x2 + y2 ≤ r}). We can represent N ′ as a mapping of

N in which a point (x, y) of N is mapped to its distance g(x, y) =
√

x2 + y2

from the origin. Then

N ′(r) = N(g−1([0, r])) = N(Dr).

By Theorem 8.1, N ′ is a Poisson on <+ with intensity E[N ′(r)] = µ(Dr).
This intensity is clearly finite for each r. For instance, if the Poisson process
N is homogeneous with a constant rate λ, then E[N ′(r)] = λπr2.

Further information about a transformation of a Poisson process can be
obtained by considering the points in the domain as well as the range of
the transformation. Specifically, consider the transformation of the Poisson
process N in Theorem 8.1, where each point x of N is mapped to g(x) ∈ S′
and N ′ =

∑
n δg(Xn) is the resulting point process on S′. This transformation

can also be represented by the point process M on the product space S×S′
defined by

(8.3) M(A×B) =
∑

n

δ(Xn,g(Xn))(A×B).

This is the number of points of N in A ∈ S that are mapped into B ∈
S ′. Note that M contains the original process N(·) = M(· × S′) as well
as the transformed process N ′(·) = M(S × ·). The M is an example of
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a “marked” point process, where g(Xn) is a “mark” associated with Xn.
We use marked point processes in the next sections to model more general
random transformations of point processes and other phenomena.

Corollary 8.4. The marked point process M defined by (8.3) is a Pois-
son process with intensity

(8.5) E[M(A×B)] = µ(A ∩ g−1(B)), A ∈ S, B ∈ S ′.
Proof. We can write (8.3) as M =

∑
n δh(Xn), where h(x) = (x, g(x)).

So M is a transformation of N by h. Thus, by Theorem 8.1, M is a Poisson
process with intensity (8.5) since M(A×B) = N(A∩g−1(B)). The intensity
(8.5) is locally finite since µ is. ¤

A basic property of a Poisson process N on a product space S1 × S2 is
that the projection N(S1 × ·) on S2 is also a Poisson process provided its
intensity E[N(S1 × ·)] is locally finite. This follows immediately from the
definition of a Poisson process. Here is an extension of this fact.

Example 8.6. Projections of a Poisson Process. Consider a Poisson
process N =

∑
n δXn on S ⊂ S1 × · · ·Sm, with intensity µ, where Xn =

(X1
n, . . . , Xm

n ). Let N i =
∑

n δXi
n

denote the projection of N on the subspace
Si = {xi : x ∈ S}, and let M i =

∑
n δ(Xn,Xi

n) be the marked point process
that describes the points in the domain and range of the mapping of N
by the projection map gi(x) = xi. By Corollary 8.4, M i is Poisson with
intensity µi(A × B) = µ{x ∈ A : xi ∈ B}. Hence N i(·) = M i(S × ·) is a
Poisson process with intensity E[N i(B)] = µ{x ∈ S : xi ∈ B}, provided this
intensity is locally finite. For instance, suppose N is a homogeneous Poisson
process on <m

+ with rate λ. Then N i(0, b] = ∞ a.s. However, M i still gives
insights on the projection, since each M i(A × ·), for A fixed, is a Poisson
process on Si describing the projection coming from points in A.

Next, consider the more general projection NI =
∑

n δgI(Xn) on the space
SI = {gI(x) : x ∈ S}, where gI(x) ≡ (xi : i ∈ I), for I ⊂ {1, . . . , m}. The
related process MI =

∑
n δ(Xn,gI(Xn)) on S×SI is Poisson by Corollary 8.4.

Hence NI(·) = M(S × ·) is Poisson with E[NI(B)] = µ{x ∈ S : gI(x) ∈ B},
provided this is locally finite.

Example 8.7. Let N =
∑

n δ(Xn,Yn) denote a Poisson process on the
unit disc S in <2 with rate function λ(x, y). Consider the projection of N
on the interval S′ = [−1, 1], which is described by the process N ′ ≡ ∑

n δXn

on S′. By Example 8.6, N ′ is Poisson with

E[N ′(a, b]] =
∫ b

a

∫ √
1−x2

−√1−x2

λ(x, y) dy dx.

More generally, projections on S′ = [−1, 1] from points located in sets like
Au = {(x, y) ∈ S : y ≥ u}, u ∈ (0, 1] are described by M ≡ ∑

n δ((Xn,Yn),Xn)
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on S × S′, which is Poisson with

E[M(Au × (a, b])] =
∫ b

a

∫ 1

u
λ(x, y) dy dx.

Next, consider the transformation N of N under which a point in the
unit disc S is mapped to the closest point on the unit circle C. To define
N , it is convenient to represent a point in S by its polar coordinates (r, θ),
where (x, y) = (r cos θ, r sin θ), and to view N =

∑
n δ(Rn,Θn) as a Poisson

process on S = {(r, θ) ∈ [0, 1]× [0, 2π)} with rate function λ(r cos θ, r sin θ).
The unit circle can be expressed as C = [0, 2π), since each point on the
circle has the form (1, θ). The transformation under consideration maps a
point at (r, θ) to (1, θ) (i.e., to θ ∈ C), and so the transformed process is
N =

∑
n δΘn , which is simply the projection of N on the coordinate set C.

Therefore N is Poisson with

E[N(B)] =
∫

B

∫ 1

0
λ(r cos θ, r sin θ)dr dθ.

See Exercise 25 for more details on these processes.

9. Marked Poisson Processes

In the preceding section, we showed how a deterministic transformation
of a Poisson process can be modelled by a marked Poisson process. We now
describe more general marked point process models.

We will use the following notation throughout this section. Let N =∑
n δXn be a point process on S. On the same underlying probability space,

suppose M =
∑

n δ(Xn,Yn) is a point process on a product space S × S′. We
call M a marked point process associated with N , and refer to Yn as a mark
of Xn. The mark Yn may be an attribute of Xn or any random element
whose dependency on Xn or N would be determined by the application.

Here are two examples:
• M represents a “random” transformation of N in which Xn is transformed
to Yn (e.g., Yn = g(Xn) is the deterministic transformation studied in the
preceding section).
• M is a spatial location-demand model in which Xn ∈ <2 is the location
of a demand and Yn = (Dn, Qn), where Dn is the type of demand and Qn

is the size of the demand (quantity of a product or length of a service being
demanded).

The marked point process M contains N because N(·) = M(· ×S′) (the
projection of M on the subspace S). Note that M(S × ·) =

∑N(S)
n=1 δYn(·)

may not be a point process. For instance, if N(S) = ∞ and Yn are i.i.d. with
P{Y1 ∈ B} > 0, then M(S × B) = ∞ by the strong law of large numbers.
We call M a marked Poisson process if it is Poisson in the usual sense. In
this case, N would also necessarily be Poisson since it is part of M .
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We will now describe the marked point process M associated with the
point process N under the condition that each mark Yn has a distribution
that depends only on its associated Xn.

Example 9.1. p-Marked Point Processes. Suppose the marked point
process M is such that a mark associated with a location x ∈ S takes a
value in a set B ∈ S ′ with probability p(x,B), independent of everything
else. The p(x,B) is a probability kernel from S to S′, which means p(· , B)
is a measurable map for each B ∈ S ′, and p(x, ·) is a probability on S′ for
each x ∈ S.

The p(x, ·) is a conditional distribution of a mark associated with a
location x as follows. Consider a fixed bounded set A ∈ Ŝ, and denote the
points of M on the subspace A× S′ by (Xnk

Ynk
), 1 ≤ k ≤ N(A). Then the

assumption on the marks is that, for any B1, B2 . . . ∈ Ŝ ′,

P{Ynk
∈ Bk, 1 ≤ k ≤ N(A)

∣∣∣N} =
N(A)∏

k=1

P{Ynk
∈ Bk|Xnk

}

=
N(A)∏

k=1

p(Xnk
, Bk).(9.2)

That is, the Ynk
’s are conditionally independent given N , and p(Xnk

, B) is
the conditional distribution of Ynk

given Xnk
.

Definition 14. In the preceding context, the point process M that
satisfies (9.2) is a p-marked point process associated with N . Also, Yn are
location-dependent marks of Xn, and a mark associated with a point of N
at x has the distribution p(x, ·).

The Laplace functional of M and its intensity are as follows.

Proposition 9.3. Suppose M is a p-marked point process associated
with the point process N . Then, for any f ∈ C+

K(S × S′),

(9.4) E[e−Mf ] = E[e
∫

S log h(x)N(dx)],

where h(x) =
∫
S′ e

−f(x,y)p(x, dy). If N has an intensity measure µ, then the
intensity of M is given by

(9.5) E[M(A×B)] =
∫

A
p(x,B)µ(dx), A ∈ S, B ∈ S ′.

Proof. For a fixed f ∈ C+
K(S × S′), let A ∈ Ŝ be such that f(x, y) = 0

for (x, y) 6∈ A× S′. Then by property (9.2) and Mf =
∑N(A)

k=1 f(Xnk
, Ynk

),

E[e−Mf ] = E
[ N(A)∏

k=1

E[e−f(Xnk
,Ynk

)|N ]
]

= E
[ N(A)∏

k=1

h(Xnk
)
]
.
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By the selection of A,
N(A)∏

k=1

h(Xnk
) =

∏
n

h(Xn) = e
∑

n log h(Xn) = e
∫

S log h(x)N(dx).

Using this in the preceding display yields (9.4).
To prove (9.5), it suffices to show, for f ∈ C+

K(S×S′), that E[Mf ] = µf̄ ,
where f̄(x) =

∫
S′ f(x, y)p(x, dy). Using property (9.2), we have

E[Mf ] = E
[
E

[ N(A)∑

k=1

f(Xnk
, Ynk

)
∣∣∣N

]]

= E
[ N(A)∑

k=1

f̄(Xnk
)
]

= E
[ ∑

n

f̄(Xn)
]
.

Then E[Mf ] = µf̄ follows by Theorem 6.6. ¤
The next result establishes that a p-marked point process associated

with a Poisson process is Poisson.

Theorem 9.6. Suppose M is a p-marked point process associated with a
Poisson process N with intensity µ. Then M is a Poisson process on S×S′
with intensity measure given by (9.5). In addition, the process of marks N ′ =
M(S × ·) =

∑
n δYn is Poisson with intensity E[N ′(B)] =

∫
S p(x, B)µ(dx),

B ∈ S ′, provided this measure is locally finite.

Proof. By Proposition 9.3, we know that, for any f ∈ C+
K(S × S′),

E[e−Mf ] = E[eNg], where g(x) = log[
∫
S′ e

−f(x,y)p(x, dy)]. Also, because N

is Poisson with intensity µ and −g ∈ C+
K(S), it follows by Proposition 6.3

that

E[e−Mf ] = E[eNg] = exp{−
∫

S
(1− eg(x))µ(dx)}

= exp{−
∫

S×S′
(1− e−f(x,y))p(x, dy)µ(dx)}.

Thus M is Poisson with intensity (9.5) by Proposition 6.3. The process N ′
is also Poisson since it is the projection of the Poisson process M on S′. ¤

The preceding result establishes that a p-marked point process of a Pois-
son process is a marked Poisson process. The converse is also true as follows.

Remark 9.7. If M is a marked Poisson process on S × S′, then M
is a p-marked point process associated with N(·) ≡ M(· × S′), where the
probability kernel p(x, B) is defined by (9.5), with µ being the intensity of N .
This result is based on the fact that the intensity of M can be decomposed
as in (9.5), where, for each fixed B, the p(x,B) as a function of x is the
Radon–Nikodym derivative of E[M(· × B)] with respect to µ. Since this
intensity is equal to that of the marked Poisson process in Theorem 9.6, it
follows that M is equal in distribution to that marked Poisson process.
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A basic property of Markov chains, related to transformations of Poisson
processes, is as follows.

Example 9.8. Markov/Poisson Particle System. Consider a system of
particles that reside in a space S. At time 0, the particles are located in S
according to a Poisson process N0(·) with intensity measure µ. Thereafter,
each particle moves independently in S at discrete times such that a particle
located at x at time n moves to a set B at time n+1 with probability p(x,B).
In other words, each particle moves independently according to a discrete-
time Markov chain on S with probability kernel p(x,B). A particle in state
x at time 0 will be in a set B at time n with probability pn(x,B), which is
the n-step probability defined by

pn(x,B) =
∫

S
pn−1(y,B)p(x, dy), n ≥ 1.

When S is countable, the matrix (pn(x, y)) is the nth product of the matrix
(p(x, y)).

Our interest is in the sequence of point processes {Nn : n ≥ 0} on S,
where Nn(B) denotes the number of particles in B ∈ S at time n. We
will also consider the more general marked point process Mn on S2, where
Mn(A×B) denotes the number of particles in A at time 0 that are in B at
time n.

Proposition 9.9. Suppose the intensity measure µ for the Poisson pro-
cess N0 is an invariant measure of p(x,B) in that

(9.10)
∫

S
p(x,B)µ(dx) = µ(B), B ∈ S.

Then Mn is a Poisson process on S2 with

E[Mn(A×B)] =
∫

A
pn(x,B)µ(dx), A, B ∈ S.

In addition, {Nn : n ≥ 0} is a stationary Markov chain whose stationary
distribution is that of a Poisson process on S with intensity measure µ.

Proof. Clearly, Mn is a marked transformation of the Poisson process
N0 under the probability kernel pn(x, B), and so the first assertion follows
by Theorem 9.6. Next, note that {Nn : n ≥ 0} is a Markov chain because
the particles move independently by the Markov chain probability p(x,B).
To prove this Markov chain Nn is stationary and its stationary distribution
is that of N0, it suffices to show that Nn is Poisson with intensity µ. But
this follows since Nn(·) = Mn(S × ·), where Mn is Poisson, and

E[Nn(B)] =
∫

S
pn(x,B)µ(dx) = µ(B).

The last equality follows by an induction argument using (9.10). ¤
Marked point processes are frequently used to model random phenomena

in space as well as time as follows.
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Example 9.11. Space-Time Poisson Processes. Suppose N =
∑

n δTn

is a point process on <+ representing the times 0 ≤ T1 ≤ T2 ≤ . . . at
which an event occurs. Suppose the nth event at time Tn involves auxiliary
information denoted by a random element Yn in a space S. For instance,
Tn might be the arrival time of the nth item to a service system, and Yn is
its required service time. Then a convenient way of modelling these random
elements over time is by the marked point process M =

∑
n δ(Tn,Yn) on

<+ × S. This is called a space-time process. If M is a Poisson process in
the usual sense, we call it a space-time Poisson process.

For instance suppose N is Poisson with rate λ, and the marks Yn have
the location-dependent distribution p(t, ·). Then by Theorem 9.6, M is a
space-time Poisson process with intensity E[M((a, b]×B)] = λ

∫ b
a p(t, B)dt.

10. Partitions and Translations of Poisson Processes

This section describes several types of transformations of Poisson pro-
cesses that arise in a variety of applications. These transformations are
further illustrations of marked Poisson process models.

Example 10.1. Thinning of a Poisson Process. Let N be a Poisson
process on S with intensity µ. Suppose the points of N are deleted according
to the rule that a point at x is retained with probability p(x), and the point
is deleted with probability 1 − p(x). Let N1 and N2 denote the resulting
processes of retained and deleted points, respectively. Note that N = N1 +
N2. By Corollary 10.2 below, N1 and N2 are independent Poisson processes
with respective mean measures

E[N1(A)] =
∫

A
p(x)µ(dx), E[N2(A)] =

∫

A
(1− p(x))µ(dx), A ∈ S.

Interestingly, N1 and N2 are independent even though N = N1 + N2.
As an example, suppose a web site that sells products has visitors arriv-

ing to it according to a Poisson process N with rate λ. Suppose p percent of
these visitors buy a product, which means that each visitor independently
buys a product with probability p. Then from the preceding result, the
times of sales form a Poisson process with rate pλ, and the visits without
sales occur according to a Poisson process with rate (1− p)λ.

Thinning of a point process is a special case of the following partitioning
procedure for decomposing a point process into several subprocesses. Con-
sider a Poisson process N on S with intensity µ. Suppose N is partitioned
into a countable family of processes Ni, i ∈ I, on S by the following rule.
Partitioning Rule: A point of N at x is assigned to subprocess Ni with
probability p(x, i), where

∑
i∈I p(x, i) = 1.

The processes Ni form a partition of N in that N =
∑

i∈I Ni.

Corollary 10.2. (Partitioning of a Poisson Process) The subprocesses
Ni, i ∈ I, of the Poisson process N are independent Poisson processes with
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intensities
E[Ni(B)] =

∫

B
p(x, i)µ(dx), B ∈ S, i ∈ I.

Proof. Let M(B × {i}) denote the number of points of N in B that
are assigned to Ni. That is, M(B × {i}) = Ni(B). Clearly, M is a p(x, i)-
marked point process on S × I associated with N , and so M is Poisson by
Theorem 9.6. Since M has independent increments and the subprocesses Ni

represent M on the disjoint subsets S ×{i}, for i ∈ I, they are independent
Poisson processes. Furthermore,

E[Ni(B)] = E[M(B × {i})] =
∫

B
p(x, i)µ(dx).

¤
The preceding result for partitions is the opposite of the result that a

sum of independent Poisson processes is also Poisson (recall Theorem 6.4).

Example 10.3. Telephone calls in a region S of the USA are assumed
to occur according to a space-time Poisson process M on <+ × S, where
M((0, t]×B) denotes the number of calls connected in the subregion B ⊂ S
in the time interval (0, t], and E[M((0, t] × B)] = λtµ(B). There are three
types of calls: (1) Long distance calls outside the USA. (2) Long distance
calls within the USA. (3) Local calls. The calls are independent, and a call
at time t and location x is a type i call with probability p(t, x; i), i = 1, 2, 3.
Then by Corollary 10.2, the number of type i calls occur according to a
space-time Poisson process

E[Mi((0, t]×B)] = λ

∫ t

0

∫

B
p(s, x; i)µ(dx)ds.

Furthermore, M1,M2,M3 are independent and M = M1 + M2 + M3.

Splitting and merging of flows in a network, as we now show, are typical
examples of partitioning and summing of point processes.

Example 10.4. Routing in A Graph. Consider the directed graph shown
in Figure 1 in which units are routed in the directions of the arrows. Let
Njk(t) denote the number of units that are routed on the arc from node j
to node k in the time interval (0, t]. Assume that items enter the graph by
independent Poisson processes N0j , j = 1, 2, 3 on <+ with respective rates
λ0j , j = 1, 2, 3. Upon entering the graph, each item is routed independently
through the graph according to the probabilities on the arcs, and there are
no delays at the nodes (travel through the graph is instantaneous). For in-
stance, an item entering node 3 is routed to node 5 or node 6 with respective
probabilities p35 and p36, where p35 + p36 = 1.

Our results on partitioning and sums of Poisson processes yield the fol-
lowing properties. First note that flows N12 and N13 are independent Poisson
processes with rates λ12 = p12λ01 and λ13 = p13λ01, since they are partitions
of N01. Next, the flow into node 2 is the sum N02 + N12 (of independent



10. PARTITIONS AND TRANSLATIONS OF POISSON PROCESSES 99

m m

m m

- - -

- - -

1

?

m m½
½

½½>

Z
Z

ZZ~

2

-

?
3 6

5

4

½
½

½½>

6

λ02 p24

p54

p56

p23

p35

p36

λ01

λ03

p12

p13

Figure 1. Partitioning and Merging of Flows

flows) and hence is Poisson with rate λ02+p12λ01. Similar properties extend
to the other flows in the graph. Specifically, each flow Njk from j to k is
a Poisson process, and one can evaluate their rates λjk in the obvious way.
For instance, knowing λ12 and λ13 as mentioned above,

λ23 = p23(λ02 + λ12), λ36 = p36(λ03 + λ13 + λ23),
λ35 = p35(λ03 + λ13 + λ23), λ60 = λ36 + p56λ35.

Also, some of the flows are independent (denoted by ⊥). Examples are
N12 ⊥ N13, N36 ⊥ N56, N36 ⊥ N24, and N13 ⊥ N24. On the other hand,
many flows are not independent (denoted by 6⊥). Examples are N12 6⊥ N24,
N35 6⊥ N40, N13 6⊥ N60, and N23 6⊥ N40.

In addition, the flow Nk =
∑

i Njk through each node k is a Poisson
process with intensity

∑
j λjk. Clearly all the Nk’s are dependent. If the

arc between 5 and 4 did not exist, however, then N4 would be independent
of N3, N5, and N6.

Another example of a transformation of a Poisson process is as follows.
Suppose N is a Poisson process on S = <d with intensity measure µ. Assume
that a point of N at x is independently translated to another location x+Y
by a random vector Y in S that has a distribution Gx(·). That is, x is
mapped into a set B ⊂ S by a probability kernel p(x,B) = Gx(B − x),
where B − x = {y − x : y ∈ B}. Let M(A × B) denote the number of
points of N in A that are translated into B. This M is a p-marked point
process associated with the Poisson process N . Thus, Theorem 9.6 yields
the following result.

Corollary 10.5. (Translation of a Poisson process) The marked trans-
lation process M defined above is Poisson with

E[M(A×B)] =
∫

A
Gx(B − x)µ(dx), A, B ⊂ <d

+.

In particular, the process N ′(B) ≡ M(A×B) denoting the number of points
of N translated into B is Poisson with E[N ′(B)] =

∫
S Gx(B − x)µ(dx).

Example 10.6. Trees in a Forest. The locations (Xn, Yn) of a certain
type of tree in a forest form a Poisson process with intensity measure µ.
Suppose the height of a tree at a location (x, y) has a distribution Gx,y(·).
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That is, the heights Zn of the trees at the respective locations (Xn, Yn) are
marks, and M ≡ ∑

n δ(Xn,Yn,Zn) forms a Poisson process on <2 ×<+ with

E[M(A×B × (0, b])] =
∫

A

∫

B
Gx,y(b)µ(dx dy).

After several years of growth, it is anticipated that the increase in height for
a tree has a distribution H(x,y,z)(·), where (x, y) is the location and z is the
original height. In other words the increases Z ′n are p-marks of (Xn, Yn, Zn)
with p((x, y, z), ·) = H(x,y,z)(·). Then the collection of trees is depicted by
the point process M ′ ≡ ∑

n δ(Xn,Yn,Zn+Z′n). By Corollary 10.5, M ′ is a
Poisson process with

E[M ′(A×B × (0, b])] =
∫

A

∫

B

∫

<+

H(x,y,z)(b− z)Gx,y(dz)µ(dx dy).

In the preceding example, a little more realism could be added by con-
sidering the possibility that while some trees grow as indicated, other trees
may die according to a location-dependent thinning. Then one would have a
combined translation–thinning transformation. Similarly, complicated sys-
tems might involve transformations involving a combination of translations,
thinnings, partitions, deterministic maps and random transformations.

11. Space-Time Poisson Models

This section consists of three examples that illustrate how one can an-
alyze complex systems by transformations of space-time Poisson processes.
Related examples are in the next section and in Exercises 37, 39 and 38.

Example 11.1. Maxima of Marks for a Poisson Process. Suppose N =∑
n δTn is a Poisson process on <+ with intensity measure µ, and Yn are

real-valued p-marks of Tn where p(t, ·) is the distribution of a mark at time
t. Consider the stochastic process

Y (t) = max
n≤N(t)

Yn, t ≥ 0,

where Y (t) = 0 when N(t) = 0. One can obtain information about this
maxima process in terms of the space-time Poisson process M =

∑
n δTn,Yn

on <+ × < with E[M((0, t] × B)] =
∫
(0,t] p(s,B)µ(ds). For instance, the

event {Y (t) ≤ y} equals {M((0, t]× (y,∞)) = 0}, and so

P{Y (t) ≤ y} = e
− ∫

(0,t] p(s,(y,∞))µ(ds)
.

Also, if µ(t) = λt and p(t, ·) = G(·), independent of t, then Y (t) is a Markov
chain subordinated to the Poisson process N , and

P{Y (s + t) ≤ y|Y (s) = x} = 1(x ≤ y)P{M((s, s + t]× (y,∞)) = 0}
= 1(x ≤ y)e−λt(1−G(y)).
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Example 11.2. Mt/Gt/∞ Service System. Items arrive to a service
system at times that form a Poisson process on <+ with intensity measure
µ. An item that arrives at time t spends a random amount of time in
the system that has a distribution Gt(·) and then departs. This sojourn
time is independent of the other items in the system and everything else.
Keep in mind that items may arrive in batches if there are times t for
which µ({t}) > 0. The number of arrivals at such a time has a Poisson
distribution with mean µ({t}), but the items in this batch may not depart
at the same time since their sojourn times are independent. Let Q(t) denote
the quantity of items in the system at time t that arrived after time 0. We
are not considering items that may be in the system at time 0. The process
{Q(t) : t ≥ 0} is a Mt/Gt/∞ process with time-dependent arrivals and
services.

The process Q(t) is a typical model for the quantity of items in a service
system with a large number of parallel servers (envisioned as infinite servers)
in which there is essentially no queueing prior to service. For instance, Q(t)
could be the number of: (1) Computers being used in a wireless network with
a high capacity. (2) Groups of people dining in a cafeteria. (3) Vehicles in
a parking lot. (4) Patients in a hospital. (5) Calls being processed in a call
center.

To analyze the process Q(t) the first step is to define it by the system
data. The data is represented by the marked point process M ≡ ∑

n δ(Tn,Vn)

on <2
+, where Tn is the arrival time of the nth item and Vn is its sojourn

or service time. The Vn are location-dependent marks of Tn with the distri-
bution p(t, B) = Gt(B). Then by Theorem 9.6, M is a space-time Poisson
process with E[M(A×B)] =

∫
(0,t] Gs(B)µ(ds).

Since the quantity Q(t) is a function of the arrival and departure times
of the items, let us consider the marked point process

N ≡
∑

n

δ(Tn,Tn+Vn), on S = {(t, y) ∈ <2
+ : y ≥ t}.

This process N is a transformation of M under the map g(t, v) = (t, t + v).
Then N is a space-time Poisson process by Theorem 8.1. In particular,
N((a, b] × (c, d]), where b ≤ c, is the number of items that arrive in (a, b]
and depart in (c, d], and its mean is

E[N((a, b]× (c, d])] =
∫

(a,b]
[Gs(d− s)−Gs(c− s)]µ(ds).

Using the preceding notation, the quantity of items in the system at
time t is defined by

Q(t) =
∑

n

1(, Tn ≤ t, Tn + Vn > t) = N((0, t]× (t,∞]).
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Since N is a Poisson process, it follows that Q(t) has a Poisson distribution
with

(11.3) E[Q(t)] =
∫

(0,t]
[1−Gs(t− s)]µ(ds).

Although the distribution of each Q(t) is Poisson, the entire process, of
course, is not Poisson.

In addition to analyzing the number of items in the system, one may
want information about the departure process. This is useful when the
departures form an arrival process into another service system. Now, the
total number of departures in (0, t] is D(t) =

∑
n δTn+Vn((0, t]). That is,

D is the projection of N on its second coordinate, and so D is a Poisson
process with

E[D(t)] = E[N(t)−Q(t)] =
∫

(0,t]
Gs(t− s)µ(ds).

Finally, consider the special case in which the Poisson arrival process
is homogeneous with rate λ and the service distribution Gt(·) = G(·) is
independent of t. The system is called an M/G/∞ system with arrival rate
λ and service distribution G. Then Q(t) has a Poisson distribution and,
using a change-of-variable u = t− s in (11.3),

E[Q(t)] = λ

∫ t

0
[1−G(u)]du.

Exercise 38 shows that when G has a mean α, the limiting distribution of
Q(t) is Poisson with rate λα, as t →∞. Also, the total number of departures
D(t) in the time interval (0, t] is a Poisson process with

E[D(t)] = λ

∫ t

0
G(s)ds.

An abstraction of the preceding model is as follows.

Example 11.4. Poisson Input-Output-Mobility Model. Consider a sys-
tem in which items enter a space S at times T1 ≤ T2 ≤ . . . that form a
Poisson process with intensity measure µ. The nth item that arrives at time
Tn moves in the space S for a while and then exists the system (by entering
the outside state 0). The movement is determined by a stochastic process
Yn ≡ {Yn(t) : t ≥ 0} with state space S ∪ {0}, where the outside 0 is an
absorbing state (Yn(t) = 0 for all t > inf{s : Yn(s) = 0}). Specifically, the
nth item enters S at the location Yn(0), and, at time t > Tn its location is
Yn(t − Tn). Let Y denote a function space that contains the sample paths
of Yn (e.g., Y could be a space of real-valued functions that are continuous,
or piece-wise constant).

Assume the Yn are location-dependent marks of Tn with distribution
p(t, ·) which is the conditional distribution of the process Yn starting at
time t. For simplicity, assume Yn depends on t only through its initial value
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Yn(0) (the entry point in S of the nth point), whose distribution is denoted
by Ft(·). Then conditioning on Yn(0),

(11.5) p(t, ·) =
∫

S
P{Yn ∈ ·|Yn(0) = x}Ft(dx).

In other words, the system data consists of the point process M ≡ ∑
n δ(Tn,Yn)

on <+ × Y, which is a space-time Poisson process by Theorem 9.6.
Now, the number of items in the set B ∈ S at time t is given by

Nt(B) =
∑

n

1(Tn ≤ t, Yn(t− Tn) ∈ B) =
∑

n

δgt(Tn,Yn)(B),

where gt(s, y) = y(t − s) and y(·) ∈ Y. Since Nt is a transformation of the
Poisson process M by the map gt, it follows by Theorem 8.1 that Nt is a
Poisson process on S for each fixed t, and from (11.5),

E[Nt(B)] =
∫

(0,t]

∫

S
P t−s(x,B)Fs(dx)µ(ds).

where P t−s(x,B) ≡ P{Yn(t− s) ∈ B|Yn(0) = x}.
Next, note that the number of departures from the set B in the time

interval (a, b] is D((a, b]×B) =
∑

n 1(h(Tn, Yn) ∈ (a, b]×B), where h(s, y) =
(s, y(t − s)). This D is a transformation of the Poisson process M by the
map h, and so by Theorem 8.1, D is a space-time Poisson process on <+×S
with

E[D((0, t]×B)] =
∫

(0,t]

∫

B
P t−s(x, {0})Fs(dx)µ(ds)

12. Network of Mt/Gt/∞ Stations

In this section, we show how the ideas in the preceding section extend
to the analysis of flows in a stochastic network of Mt/Gt/∞ stations. The
network dynamics are determined by marks of Poisson processes, and the
analysis amounts to formulating appropriate Poisson processes that repre-
sent parameters of interest, and then specifying their intensity measures.

Consider a network of m service stations (or nodes) that operate as
follows. Items enter the network at times T1 ≤ T2 ≤ . . . that form a Poisson
process with intensity measure µ. The nth item entering the network at time
Tn selects, or is assigned, a random route Rn = (Rn1, . . . , RnLn) through the
network, where Rnk ∈ {1, . . . , m} denotes the kth node the item visits, and
the length 1 ≤ Ln ≤ ∞ may be random and depend on Sn. After visiting
node the last node RnLn on its route, the item exits the network and enters
node 0 (“outside” the network) and stays there forever. In addition, the
item selects, or is assigned, a vector of nonnegative sojourn (or visit) times
Vn = (Vn1, . . . , VnLn), where Vnk is the item’s sojourn time at node Rnk.
The time at which the item departs from node Rnk is

τnk ≡ Tn +
k∑

j=1

Vnj , k ≤ Ln,
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where τnLn is the time at which the item exits the network.
The main assumption is that the route and waiting time vectors Yn ≡

(Rn,Vn) are marks of the arrival times Tn. This implies there are no in-
teractions among the items that affect their waiting times, so each node
operates like an Mt/Gt/∞ system. As above, we consider only those items
that enter the network “after” time 0. In summary, the system dynamics are
represented by the space-time process M =

∑
n δ(Tn,Yn), which is Poisson by

Theorem 9.6.
Many features of the network are expressible by space-time Poisson pro-

cesses of the form

Nt =
∑

n

δ(Tn,gt(Tn,Yn)),(12.1)

E[Nt((a, b]×B)] =
∫

(a,b]
P{gt(Tn, Yn)) ∈ B|Tn = s}µ(ds).(12.2)

The Nt is Poisson since it is a deterministic transformation of the Poisson
process M . The function gt would depend on the application at hand; in
some cases, gt and Nt do not depend on t. Typical uses of these space-time
Poisson processes are as follows.

Locations of Items at Time t. The space-time Poisson process describing
where the items are located is

Nt((a, b]×B) = # of items that arrive in the time interval (a, b]
that are in B ⊂ S ≡ {0, 1, . . . , m} at time t.

The location of the item at time t that arrives at time Tn is

(12.3) gt(Tn, Yn) =
{

0 if τnLn ≤ t
Rnk if τn(k−1) ≤ t < τnk, for some k ≤ Ln.

In particular, the quantities Qi(t) = Nt((0, t]×{i}), 1 ≤ i ≤ m, at the nodes
at time t are independent Poisson random variables with

(12.4) E[Qi(t)] =
∫

(0,t]
P{gt(Tn, Yn) = i|Tn = s}µ(ds).

Departure Process. The space-time Poisson process describing the times at
which items exit the network is

N((a, b]×B) = # of items arriving in (a, b] whose exit time from
the network is in B ⊂ <+.

The item arriving at Tn exits the network a time g(Tn, Yn) = τnLn .
For typical applications, the mean values (12.2) of the space-time Pois-

son processes would be determined by the distributions of the routes and
sojourn times of the items. The routes depend on the structure of the net-
work and the nature of the items and services. A standard assumption
is that the routes are independent and Markovian, where pjk denotes the
probability of an item moving to node k upon departing from node j. Then
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the probability of a particular route (r1, . . . , r`) of nonrandom length ` is
p0r1 · · · pr`0. Another convention is that there are several types of items and
all items of the same type take the same route. In this case, the probability
of a route is the probability that the item entering the network is the type
that takes that route. The simplest sojourn times at a node are those that
are i.i.d., depending on the node and independent of everything else. Then
the sums of sojourn times are characterized by convolutions of the distribu-
tions. The next level of generality is that the service times are independent
at the nodes, but their distributions may depend on the route as well as
the node. An example of dependent service times is that an item entering
a certain subset of routes is initially assigned a service time according to
some distribution and then that time is its service time at “each” node on
its route.

Here is an example of a particular network.

Example 12.5. An Acyclic Network. Consider the stochastic network
shown in Figure 2, which operates as described above with the following
additional properties. Items arrive at the nodes 1, 2 and 3 from outside
according to independent Poisson processes with respective rates λ1, λ2, λ3.
The sojourn or service times at the nodes are independent random variables,
and the sojourn times at node i have the distribution Gi(·). When an item
ends its sojourn at node 1, it departs and enters node 2 with probability p12,
or it enters node 3 with probability p13 = 1− p12. Analogously, departures
from node 2 enter node 3 with probability p23, or enter node 4 with proba-
bility p24 = 1 − p23. Also, departures from node 3 enter node 5 (p35 = 1),
and departures from nodes 4 and 5 exit the network.
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Figure 2. Acyclic Network

The times T1 < T2 < . . . at which items enter the network from outside
form a Poisson process with rate λ ≡ λ1 + λ2 + λ3, since this process is the
sum of the three independent Poisson processes flowing into nodes 1, 2 and
3. The probability that an arrival at any time Tn enters node i is λi/λ. This
is the probability that the exponential time of an arrival at i is smaller than
those exponential arrival times at the other nodes; see Exercise 1. The item
that arrives at time Tn traverses a route Rn = (Rn1, . . . , Rn`n) in R (the
set of all routes), and its sojourn times at the `n nodes on the route are
Vn = (Vn1, . . . , Vn`n). The joint distribution of these marks Yn = (Rn,Vn)
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as functions of the network data λi, Gi and pjk is

P{Rn = r,Vn ≤ v|Tn} = p(r)
∏̀

k=1

Grk
(vk),

where p(r) = (λr1/λ)pr1r2 · · · pr`−1r`
is the probability of route r = (r1, . . . , r`).

To analyze the quantity of items on the routes as well as at the nodes,
let us consider the space-time point process

Nt((a, b]×B) = # of items arriving in (a, b] whose route and node
location (r, i) is in B ⊂ R× {0, 1, . . . , m} at time t.

As in (12.1), Nt is a Poisson process on <+ ×R× {0, 1, . . . , m}, for fixed t,
where gt(Tn, Yn) = (Rn, ft(Tn, Yn)) and ft(Tn, Yn) is defined by (12.3). The
item that enters at Tn is at node ft(Tn, Yn) at time t. In particular, the
quantity of items

Qi(t) =
∑

r∈Ri

Nt((a, b]× {r} × {i})

at node i at time t has a Poisson distribution. Here Ri is the set of all routes
that contain node i. Also, since Nt has independent increments, it follows
that Qi(t) is independent of Qj(t) if Ri and Rj are disjoint. For instance,
Q4(t) is independent of Q3(t) and Q5(t).

The next step is to evaluate the intensity of Nt. Let P u
r (i) denote the

conditional probability that an item is at node i given that is on route r for
a time u since it entered the network. By the independence of the sojourn
times,

P u
r (i) =

{
Gr1 ? · · · ? Gr`

(u) if i = 0
Gr1 ? · · · ? Grk−1

? Grk
(u) if rk = i 6= 0, for some k ≤ `.

Here G(t) = 1−G(t). For instance, the conditional probability that an item
is at node 3 at time t, given that it enters route r = (1, 2, 3, 5) at time s, is

G1 ? G2 ? G3(t− s) = P{τn2 ≤ t < τn3|Rn = r, Tn = s}
= P{ft(Tn, Yn) = 3|Rn = r, Tn = s}.

Then from (12.2), it follows that

E[Nt((a, b]× {r} × {i})] = λp(r)
∫ b

a
P t−s

r (i)ds.

The last integral equals
∫ b
a P u

r (i)du, under the change-of-variable u = t− s.
In particular, the number of items arriving in (0, t] that are on route

r = (1, 2, 3, 5) and in node 3 at time t has a Poisson distribution with mean

E[Nt((0, t]× {r} × {3})] = λ1p12p23

∫ t

0
G1 ? G2 ? G3(u)du.

The process Nt yields considerable information about numbers of items at
nodes and on routes as well. For instance, the quantity Q3(t) of items at
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node 3 at time t is the sum of the quantities of items on the routes in
R3 ≡ {(3, 5), (2, 3, 5), (1, 3, 5), (1, 2, 3, 5)}, all the routes containing node 3.
Then Q3(t) has a Poisson distribution and

E[Q3(t)] =
∫ t

0

[
λ3G3(u) + λ2p23G2 ? G3(u) + λ1p13G1 ? G3(u)

+λ1p12p23G1 ? G2 ? G3(u)
]
du.

The term in brackets is λ
∑

r∈R3
p(r)P u

r (3).
Similarly, the quantity of items on route r at time t is

Qr(t) =
∑̀

k=1

Qrk
(t) = Nt((0, t]× {r} × {r1, . . . , r`}).

This quantity, being part of the Poisson process Nt, has a Poisson distribu-
tion with E[Qr(t)] =

∑`
k=1 E[Qrk

(t)]. For instance,

E[Q(2,4)(t)] =
∫ t

0
λ2[G2(u) + G2 ? G4(u)]du.

Let us now consider the departure times of the items from the nodes,
which are depicted by the process

N((a, b]×B) = # of items arriving in (a, b] whose departure times
from the 5 nodes are in B ⊂ <5

+.

The departure times are well-defined since an item cannot visit a node more
than once. Now, N is a space-time Poisson process as in (12.1) and (12.2),
where the departure times are given by

g(Tn, Yn) = (g1(Tn, Yn), . . . , g5(Tn, Yn)),

and gi(Tn, Yn) =
∑`n

k=1 τnk1(Rnk = i), the departure time from node i of
the item that enters at Tn.

In particular, the departure process at node i is

Di(t) = N((0, t]× {(t1, . . . , t5) ∈ <5
+ : ti ≤ t}), t ≥ 0.

Now, Di is a Poisson process since it is the projection on the ith departure-
time coordinate of the Poisson process N . Its mean is

(12.6) E[Di(t)] = λ

∫ t

0
P{gi(Tn, Yn) ≤ t|Tn = s}ds.

For instance,

E[D3(t)] =
∫ t

0

[
λ3G3(u) + λ2p23G2 ? G3(u) + λ1p13G1 ? G3(u)

+λ1p12p23G1 ? G2 ? G3(u)
]
du.
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Similarly to the independence of quantities at the nodes, processes Di and Dj

are independent if Ri and Rj are disjoint. For instance, D4 is independent
of D3 and D5.

13. Relatives of Poisson Processes

This section describes several variations of Poisson processes that arise
naturally in applications.

Example 13.1. Cox Processes. Loosely speaking, a Poisson process with
a random intensity measure is a Cox Process. Such a process on <+ has
the following constructive definition. Let N1(t) be a homogeneous Poisson
process on <+ with rate 1, and let {η(t) : t ≥ 0} be an nondecreasing right-
continuous real-valued stochastic process that is independent of N1. Then
the composition

N(t) = N1(η(t)), t ≥ 0.

is a Cox process on <+ directed by η. The conditional distribution of
N(s, t] = N1(η(s), η(t)] given η is

P{N(s, t] = n|η} = e−η(s,t]η(s, t]n/n!,

where η(s, t] ≡ η(t) − η(s) is viewed as a random measure. Furthermore,
the conditional distribution of N on disjoint subsets given η is that of a
Poisson process. Equivalently, its conditional Laplace functional (obtained
in Exercise 41) has the form (13.2) below, which is the Laplace functional
for a Poisson process with intensity η (recall Proposition 6.3).

In general, a point process N on a space S is a Cox process directed by
a locally-finite random measure η on S if N and η are defined on the same
probability space and

(13.2) E[e−Nf |η] = exp{−
∫

S
(1− e−f(x))η(dx)}, f ∈ C+

K(S).

A Cox process is sometimes called a conditional Poisson process, a dou-
bly stochastic Poisson process, or a Poisson process in a randomly changing
environment. Several characterizations of Cox processes are established in
[21]. Because Cox processes are essentially Poisson processes with an ex-
tra expectation, most results for Poisson processes have counterparts for
Cox processes. For instance, if N1, . . . ,Nm are Cox processes on S directed
by η1, . . . , ηm, respectively, and (N1, η1), . . . , (N1, η1) are independent, then
N = N1 + · · ·Nm is a Cox process directed by η = η1 + · · · ηm.

Cox processes arise as a transformation of a Poisson process that has
one more layer of randomness than those above. For instance, consider
a Poisson process N on <+ with intensity measure µ. First consider a
transformation of N in which a point of N at t is mapped to a location γ(t),
where γ(t) is a stochastic process on <+ that is independent of N . Then
the transformed process N ′(B) = N(γ−1(B)) is a Cox process directed by
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η(B) =
∫
<+

1(γ(t) ∈ B)µ(dt), provided this is a.s. locally finite. This follows
since by Theorem 8.1 N ′ is Poisson when γ(t) is deterministic.

As a second example, suppose N is partitioned into m subprocesses
N1, . . . , Nm by the rule that a point of N at t is assigned to subprocess
α(t), where α(t) is a stochastic process on {1, . . . , } that is independent of
N . Then as in Corollary 10.2, N1, . . . , Nm are conditionally independent
Poisson processes given α(·). Hence each Ni is a Cox process directed by
η(B) =

∫
<+

1(α(t) = i)µ(dt).

Example 13.3. Markov-Modulated Poisson Process. In computer and
telecommunications systems, a useful model for the occurrences of an event
in time is a Cox process N directed by η(t) =

∫ t
0 Y (s) ds, where Y (t) is an

ergodic Markov jump process on a countable state space I that models a
changing environment in which events occur. For instance, a flow of data
may be Poisson, but dependent on an environment (type or source of the
data, congestion in a network, etc.) that is changing according to a Markov
process.

Since the Cox process has the form N(t) = N1(η(t)), its behavior far
out in time is related to the limiting behavior of Y (t). In particular,

t−1N(t) → λ ≡
∑

i∈I

ipi, a.s. as t →∞,

where pi is the stationary distribution of Y . This strong law of large numbers
follows since by the strong laws of large numbers for Poisson and Markov
processes, N1(t)/t → 1 and η(t)/t → λ a.s., and so

t−1N(t) = (η(t)/t)N1(η(t))/η(t) → λ, a.s. as t →∞.

Next, consider a variation of the Mt/G/∞ system in which items arrive
for service according to the preceding Cox process N , and G is the distribu-
tion of the independent service times. The system data is M ≡ ∑

n δ(Tn,Vn)

on <2
+, where Tn is the arrival time of the nth item and Vn is its sojourn or

service time. Analogously to Theorem 9.6, M is a space-time Cox process
directed by η with E[M([0, t)× [0, v))|η] =

∫
(0,t] Gs(v)Y (s)ds.

Consider the quantity of items Q(t) =
∑

n 1(Tn + Vn > t) in the system
at time t. Arguing as in Example 11.2, the “conditional” distribution of
Q(t) given η is Poisson with

E[Q(t)|η] =
∫ t

0
[1−G(t− s)]Y (s)ds.

Furthermore, under the additional assumptions that Y (t) is stationary and
G has a mean α, we have

(13.4) lim
t→∞P{Q(t) = n} =

∑

i∈I

πi(iα)ne−iα/n!.

This is a conditional Poisson distribution with random mean αY (0).
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To prove (13.4), note that

P{Q(t) = n} = E
[
(E[Q(t)|η])ne−E[Q(t)|η]/n!

]
,

E[Q(t)|η] d= Y (0)
∫ t

0
[1−G(u)]du

d→ αY (0).

In light of these properties, (13.4) follows from the dominated convergence
theorem for convergence in distribution (Theorem 8.10 in the Appendix).

Example 13.5. Serial Marking of a Poisson Process. The results above
for a single marking of a Poisson process extend to a series of markings as
follows. Starting with a Poisson process N =

∑
n δXn , if Yn are p-marks of

Xn, then M =
∑

n δ(Xn,Yn) is a Poisson process. Similarly, if Y ′
n are p′-marks

of (Xn, Yn), then M ′ =
∑

n (Xn, Yn, Y ′
n) is again a Poisson process. These

marking steps can be continued several times, with the end result being a
Poisson process from which one can “read” off many results. In addition
to serial markings in applications, they are useful for proving results for
compound Poisson processes as discussed below.

Example 13.6. Compound Poisson Process: Independent Increments.
Let N(t) be a homogeneous Poisson process on <+ with rate λ. Consider
the stochastic process

Z(t) =
N(t)∑

n=0

Yn, t ≥ 0,

where Yn are real-valued random variables that are i.i.d. with distribution
F and are independent of N . As mentioned in Example 4.8, {Z(t) : t ≥ 0}
is a compound Poisson process with rate λ and distribution F .

The name comes from the fact that Z(t) has a compound Poisson dis-
tribution with rate λt and distribution F :

(13.7) P{Z(t) ≤ z} =
∞∑

n=0

e−λt(λt)nFn?(z)/n!, z ∈ <.

This follows by conditioning Z(t) on N(t) and using P{Z(t) ≤ z|N(t) =
n} = Fn?(z). In addition, observe that, by conditioning Z(t) on N(t),

E[Z(t)] = λtE[Y1], VarZ(t) = λt(VarY1)2,

provided these moments exist (conditioned on N(t) the variance of Z(t) is
N(t)VarY1). Here is more insight into the structure of the process Z(t).

Theorem 13.8. The process {Z(t) : t ≥ 0} has stationary, independent
increments: Z(t1)−Z(s1), . . . , Z(tn)−Z(sn), for s1 < t1 < · · · sn < tn, are
independent, and Z(s + t)− Z(s) d= Z(t) for s, t ≥ 0.

Proof. Using the process M =
∑

n δ(Tn,Yn), we can write

Z(t) =
∑

n

Yn1(Tn ≤ t) =
∫

<
yM((0, t]× dy).
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Under the assumptions, M is a space-time Poisson process with

E[M((s, s + t]×B)] = λtF (B).

Now, for any s1 < t1 < . . . sn < tn, consider the increments

Z(ti)− Z(si) =
∫

<
yM((si, ti]× dy), 1 ≤ i ≤ n.

They are independent since the point processes M((si, ti]×·), for 1 ≤ i ≤ n,
on < are independent, because M has independent increments.

Next, note that E[M((s, s + t] × B)] = E[M((0, t] × B)]. Since M is
Poisson and its distribution is uniquely determined by its intensity, it follows
that M((s, s + t]× ·)] d= M((0, t]× ·) Consequently,

Z(s + t)− Z(s) =
∫

<
yM((s, s + t]× dy) d=

∫

<
yM((0, t]× dy) = Z(t).

Hence Z(t) has stationary increments. ¤

Instead of the Yn being independent of N suppose Yn are p-marks of
Tn. Then the process Z(t) =

∑N(t)
n=0 Yn, for t ≥ 0, is a location-dependent

compound Poisson process with intensity measure µ and distribution p(t, ·).
Many of its properties follow directly from the fact that M =

∑
n δ(Tn,Yn)

is a Poisson process. For instance, see Exercises 44 and 45. Also, since
M is Poisson, the results above for Poisson processes extend to compound
Poisson processes by using a p-marking of M , which would be a “second”
marking of N as mentioned in Example 13.5. Exercise 44 illustrates this
ideas for partitions of compound Poisson processes.

There are other relatives of compound Poisson processes of the form
M(A) =

∑
n YnδXn(A), where N =

∑
n δXn is a Poisson process on a general

space, and the marks Yn are random vectors, matrices, or elements of a group
with an addition operation. Here is an example when Yn are point processes.

Example 13.9. Poisson Cluster Processes. Let N =
∑

n δXn denote a
Poisson process on a general space S with intensity measure µ. Suppose that
each point Xn generates a cluster of points in a space S′ that are represented
by a point process N ′

n. Assume N ′
n are point processes on a space S′ that are

i.i.d. and independent of N . Then the number of points from the processes
N ′

n in a set B that are generated by points of N in the set A is

M(A×B) =
∑

n

N ′
n(B)δXn(A).

This defines a point process M on S × S′ called a marked cluster process
generated by the Poisson process N ; the M(S × ·), provided it is locally
finite, is simply the cluster process on S′.
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Since M(A× B) =
∑N(A)

n=0 N ′
n(B), it follows by conditioning on N that

M(A×B) has the compound Poisson distribution

P{M(A×B) ≤ n} =
∞∑

k=0

e−µ(A)µ(A)kF k?(n;B)/k!,

where F (n; B) = P{N ′
1(B) ≤ n}. Also, E[M(A× B)] = E[N(A)]E[N ′

1(B)]
and

VarM(A×B) = E[N(A)](VarN ′
1(B))2.

More general cluster processes, where the N ′
n are marks of Xn, are analyzed

in Exercise 47.

14. Poisson Law of Rare Events

Poisson processes are natural models for rare events in time, or rare
points in a space. This is partly due to central-limit phenomena in which
sums of thin or rarefied point processes converge in distribution to Poisson
processes. A classical case for random variables is a Binomial random vari-
able converging to a Poisson random variable as in Example 14.1 below. In
this section, we present a generalization of this result that gives conditions
under which a sum of many rare indicator random variables converges to
a Poisson random variable. Analogous results under which a sum of point
processes converges to a Poisson process are in the next section.

Here is a classical example of the Poisson law of rare events below.

Example 14.1. Binomial Convergence to Poisson. Suppose Yn1, . . . , Ynn

are independent Bernoulli random variables with P{Yni = 1} = pn. Then
Zn ≡

∑n
i=0 Yni has a binomial distribution with parameters n and pn. If

npn → µ > 0 as n →∞, then Zn
d→ Z, where Z has a Poisson distribution

with mean µ. This is a special case of the following result.

Theorem 14.2. (Poisson Law of Rare Events) Suppose Yn1, Yn2, . . ., for
n ≥ 1, are a countable number of independent random variables that take
values 0 or 1, and satisfy the uniformly null property

(14.3) sup
i

P{Yni = 1} → 0, as n →∞.

Let Z be a Poisson random variable with mean µ. Then as n →∞,

Zn ≡
∑

i Yni
d→ Z if and only if

∑
i P{Yni = 1} → µ.

Proof. We will use the property of Laplace transforms that Zn
d→ Z if

and only if E[e−αZn ] → E[e−αZ ]. By the independence of the Yni,

E[e−αZn ] =
∏

i

E[e−αYni ] =
∏

i

(1− cni), α ≥ 0,
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where cni = E[1−e−αYni ]. Also, E[e−αZ ] = e−c, where c = µ(1−e−α), since
Z has a Poisson distribution with mean µ. From these observations,

(14.4) Zn
d→ Z ⇔ E[e−αZn ] → e−c ⇔

∏

i

(1− cni) → e−c.

Moreover, under the assumption (14.3) and cni ≤ (1 − e−α) < 1, it follows
by Lemma 14.5 for cni = cµ−1P{Yni = 1}, that

∏

i

(1− cni) → e−c ⇔
∑

i

cni → c ⇔
∑

i

P{Yni = 1} → µ.

Combining this string of equivalences with (14.4) proves the assertion. ¤
The preceding proof of the Poisson convergence boils down to the fol-

lowing result on the convergence of real numbers.

Lemma 14.5. Suppose cn1, cn2, . . ., for n ≥ 1, are a countable (possi-
bly finite) number of real numbers in (0, a], where a < 1, that satisfy the
uniformly null property

(14.6) sup
i

cni → 0 as n →∞.

Then, for any c > 0,

lim
n→∞

∏

i

(1− cni) = e−c if and only if lim
n→∞

∑

i

cni = c.

Proof. The assertion is equivalent to

(14.7) sn ≡ −
∑

i

log(1− cni) → c if and only if sn ≡
∑

i

cni → c.

Since log(1− cni) = −∑∞
m=1 cm

ni/m, the difference in these sums is

dn ≡ sn − sn =
∑

i

c2
ni

∞∑

m=2

cm−2
ni /m.

Using cni ≤ a and αn ≡ supi cni, we have

(14.8) dn ≤ 1
1− a

∑

i

c2
ni ≤

αnsn

1− a
≤ αnsn

1− a
.

Now, if sn → c, then from (14.8) and (14.6) we have dn → 0, and hence
sn = sn − dn → c. Similarly, if sn → c, then sn = sn + dn → c. These
observations prove (14.7). ¤

15. Poisson Convergence Theorems*

This section contains Poisson convergence theorems for sequences of
point processes. These results are extensions of the Poisson law of rare
events in Theorem 14.2 above. The main theorem is that a sum of many
independent sparse point processes converges to a Poisson process. Con-
sequently, certain sums of renewal processes and rare transformations of a
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point process converge to a Poisson process. Also included are examples jus-
tifying that Poisson processes are reasonable approximations for thinnings
and partitions of a point process.

We will use the following notion of weak convergence, which is reviewed
in Section 8 of the Appendix. Suppose µ, µ1, µ2, . . . are probability measures
on S. The probabilities µn converge weakly to µ as n → ∞, denoted by
µn

w→ µ, if µnf → µf , as n → ∞, for each bounded continuous function
f : S → < (recall µf =

∫
S f(x)µ(dx)). This is equivalent to

(15.1) lim
n→∞µn(B) = µ(B), B ∈ Ŝµ,

where Ŝµ ≡ {B ∈ Ŝ : µ(∂B) = 0}, the set of all bounded sets whose
boundary has µ-measure 0.

A sequence of random elements in a metric space converges in distri-
bution to a random element if their distributions converge weakly. In par-
ticular, a sequence of point processes Nn on S converges in distribution to
N as n → ∞, denoted by Nn

d→ N , if P{Nn ∈ ·} w→ P{N ∈ ·}. This
weak convergence is equivalent to the convergence of the finite-dimensional
distributions (condition (ii) in the next theorem).

A few points in our analysis use the slightly more general notion of vague
convergence of measures. Suppose µ, µ1, µ2, . . . are locally finite measures
on S. The measures µn converge vaguely to µ, denoted by µn

v→ µ, if

µnf → µf, as n →∞, for each f ∈ C+
K(S).

This is equivalent to (15.1), and vague convergence is the same as weak
convergence when all the measures are probability measures.

The following are several equivalent conditions for point processes to
converge in distribution. Here ŜN = {B ∈ Ŝ : N(∂B) = 0 a.s. }.

Theorem 15.2. For point processes N,N1, N2, . . . on S, the following
statements are equivalent as n →∞.
(i) Nn

d→ N .
(ii) (Nn(B1), . . . , Nn(Bk))

d→ (N(B1), . . . , N(Bk)), B1, . . . , Bk ∈ ŜN .
(iii) Nnf

d→ Nf, f ∈ C+
K(S).

(iv) E[e−Nnf ] → E[e−Nf ], f ∈ C+
K(S).

A proof of this result is in [20]. Condition (ii) says the finite-dimensional
distributions of Nn converge to those of N . When S is an Euclidean space,
the sets Bi can be replaced by bounded rectangles. Condition (iii) relates the
convergence in distribution of integrals with respect to point processes to the
convergence of the processes. The convergence (iv) of Laplace functionals is
a convenient tool for proving Nn

d→ N , when the functionals can be factored
conveniently (as in the proof of Theorem 15.8 below).

Here is an elementary but useful fact. It justifies the convergence of a
Poisson process when its intensity converges; e.g., see Exercise 49.
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Proposition 15.3. (Convergence of Poisson Processes) For each n ≥ 1,
suppose Nn is a Poisson process on a space S with intensity measure µn. If
µn

v→ µ and µ is locally finite, then Nn
d→ N , where N is a Poisson process

with intensity µ.

Proof. From Proposition 6.3, we know that E[e−Nnf ] = e−µnh, for
f ∈ C+

K(S), where h(x) ≡ 1− e−f(x). By Theorem 15.2, we have µnh
v→ µh,

and so
E[e−Nnf ] = e−µnh → e−µh = E[e−Nf ].

Thus, Nn
d→ N by Theorem 15.2. ¤

We are now ready to consider the convergence of non-Poisson processes.
We begin with a motivating example.

Example 15.4. Consider a sum N(t) =
∑n

i=1 Ni(t), for t ≥ 0, where
N1, . . . , Nn are independent renewal processes. Of course, N is generally
not a renewal process. However, suppose the times between renewals for
each process Ni tend to be large (i.e., Fi(t) is small, where Fi is the inter-
renewal distribution). Consequently, the contribution Ni(a, b] to N(a, b]
would tend to be 0. In other words, each Ni rarely contributes a point to
N on bounded intervals. However, if the number n of these contributions
is large, it might be reasonable to approximate N by a Poisson process
with intensity E[N(t)] =

∑n
i=1 E[Ni(t)]. A Poisson convergence theorem

justifying such an approximation is as follows. The opposite situation in
which Ni(a, b] tends to be large is addressed in Exercise 52.

Theorem 15.5. (Sums of Renewal Processes) Suppose, for n ≥ 1, that
Nn(t) =

∑
i Nni(t) is a point process on <+, where Nni is a countable set of

independent renewal processes with inter-renewal distributions Fni. Assume
the inter-renewal times are uniformly rare in that

lim
n→∞ sup

i
Fni(t) = 0, t ≥ 0.

Let N be a Poisson process on <+ with intensity measure µ. Then Nn
d→ N ,

as n →∞ if and only if, for each t with µ({t}) = 0,

(15.6) lim
n→∞

∑

i

Fni(t) = µ(t).

Proof. This result follows by Theorem 15.8 below, since
∑

i

P{Nni(t) ≥ 2} =
∑

i

∫

(0,t]
Fni(t− s)Fni(ds)

≤ sup
i

Fni(t)
∑

i

Fni(t),

and (15.6) is the same as (15.10) because P{Nni(t) ≥ 1} = Fni(t). ¤
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The next result is a general Poisson convergence theorem for sums of
uniformly rare point processes. Suppose that

Nn ≡
∑

i

Nni, n ≥ 1,

is a point process on a space S, where Nn1, Nn2, . . . is a countable number
of independent point processes on S. Assume the point processes Nni are
uniformly null, meaning that

(15.7) lim
n→∞ sup

i
P{Nni(B) ≥ 1} = 0, B ∈ Ŝ.

Let N be a Poisson process on S with intensity measure µ.

Theorem 15.8. (Grigelionis) For the processes defined above, Nn
d→ N ,

as n →∞ if and only if

lim
n→∞

∑

i

P{Nni(B) ≥ 2} = 0, B ∈ Ŝ,(15.9)

lim
n→∞

∑

i

P{Nni(B) ≥ 1} = µ(B), B ∈ Ŝµ.(15.10)

Proof. The convergence Nn
d→ N is equivalent, by Theorem 15.2, to

(15.11) E[e−Nnf ] → E[e−Nf ], f ∈ C+
K(S).

Using the independence of the Nni and letting cni ≡ E[1− e−Nnif ], we have

E[e−Nnf ] =
∏

i

E[e−Nnif ] =
∏

i

(1− cni).

Also, by Proposition 6.3, E[e−Nf ] = e−µh, where h(x) ≡ 1 − e−f(x). Com-
bining these observations, it follows that (15.11) is equivalent to

(15.12)
∏

i

(1− cni) → e−µh, f ∈ C+
K(S).

Keep in mind that cni is a function of f .
We will complete the proof by applying Lemma 14.5 to establish that

(15.9) and (15.10) are necessary and sufficient for (15.12). Clearly cni are in
(0, a], where a = 1− exp{−maxx∈S f(x)}. Next, note that

cni = E[1− e−Nnif ] ≤ P{Nni(Sf ) ≥ 1},
where Sf is the support of f . Then (15.7) implies

sup
i

cni ≤ sup
i

P{Nni(Sf ) ≥ 1} → 0.

In light of this property, Lemma 14.5 says that (15.12) is equivalent to

(15.13)
∑

i

E[1− e−Nnif ] =
∑

i

cni → µh, f ∈ C+
K(S).

Therefore, it remains to show that (15.9) and (15.10) are necessary and
sufficient for (15.13).
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We can write
∑

i

cni =
∑

i

E[(1− e−Nnif )1(Nni(Sf ) = 1)](15.14)

+
∑

i

E[(1− e−Nnif )1(Nni(Sf ) ≥ 2)].

The last sum is bounded by
∑

i P{Nni(Sf ) ≥ 2)} which converges to 0 by
assumption (15.9). The first sum on the right-hand side in (15.14) equals
ηnh, where

ηn(B) ≡
∑

i

E[Nni(B ∩ Sf )1(Nni(Sf ) = 1)] =
∑

i

P{Nni(B ∩ Sf ) = 1}.

The last sum has the same form as the sum in (15.9) minus the one in
(15.10), and so these assumptions imply ηn

v→ µ, which yields ηnh → µh.
Using the preceding observations in (15.14) proves that (15.9) and (15.10)
are sufficient for (15.13).

Conversely, suppose (15.13) is true. This property for the function
f(x) ≡ −1(x ∈ B) log s, where B ∈ Ŝ and s ∈ [0, 1], says

(15.15) Hn(s) ≡
∑

i

E[1− sNni(B)] → (1− s)µ(B),

since h(x) = 1− e−f(x) = (1− s)1(x ∈ B). Then (15.10) follows since

(15.16)
∑

i

P{Nni(B) ≥ 1} = Hn(0) → µ(B).

Next, consider the factorization

Hn(s) =
∑

i

[1−
∞∑

m=0

smP{Nni(B) = m}]

= (1− s)Hn(0) +
∑

i

∞∑

m=2

(s− sm)P{Nni(B) = m}.

Then using this expression along with (15.15) and (15.16), we have

(s− s2)
∑

i

P{Nni(B) ≥ 2} ≤ Hn(s)− (1− s)Hn(0) → 0.

Thus (15.13) is true. These observations prove that (15.13) implies (15.9)
and (15.10), which completes the proof. ¤

Theorem 15.8 justifies Poisson limits for sums of independent renewal
processes (Theorem 15.5 and Exercise 52). Although Theorem 15.8 is for
sums of independent point processes, it also applies to certain sums of con-
ditionally independent point processes, including those associated with ran-
dom transformations and thinning of point processes, which we now discuss.
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Example 15.17. A Thinned Process. Let N be a point process on <+

(e.g., a renewal process) that satisfies t−1N(t) d→ λ as t → ∞, where λ
is a positive constant. Suppose each point of N is independently retained
with probability p and deleted with probability 1− p. Let Np(t) denote the
number of retained points in (0, t]. When p is very small, the retained points
are rare and so it appears that it would be appropriate to approximate the
p-thinning Np of N by a Poisson process. Based on Corollary 15.24 below,
it is reasonable to approximate Np by a Poisson process with rate pλ when
p is small.

Example 15.18. Poisson Limit of Rare Transformations. Consider a
sequence of point processes Nn =

∑
j δXnj on a space S with intensity

measures µn. Let Mn be a marked pn-transformation of Nn on S × S′.
A natural prerequisite for Mn to converge is that the transformations

should be uniformly null. Accordingly, we will use the condition

(15.19) lim
n→∞ sup

x∈A
pn(x,B) = 0, A ∈ Ŝ, B ∈ Ŝ ′.

Next, observe that the conditional mean measure of Mn given Nn is

ηn(A×B) ≡ E[Mn(A×B)|Nn] =
∑

j

pn(Xnj , B)1(Xnj ∈ A)

=
∫

A
pn(x, B)Nn(dx), A ∈ S, B ∈ S ′.

The convergence in distribution of these random mean measures ηn is an-
other prerequisite for Mn to converge. For such random measures, the con-
vergence ηn

d→ η is analogous to convergence in distribution of point pro-
cesses, and equivalent statements for this are given in Theorem 15.2 (with
η in place of N).

Theorem 15.20. Suppose the sequence Mn of marked pn-transformations
of Nn satisfies (15.19). Also, assume ηn

d→ µ as n →∞, where µ is a (non-
random) locally finite measure on S×S′. Then Mn

d→ M as n →∞, where
M is a Poisson process on S × S′ with intensity measure µ.

Proof. We can write Mn =
∑

i Mni, where Mni ≡ δXni,Yni and Yni are
pn-marks of the Xni, for i ≥ 1. Although the point processes Mni, i ≥ 1,
are not independent, they are conditionally independent given Nn. Clearly
P{Mni(B) ≥ 2|Nn} = 0 and, under assumption (15.19),

sup
i

P{Mni(A×B) ≥ 1|Nn} ≤ sup
x∈A

pn(x,B) → 0, A ∈ Ŝ, B ∈ Ŝ ′.

Also, ηn
d→ µ implies, for A×B ∈ Ŝ × S ′µ,
∑

i

P{Mni(A×B) ≥ 1|Nn} = E[Mn(A×B)|Nn]

= ηn(A×B) d→ µ(B).
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Applying Theorem 15.8 to the conditional distribution of Mn given Nn, and
using Theorem 15.2, it follows that

E[e−Mnf |Nn] d→ E[e−Mf ], f ∈ C+
K(S).

Taking expectations of this and using the dominated convergence theorem
for convergence in distribution (Theorem 8.10 in the Appendix), we have
E[e−Mnf ] → E[e−Mf ]. Thus, Mn

d→ M by Theorem 15.2. ¤

Example 15.21. Poisson Limits of Partitions. Let N(t) be a point
process on <+. Suppose N is partitioned as in Corollary 10.2 by the following
rule: Each point of N is assigned to subprocess i ∈ I (a countable set)
with probability p(i), independent of everything else, where

∑
i∈I p(i) = 1.

Then N =
∑

i∈I Ni, where Ni denotes the ith subprocesses in the partition.
We address the issue of finding conditions under which the subprocesses
{Ni : i ∈ I0}, for a subset I0 ⊂ I, are approximately independent Poisson
processes. The thinning in Example 15.17 is such a partition consisting of
two subprocesses, where I0 = {0} and I = {0, 1}.

To justify an approximation of the subprocesses by a limit theorem,
assume the partitioning probabilities are functions of n such that pn(i) → 0,
for i ∈ I0 (I is necessarily infinite when I0 = I). Denote the ith subprocess
by N i

n(t). Its conditional mean given N is E[N i
n(t)|N ] = pn(i)N(t). This

mean converges to 0, which would not lead to a non-zero limit of N i
n.

To obtain a non-zero limit, a normalization of the processes N i
n is in

order. Accordingly, assume there is a positive constant λ such that

(15.22) t−1N(t) d→ λ.

This ensures that N(t) →∞ and that the points of N appear at a positive
rate out to infinity. Next, assume the partitioning is uniformly rare on I0:
there exist positive constants an →∞ and r(i), such that

(15.23) lim
n→∞ anpn(i) = r(i), i ∈ I0.

Under the preceding assumptions, it is natural to consider the conver-
gence of the processes

Nni(t) ≡ N i
n(ant), i ∈ I0.

These are normalizations of the processes N i
n under a rescaling of time so

that an is the new unit of time. The Nni on a “fixed” interval (0, t] represents
subprocess i on the interval (0, ant], which becomes larger as n → ∞. The
choice of an for the time unit is because, as n →∞,

E[Nni(t)|N ] = anpn(i)(N(ant)/an) d→ r(i)λ, i ∈ I0.

The following result describes the Poisson limits of the subprocesses. Inter-
estingly, the processes Nni for i ∈ I0 are dependent for each n but in the
limit they are independent.
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Corollary 15.24. Under assumptions (15.22) and (15.23),

(15.25) (Nni : i ∈ I0)
d→ (Ni : i ∈ I0), as n →∞,

where the limiting processes are independent homogeneous Poisson processes
with respective rates r(i)λ, i ∈ I0.

Proof. The partition of N we are studying is a special pn-transformation
of the process N(an·) with pn(t, B) =

∑
i∈B pn(i). Specifically, the number

of the N(ant) points assigned to subprocess i ∈ I0 is

Nni(t) = Mn((0, t]× {i}),
where Mn is a marked pn-transformation on <+× I0 of N(an·) as in Exam-
ple 15.18. For each t ≥ 0 and B ⊂ I0,

sup
s≤t

pn(s, B) =
∑

i∈B

pn(i) → 0.

Furthermore, under assumptions (15.22) and (15.23),

ηn((0, t]×B) ≡ E[Mn((0, t]×B)|N(an·)] = an

∑

i∈B

pn(i)(N(ant)/an)

d→ η((0, t]×B) ≡
∑

i∈B

r(i)λt.

Thus, the assumptions of Theorem 15.20 are satisfied, and so Mn
d→ M ,

where M is a Poisson process with E[M((0, t]×B)] =
∑

i∈B r(i)λt. Hence,
assertion (15.25) follows since Nni(t) = Mn((0, t]× {i}). ¤

16. Exercises

1. Let X1, . . . , Xm be independent exponentially distributed random
variables with respective rates λ1, . . . , λm. Define Y = min{X1, . . . , Xm}
and λ =

∑m
i=1 λi. Show that

P{Xj = Y } = λj/λ, P{Y > t} = e−λt,

P{Xj = Y, Y > t} = P{Xj = Y }P{Y > t}.
Also, find simple expressions for

P{X1 < X2}, P{max{X1, . . . , Xm} ≤ x}.
2. A space station requires the continual use of two systems whose life-

times are independent exponentially distributed random variables X1 and
X2 with respective rates λ1 and λ2. In addition, when system 2 fails, it is
replaced by a spare system whose lifetime X3 is exponentially distributed
with rate λ3, independent of the other systems. Find the distribution of the
time Y = min{X1, X2 + X3} at which one of the systems becomes inopera-
tive. Find the probability that system 1 will fail before system 2 (with its
spare) fails.
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3. Dispatching. In Example 1.1, what properties of the Poisson pro-
cess are not needed to obtain the optimal dispatching policy? What is the
optimal policy when the arrival process N(t) is a simple, stationary point
process with N(t) = λt, such as a stationary renewal process?

4. Waiting to be Dispatched. Items arrive to a dispatching station ac-
cording to a Poisson process with rate λ, and all items in the system will
be dispatched at a time t. Example 1.1 shows that the expected time items
wait before being dispatched at time t is E[

∫ t
0 N(s)ds] = λ2/2. Suppose

there is a cost hw2 for holding an item in the system for a time w. Then the
total holding cost in (0, t] is C =

∑
n≥1 h(t− Tn)2. Find E[αC] and E[C].

5. Requests for a product arrive to a storage facility according to a
Poisson process with rate λ per hour. Given that n requests are made in a
t-hour time interval, find the probability that at least k requests were made
in the first hour. Is this conditional probability different if the beginning of
the one-hour period is chosen according to a probability density f(s) on the
interval [0, t− 1]?

6. From Theorem 6.4, we know that the sum N = N1 + · · ·Nn of in-
dependent Poisson processes is Poisson. Prove this statement by verifying
that N satisfies the defining properties of a Poisson process.

7. Prove the following statement. A simple point process N on <+ is
a Poisson process with rate λ if and only if N has independent increments,
EN(1) = λ, and, for any t and n, the conditional joint density of T1, . . . , Tn

given N(t) = n is the same as the density of the order statistics of n inde-
pendent uniformly distributed random variables on [0, t].

8. Shot Noise Process. Suppose that shocks (or pulses) to a system occur
at times that form a Poisson process with rate λ. The shock at time Tn has
a magnitude Yn and this decays exponentially over time with rate γ. Then
the cumulative effect of the shocks at time t is

Z(t) =
N(t)∑

k=1

Yne−γ(t−Tn).

Assume Y1, Y2, . . . are i.i.d. with mean µ and variance σ2, and are indepen-
dent of N . Find expressions for the mean and variance of Z(t) in terms of
µ and σ2.

9. Randomly Discounted Cash Flows. In the context of Example 4.7,
consider the generalization

Z(t) =
N(t)∑

n=1

Yne−γnTn ,
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where γ1, γ2, . . . are independent nonnegative discount rates with distribu-
tion G that are independent of N and the Yn’s. Show that

E[Z(t)] = λEY1

∫ t

0

∫

<+

e−γxG(dγ)dx.

10. Calls arrive to an operator at a call center at times that form a
Poisson process N(t) with rate λ. The time τ devoted to a typical call has
an exponential distribution with rate µ, and it is independent of N . Then
N(τ) is the number of calls that arrive while the operator is busy answering
a call. Find the Laplace transform and mean and variance of N(τ). Find
P{N(τ) ≤ 1}.

11. For a Poisson process N with rate λ, show that

E[T` − Tk|N(t) = n} = (`− k)/(n + 1), k < ` ≤ n, t > 0.

Find an expression for E[t− Tk|N(t) = n}.
12. Consider a set of N jobs that are assigned to m workers for pro-

cessing. Each job is randomly assigned to worker i with probability pi, for
i = 1, . . . ,m. Let Ni denote the number of items assigned to category i, so
that N = N1 + · · ·+ Nm. Suppose N has a Poisson distribution with mean
λ. Describe the joint distribution of N1, . . . , Nm.

13. Patients at an emergency room are categorized into m types. Assume
the arrivals of the m types of patients occur at times that form independent
homogeneous Poisson processes with respective rates λ1, . . . ,λm.
(a) Find the probability that a type 1 patient arrives before a type 2 patient.
(b) What is the probability that the next patient to arrive after a specified
time is of type 1?
(c) Find the probability that in the next 5 arrivals, there are exactly 3 type
1 patients.
(d) Find the probability that 3 type 1 patients arrive before the first type 2
patient.
(e) Find the probability that the next patient to arrive is of type 1, 2 or 3.

14. Dynamic Servicing. Customers randomly request service at a man-
ufacturing facility during an eight-hour day according to a Poisson process
with intensity λt. The requested orders are satisfied as soon as possible,
but may be delayed due to machine workloads, worker schedules, machine
availability, etc. Past history shows that a request at time t will be satisfied
either: (1) That day. (2) The next day. (3) Some time later. The request at
time t is satisfied under scenario i with probability pi(t), and the expected
revenue for such an order is ri, where i = 1, 2, 3.
(a) Find the distribution of the number of requests in a day that are satisfied
under each scenario i, where i = 1, 2, 3.
(b) Find the daily expected revenue for satisfying the customers, and find
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the variance of this revenue.
(This is an actual model of customer requests for orders of paper labels
produced by a company.)

15. Requests for a product (information or service) arrive from m cities
at times that form independent Poisson processes with rates λ1, . . . , λm.
Given that there are n requests from the cities in the time interval (0, t],
find the conditional probability that n1 are from city 1 and n2 are from city
2.

16. At the end of a production shift, it is anticipated that there will be
N jobs left to be processed, where N has a Poisson distribution with mean
µ. Suppose the jobs are processed in parallel and the times to complete them
are independent with a distribution G. Let Q(t) denote the number of jobs
in the system at time t, and let D(t) denote the number of jobs completed
in (0, t]. Find the distributions of Q(t) and D(t). Is D a Poisson process?

Answer this question under an alternative scenario in which the jobs are
processed serially (one at a time) and G is an exponential distribution with
rate λ.

17. Let X(1) ≤ · · · ≤ X(n) denote the order statistics from a random
sample of size n from an exponential distribution with rate λ. Consider the
distances between points D1 = X(1), and Dk = X(k) − X(k−1), 2 ≤ k ≤ n.
Show that these distances are independent, and that Dk has an exponential
distribution with rate (n− k + 1)λ.

18. Let X(1) ≤ · · · ≤ X(n) denote the order statistics of a random sam-
ple from a continuous distribution F (x) with density f(x). Show that the
distribution and density of X(k) are

P{X(k) ≤ x} =
k∑

j=1

(
n

j

)
F (x)j(1− F (x))n−j ,

fX(k)
(x) =

n!
(k − 1)!(n− k)!

F (x)k−1f(x)(1− F (x))n−k, x ∈ <.

19. Point Locations for Non-Homogeneous Poisson Processes. Consider
a Poisson process N on R+ with rate function r(x), where r(x) > 0 for each
x. Prove the following Order Statistic Property:
The conditional density of T1, . . . , Tn given N(t) = n is

fT1,...,Tn

(
t1, t2, . . . , tn

∣∣∣N(t) = n
)

= n!f(t1) · · · f(tn),

for 0 < t1 < · · · < tn < t, where f(s) = r(s)/µ(0, t]. This is equal to the
joint density of the order statistics of n independent random variables on
[0, t] with density f(s).

20. Consider a Poisson process N on R+ with rate function r(t) = 3t2.
Let T1 < T2 < . . . denote the point locations.
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(a) Show that Wn = Tn − Tn−1, n ≥ 1, are dependent.
(b) Find the distributions of T1 and Tn.
(c) Find the distribution of Wn.

21. Suppose N is a Poisson process on R2 with rate function λ(x, y)
at the location (x, y). For instance, N could represent locations of certain
types of animal nests, diseased trees, land mines, auto accidents, houses of
certain types of people, flaws on a surface, potholes, . . . . Let Dn denote the
distance from the origin to the n-th nearest point of N .
(a) Find an expression for the distribution and mean of D1.
(b) Find an expression for the distribution of Dn when λ(x, y) ≡ λ.
(c) Are the differences Dn−Dn−1 independent (as they are for Poisson inter-
point distances on R)?
(d) Suppose there is a point located at (x∗, y∗). What is the distribution of
the distance to the nearest point?
(e) Is λ(x, y) = 1/(x2 + y2)1/2 a valid rate function for N to be a Poisson
process under our definition?
(f) Specify a rate function λ(x, y) under which P{N(R2) < ∞} = 1.

22. Let M denote a Poisson process on <d
+ with intensity µ. Show that

N(t) = M((0, t]d), for t ≥ 0, is a Poisson process on <+ with E[N(t)] =
µ((0, t]d). This is an alternate approach to proving the departure process in
a Mt/Gt/∞ system is Poisson; see Example 11.2.

23. Highway Model. Vehicles enter an infinite highway denoted by < at
times that form a Poisson process N on the time axis <+ with intensity
measure µ. For simplicity, assume the highway is empty at time 0. The
vehicle arriving at time Tn enters at a location Xn on the highway < and
moves on it with a velocity Vn for a time τn and then exits the highway. The
velocity may be negative, denoting a movement in the negative direction and
vehicles may automatically pass one another on the highway with no change
in velocity. The Xn are i.i.d. with distribution F and are independent of
N . The pairs (Vn, τn) are independent of N and, they are conditionally
independent given the Xn’s with

Gx(v, t) = P{Vn ≤ v, τn ≤ t|Xk, k ≥ 1, Xn = x},
a non-random distribution independent of n.
(a) Justify that M ≡ δ(Tn,Xn,Vn,τn), n ≥ 1, is a Poisson process on <+×R2×
R+ and describe its intensity.
(b) Consider the departure process D on <×<+ where D(A× (a, b]) is the
number of departures from A in the time interval (a, b]. Justify that D is
a Poisson process and specify its intensity. Find the expected number of
departures in (0, t].
(c) For a fixed t let Nt(A) denote the number of vehicles in A ⊂ < at time
t. Justify that Nt a Poisson process on < and specify its intensity.
(d) Suppose a vehicle is at the location at x ∈ < at time t and let X(t)
denote the distance to the nearest vehicle. Specify assumptions on µ, F and
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Gx(v, t) that would guarantee that there is at most one point at any location
on the highway. Under these assumptions, find the distribution of X(t).

24. Continuation. In the preceding highway model, assume there are
vehicles on the highway at time 0 at locations that form a Poisson process
N0(·) with rate λ, and this process is independent of the other vehicles. The
sojourn times of these vehicles on the highway are like those of the other
vehicles vehicles, and they all operate under the distribution Gx(v, t) =
G(v)(1− e−µt). Solve parts (b)–(d) of the preceding exercise.

25. In the context of Example 8.7, suppose N is a homogeneous Poisson
process on the unit disc S in <2 with rate λ. For the Poisson processes N ′
and M related to the projection of N on the line S′ = [−1, 1, ], show that
the rate function of N ′ is λ = 2λ

√
1− x2, and that

E[M(Au × (0, b])] = λ

∫ b

0
(
√

1− x2 − u) dx

for Au = {(x, y) ∈ S : y ≥ u} and b ≤ √
1− u2.

Next, consider the transformation of N where a point in the unit disc
S is mapped to the closest point on the unit circle C. Under this map,
using polar coordinates, M(A × B) =

∑
n δ(Rn,Θn)(A)δΘn(B) denotes the

number of points of N in A that are mapped into B. Justify that M is
a Poisson process on S × C, and give an expression for E[M(A × (0, b])],
where A = {(r, θ) ∈ S : θ ∈ (0, b], r ∈ [ 1

sin θ+cos θ , 1]} and b ≤ π/2 (note that
x + y = r(sin θ + cos θ) ≥ 1 when (x, y) ∈ A).

For a fixed B, consider the process N(r) = M(Ar×B), r ∈ [0, 1], where
Ar is a unit disc in <2 with radius r. Show that N is a Poisson process and
specify its rate function λ(r).

26. Suppose N1, . . . , Nm are independent Poisson processes on a space
S with respective intensities µ1, . . . , µm, and let N =

∑m
i=1 Ni, which is

a Poisson process with intensity µ = µ1 + · · ·µm. For instance, Ni(B)
might be the number of crimes of type i in a region B of a city and N(B)
is the total number of crimes. Show that the conditional distribution of
N1(B), . . . , Nm(B) given N(B) = n is a multinomial distribution.

27. Let N1, . . . , Nm be independent Poisson processes on <+ with location-
dependent rates λ1(t), . . . , λm(t), respectively. Let τi denote the time of the
first occurrence in process Ni. Find the distribution of τ ≡ min1≤i≤m τi.
Find P{τi = τ}.

28. Let X1, X2, . . . be i.i.d. random variables with a distribution F . Show
that X1, . . . , Xn are distinct with probability one for any n ≥ 2 if and only
if F is continuous. (This statement is also true if these are random elements
in a space S and “continuous F” is replaced by F{x} = 0, x ∈ S). Use
induction and P{X1 6= X2} =

∫
<(1− F ({x})F (dx).
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29. Justify that the space–time process M in the last paragraph of Ex-
ample 9.11 is a Poisson process by verifying the defining conditions for a
Poisson process.

30. As in Example 8.7, suppose N =
∑

n δ(Xn,Yn) is a Poisson process
on the unit disc S in <2 with location-dependent rate λ(x, y). The Poisson
process M =

∑
n δ((Xn,Yn),Xn

) on S × S′ represents the number of points of
N that are projected onto the x-axis S′ = [−1, 1]. Give an expression for
the location-dependent intensity of M . Now, switching to polar coordinates
as in Example 8.7, the process M ≡ ∑

n δ((Rn,Θn),Θn
) represents the number

of points of N that are mapped onto the unit circle C.

31. Suppose M is a Poisson process on <2
+ with intensity µ. Show

that the process N(t) ≡ M((0, t] × (0, t]), is a Poisson process on <+ with
E[N(t)] = µ((0, t] × (0, t]). This result can be used to prove that the de-
parture process D(t) for the Mt/Gt/∞ model in Example 11.2 is a Poisson
process. (More generally, N(t) ≡ M(Bt) is a Poisson process for Bt ↑ <2

+.)

32. Deposits to a bank account occur at times that form a Poisson
process with rate λ and the amounts deposited are independent random
variables with distribution F (independent of the times). Also, withdrawals
occur at times that form a Poisson process with rate µ and the amounts de-
posited are independent random variables with distribution G (independent
of the times). The deposits and withdrawals are independent. Let X(t)
denote the balance of the bank account at time t, where X(0) = 0, and
the balance may be negative. Finds the mean, variance and distribution of
X(t).

33. Suppose X(t) = minn≤N(t) Yn, for t ≥ 0, where N =
∑

n δTn is
a Poisson process on <+ and Yn are independent random variables with
distribution F , independent of N . For instance, Yn could be bids on a
property and X(t) is the smallest bid up to time t. Find the distribution
and mean of X(t). Answer this question for the more general setting in
which Yn are p-marks of Tn, where p(t, (0, y]) is the distribution of typical
mark at time t.

34. E-mail Broadcasting. An official of an organization sends e-mail
messages to various subgroups of the organization at times that form a
Poisson process with intensity µ. Each message is sent to all the intended
recipients simultaneously, and it is sent to individual i with probability pi,
i = 1, . . . , m, where m is the number of individuals in the organization. Let
Ni(t) denote the number of messages individual i receives from the official
in the time interval (0, t]. Justify that Ni is a Poisson process and specify
its intensity.

Consider a subset of individuals I ⊂ {1, . . . , m}. Specify whether or not
the processes Ni, i ∈ I, are independent. Is the sum

∑
i∈I Ni Poisson? If

so, specify its intensity.
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35. Continuation. In the setting of the preceding exercise, suppose there
is a probability ri that individual i will reply to an e-mail from the official,
and then send the reply within time that has a distribution Gi(t). Let
Ri(t) denote the number of replies the official receives in (0, t] from all the
messages sent to individual i. Is Ri Poisson? If so, specify its intensity. Is
the sum

∑
i∈I Ri Poisson? If so, specify its intensity.

Suppose individual i receives a message from the official, and is planning
to reply to it. Find the probability that before the reply is sent, another
message from the official will arrive?

36. A satellite circles a body in outer space and records a special feature
of the body (e.g. rocks, water, low elevations) along a path it monitors.
As an idealized model, assume the feature occurs on the polar-angle space
S ≡ ([0, 2π] at angles Θ1 ≤ Θ2 . . . ≤ 2π that form a Poisson process with
intensity µ. We will only consider one orbit of the satellite. Suppose the
satellite is moving at a (deterministic) velocity of γ radians per unit time.
Upon observing an occurrence at Θn the satellite sends a message to a
station that receives it after a time τn. Suppose the transmission times τn

are independent with distribution G and are independent of the positions of
the occurrences. Consider the point process M on S×<2

+, where M((α, β]×
(a, b]× (c, d]) is the number of occurrences in the radian set (α, β] that are
observed in the time set (a, b] and received at the station in the time set
(c, d]. Describe the process M and its intensity measure in terms of the
system data.

Next, let N(t) denote the number of messages received at the station in
(0, t] whose transmission time exceeds a certain limit L, where G(L) < 1.
Describe the process N and specify its intensity measure.

37. Multiclass M/G/∞ System. Consider an M/G/∞ system in which
item arrive at times that form a Poisson process with rate λ. There are m
classes or types of items and pi is the probability that an item is of class
i. The processing time of a class i item has a distribution Gi(·). Assume
the system is empty at time 0. Let Qi(t) denote the quantity of class i
items in the system at time t. Specify its distribution. Determine whether
or not Q1(t), . . . , Qm(t) are independent. Let Di(t) denote the number of
departures of class i items in (0, t]. Describe these processes including their
independence.

38. Limiting Behavior of M/G/∞ System. Consider the M/G/∞ sys-
tem in Example 11.2 with arrival rate λ and service distribution G, which
has a mean α. Show that the limiting distribution of the quantity of items
in the system Q(t) is Poisson with mean λα as t → ∞. Use the fact that
α =

∫∞
0 [1−G(u)]du. Turning to the departures, consider the point process

Dt(A) on <+ that records the numbers of departures in a time set A after
time t. In particular, show that the number of departures Dt(0, b] in the
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interval (t, t + b] has a Poisson distribution with

E[Dt(0, b]] = λ
[ ∫ t+b

t
G(u + b)du−

∫ t+b

t
G(u)du

]
.

Show that the limiting distribution of Dt(0, b] is Poisson with mean λb. More
generally, show that the finite-dimensional distributions of Dt converge to
those of a homogeneous Poisson process D with rate λ. This proves, in light
of Theorem 15.2, that Dt

d→ D.

39. Spatial M/G/∞ System. Consider a system in which items enter a
space S at times T1 ≤ T2 ≤ . . . that form a Poisson process with intensity
measure µ. The nth item that arrives at time Tn enters S at the location
Xn and remains there for a time Vn and then exits the system. Suppose
Ft(·) is the distribution of the location in S of an item arriving at time t,
and G(t,x)(·) is the distribution of an item’s sojourn time at a location x.
More precisely, assume (Xn, Vn) are location-dependent marks of Tn with
distribution

p(t, A× (0, v]) =
∫

A
G(t,x)(v)Ft(dx).

Let Nt(B) denote the number of items in the set B ∈ S at time t. Show
that Nt is a Poisson process on S with

E[Nt(B)] =
∫

(0,t]

∫

B
[1−G(s,x)(t− s)]Fs(dx)µ(ds).

Next, let D((a, b]×B) denote the number of departures from the set B
in the time interval (a, b]. Show that D is a space-time Poisson process on
<+ × S and specify E[D((0, t]×B)].

40. For the network in Example 12.5, justify that the following processes
are Poisson and specify their intensity measures.

D(t) = # of items that depart from the network in (0, t].
D1(t) = # of items that enter node 1 and

depart from the network in (0, t].
D(2,3,5)(t) = # of items that complete the route (2, 3, 5) in (0, t].

Justify that the following random variables, for a fixed t, have a Poisson
distribution and specify their means.

Q(t)= # of items that are in the network at time t.

Q1(t)= # of items that are beyond their first node at time t.

Q3|2(t)= # of items in node 3 at time t that came from node 2.

41. Time Transformations and Cox Processes. Let N1(t) =
∑

n 1(Tn ≤
t) denote a homogeneous Poisson process on <+ with rate λ, and η is a
locally finite measure on <+ with η(<+) = ∞. Consider the process N(t) =
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N1(η(t)), t ≥ 0. Show that N is a transformation of N1 under a map
g : <+ → <+; that is find g such that

N(t) =
∑

n

1(Tn ≤ η(t)) =
∑

n

1(g(Tn) ≤ t).

Use this to show that N is a Poisson process on <+ with intensity η.
Next, suppose that η is a locally-finite random measure. Then N is a

Cox process as in Example 13.1. Show that

E[e−Nf |η] = exp{−
∫

<+

(1− e−f(t))η(dt)}}, f ∈ C+
K(<+).

42. Suppose that N is a Cox process on S directed by a locally-finite
random measure η. Show that E[N(B)] = VarN(B), for B ∈ S.

43. Poisson Process Directed by a Cyclic Renewal Process. The state of
a system is represented by a continuous-time cyclic renewal process X(t) on
states 0, 1, . . . , K− 1 as in Example 1.9. The sojourn times in the states are
independent, and the sojourn time in state i has a continuous distribution
Fi with mean µi. Exercise 48 shows that

lim
t→∞P{X(t) = i} =

µi

µ0 + . . . + µK−1
.

Suppose the system fails occasionally such that, while it is in state i,
failures occur according to a Poisson process with rate λi, independent of
everything else. Let N(t) denote the number of failures in (0, t]. Show that

t−1N(t) →
∑K−1

k=0 λiµi∑K−1
k=0 µi

, a.s. as t →∞.

Assume the system begins in state 0 and let τ denote the first time it returns
to state 0 (the time to complete a cycle). Show that

E[N(τ)] =
K−1∑

k=0

λiµi = VarN(τ).

44. Location-Dependent Compound Poisson Process. Let Z(t) =
∑N(t)

n=0 Yn

be a location-dependent compound Poisson process, where N =
∑

n δTn is a
Poisson process on <+ with intensity measure µ and Yn are p-marks of Tn.
Show that the process Z(t) has independent increments (the increments will
not be stationary in general), and

E[Z(t)] =
∫

(0,t]

∫

<
yp(s, dy)µ(ds).

Suppose the moment generating function φs,t(α) ≡ ∫
< eαyFs,t(dy) exists,

where

Fs,t(y) =
∫

(s,t]
p(u, (0, y])µ(du)/µ(s, t].



130 3. POISSON PROCESSES

Show that, for s < t,

(16.1) E[eα[Z(t)−Z(s)]] = e−µ(s,t][1−φs,t(α)].

(This is the moment generating function of a compound Poisson distribution
with rate µ(s, t] and distribution Fs,t.) Use the fact

E[eα[Z(t)−Z(s)]] = E[e
∫
< yM((s,t]×dy)] = E[e−Mhs,t ],

where hs,t(u, y) = −αy1(u ∈ (s, t]) and M =
∑

n δ(Tn,Yn).

45. Suppose Z1(t), . . . , Zm(t), are independent compound Poisson pro-
cesses with respective rates λ1, . . . , λm, and distributions F1, . . . , Fm. Show
that Z(t) =

∑m
i=1 Zi(t) is a compound Poisson process with rate λ =

∑n
i=1 λi

and distribution F =
∑

i=1
λi
λ Fi.

46. Partition of a Compound Poisson Process. Suppose Z(t) =
∑N(t)

n=0 Yn,
for t ≥ 0, is a location-dependent compound Poisson process with intensity
measure µ and distribution p(t, ·). Suppose the quantity Yn at time Tn is
partitioned into m pieces Y′

n ≡ (Y ′
n1, . . . , Y

′
nm) so that Yn =

∑m
i=1 Y ′

ni. These
pieces are assigned to m processes defined by Zi(t) ≡

∑N(t)
n=0 Y ′

ni. They form
a partition of Z(t) in that Z(t) =

∑m
i=1 Zi(t). Assume the Y′

n are p′-marks
of (Tn, Yn), where p′((t, y), B1 × · · · ×Bm) is the conditional distribution of
a typical vector Y′

n given (Tn, Yn) = (t, y). Prove that Zi(t) is a compound
Poisson process with intensity µ and distribution p′(t, ·), and specify p′(t, ·).
Use the idea that Y′

n are a second marking of the Poisson process N as
discussed in Example 13.5, resulting in M ′ =

∑
n δ(Tn,Yn,Y′

n).

47. Origin-Dependent Cluster Processes. The cluster process in Exam-
ple 13.9 has the form

M(A×B) =
∑

n

N ′
n(B)δXn(A),

where N ′
n are point processes on a space S′ generated by the points Xn in S.

Instead of assuming the N ′
n are independent of N , consider the more general

setting in which the N ′
n are p-marks of Xn. Let N ′

x be a point process on
S′ such that p(x,C) = P{N ′

x ∈ C}. Show (by conditioning on N) that the
Laplace functional of M is

E[e−Mf ] = exp[−
∫

S
(1− g(x))µ(dx)],

where g(x) ≡ E[e−
∫

S′ f(x,x′)N ′
x(dx′)].

48. The moments of a point process N on S are given by

E[N(A1)n1 · · ·N(Ak)nk ]

= (−1)n1+···+nk
∂n1+···+nk

∂tn1
1 · · · ∂tnk

k

E[e−Nf ]|t1=...=tk=0,
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where f(x) =
∑k

i=1 ti1(x ∈ Ai). Prove this for k = 1 and k = 2. Use
this fact to find expressions for the first two moments of the cluster process
quantity M(A×B) in Exercise 47.

49. Markov/Poisson Particle System. Consider a particle system in a
countable space S similar to the one in Example 9.8 with the following
modifications. Each particle moves independently in continuous time ac-
cording to a Markov jump process with stationary distribution pi, i ∈ S.
Let P t(i, j) denote the probability that a particle starting in state i is in
state j at time t. Assume the system is empty at time 0 and that particles
enter the system according to a space-time Poisson process M on <+ × S,
where M((0, t]×B) is the number of arrivals in (0, t] that enter B ⊂ S, and
E[M((0, t]×{i})] = λtpi. Let Qi(t) denote the quantity of particles in state
i at time t. Show that

(Qi(t) : i ∈ S) d→ (Qi : i ∈ S), as t →∞,

where Qi are independent Poisson random variables with E[Qi] = λpi.

50. Continuation. In the setting of the preceding exercise, suppose at
time 0 the number of particles in the system is a point process with intensity
µ that is independent of the space-time arrival process M of other particles
and all the particles move independently as above. The quantity of particles
in state i at time t is Xi(t) ≡ Q0

i (t)+Qi(t), where Q0
i (t) denotes the quantity

of particles in i at time t that were in the system at time 0. Show that
E[Q0

i (t)] =
∑

j∈S P t(j, i)µ(i), and find αi ≡ limt→∞E[Xi(t)]. Prove

Q0
i (t)

d→ Q0
i , as t →∞, for i ∈ S

where Q0
i are independent Poisson random variables with E[Qi] = pi. Show

that limt→∞ P{Xi(t) = n} = e−αi(αi)n/n!.

51. Sums of Identically Distributed Renewal Processes. Let Ñ1, Ñ2 . . .
denote independent renewal processes with inter-renewal distribution F . By
the strong law of large numbers, we know that the sum

∑n
i=1 Ñi(t) converges

to∞ a.s. as n →∞. (The discussion prior to Example 15.5 addressed the op-
posite case where the sum tends to 0.) To normalize this sum (as in a central
limit theorem) so that it converges to a non-degenerate limit, it is natural
to rescale the time axis and consider the process Nn(t) =

∑n
i=1 Ñi(t/n).

This is the sum with 1/n as the new unit of time. Assume the derivative
λ ≡ F ′(0) exists and is positive. Show that Nn

d→ N , where N is a Poisson
process with rate λ.

52. Poisson Limit of Thinned Processes. Let Nn be a sequence of point
processes on S. Suppose Nn is subject to a pn(x) thinning: A point of Nn at
x is retained with probability pn(x) and is deleted with probability 1−pn(x).
Let N ′

n denote the resulting thinned process on S. Assume the thinning is
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uniformly null in that

lim
n→∞ sup

x
pn(x) = 0, B ∈ Ŝ.

Show that N ′
n

d→ N ′, a Poisson process on S with intensity measure µ, if∫

B
pn(x)Nn(dx) d→ µ(B), B ∈ Ŝµ, as n →∞.



CHAPTER 7

Appendix

This appendix covers background material from probability theory and
real analysis. Included are a review of elementary notation and concepts or
probability as well as theorems from measure theory, which are major tools
of applied probability. More details can be found in the following textbooks:
Probability Theory — Billingsley 1968, Breiman 1992, Chung 1974, Durrett
2005, Feller 1972, Grimmett and Stirzaker 2001, Kallenberg 2004, Shiryaev
1995.
Real Analysis — Ash and Doléans-Dade 2000, Bauer 1972, Hewitt and
Stromberg 1965.

1. Probability Spaces and Random Variables

The underlying frame of reference for random variables or a stochastic
process is a probability space. A probability space is a triple (Ω,F , P ), where
Ω is a set of outcomes, F is a family of subsets of Ω called events, and P is
a probability measure defined on these events. The family F is a σ-field (or
σ-algebra): If A ∈ F , then so is its complement Ac, and if a sequence An

is in F , then so is its union ∪nAn. The probability measure P satisfies the
properties of being a measure: It is a non-negative function on F such that,
for any finite or countably infinite collection of disjoint sets An in F ,

P (∪nAn) =
∑

n

P (An).

Furthermore, P satisfies P (Ω) = 1.
Under this definition, P (A) ≤ 1, P (Ac) = 1 − P (A), where Ac = Ω\A

(the complement of A), and

P (A) ≤ P (B), A ⊂ B,

P (An) → P (A), if An ↑ A or An ↓ A.

The definition of a random variable involves the notion of a measur-
able function. Suppose (S,S) and (S′,S ′) are measurable spaces (sets with
associated σ-fields). A function f : S → S′ is measurable if

f−1(A) ≡ {x ∈ S : f(x) ∈ A} ∈ E , A ∈ E ′.
That is, the set of all x’s that f maps into A is in E . Typically, S will be
the outcome space Ω, the real line <, the d-dimensional Euclidean space <d,
or a metric space. We adopt the standard convention that the σ-field S for

133
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S is its Borel σ-field — the smallest σ-field containing all open sets in S (or
the σ-field consisting of countable unions of open sets and all complements
of these). We sometimes write B and B+ for the Borel σ-fields of < and <+.
A useful property is that if f : S → S′ and g : S′ → S′′ are measurable, then
the composition function g ◦ f(x) ≡ g(f(x)) is measurable.

A random variable X on a probability space (Ω,F , P ) is a measurable
mapping from Ω to <. The measurability of X ensures that F contains all
sets of the form

(1.1) {X ∈ B} ≡ {ω ∈ Ω : X(ω) ∈ B}, B a Borel set in <.

These are the types of events for which P is defined. One usually constructs
(or assumes) the σ-field F is large enough such that the random variables
of interest are measurable. For instance, if X, Y and Z are of interest,
one can let F = σ(X,Y, Z), the “smallest σ-field” containing all sets of
the form (1.1) for X, Y and Z, so that they are measurable. A statement
about events or random variables is said to hold almost surely (a.s.) if the
statement holds with probability one (some say the statement is true almost
everywhere (a.e.) on Ω with respect to P ). For instance X + Y ≤ Z a.s.
Also, we sometimes omit a.s. from elementary statements like X = Y and
X ≤ Y that hold a.s.

All of the probability information of X in “isolation” (not associated
with other random quantities on the probability space) is contained in its
distribution function

F (x) = P{X ≤ x}, x ∈ <.

Here P{X ≤ x} = P ({ω : X(ω) ≤ x}). A distribution function has at
most a finite or countable number of discontinuities (which may be a dense
set); this is a well-known property of any increasing function. We sometimes
write the distribution as FX(x).

The random variable X is discrete if the range of X is a countable set
S in <. In this case, the probability function of X is P{X = x}, x ∈ S; and

P{X ∈ A} =
∑

x∈A

P{X = x}, A ⊂ S.

The random variable X is continuous if there is a (measurable) density func-
tion f : < → <+ such that

∫∞
−∞ f(x) dx = 1 and P{X ∈ A} =

∫
A f(x) dx,

A ⊂ <. Then the distribution of X is F (x) =
∫ x
−∞ f(y) dy, and so f(x) =

F ′(x), the derivative of F . Standard distribution functions are in the next
section.
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2. Table of Distributions

The following are tables of some standard distributions and their means,
variances, and moment generating functions.

Discrete Random Variables
Random Variable P{X = x} EX VarX E[esX ]

Binomial
(
n
x

)
px(1− p)n−x np np(1− p) (pes + (1− p))n

n ≥ 1, p ∈ (0, 1) x = 0, 1, . . . , n

Poisson e−λλx/n! λ λ e−λ(es−1)

λ > 0 x = 0, 1, . . .

Geometric p(1− p)x−1 1
p

1−p
p2

pes

1−(1−p)es

p ∈ (0, 1) x = 1, 2, . . . ,

Negative Binomial
(
x−1
r−1

)
pr(1− p)x−r r

p
r(1−p)

p2 ( pes

1−(1−p)es )r

r ≥ 1, p ∈ (0, 1) x = r, r + 1, . . .

Continuous Random Variables
Random Variable Density f(x) EX VarX E[esX ]

Uniform 1
b−a , x ∈ [a, b] a+b

2
(b−a)2

12
ebs−eas

s(b−a)

on [a, b]

Exponential λe−λx, x ≥ 0 1
λ

1
λ2

λ
λ−s

λ > 0

Gamma λnxn−1e−λx

(n−1)! , x ≥ 0 n
λ

n
λ2 ( λ

λ−s)
n

n ≥ 1, λ > 0

Normal e−(x−µ)2/2σ2

σ
√

2π
, x ∈ < µ σ2 eµs+σ2s2/2

µ ∈ <, σ > 0

3. Random Elements and Stochastic Processes

A unified way of discussing random vectors, stochastic processes and
other random quantities is in terms of random elements. Suppose one is
interested in a random element that takes values in a space S with a σ-field
S. A random element in S, defined on a probability space (Ω,F , P ), is a
measurable mapping X from Ω to S.
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For our purposes, the space S will be a countable set, a Euclidean space
<d, or a function space with a distance metric (for representing a stochastic
process). To accommodate these and other spaces as well, we adopt the
standard convention that (S,S) is a Polish space. That is, S is a metric
space that is complete (each Cauchy sequence is convergent) and separable
(there is a countable dense set in S); and E is the Borel σ-field generated by
the open sets. A metric on S is a map d : S × S → <+ such that

d(x, y) = d(y, x), d(x, y) = 0 if and only if x = y,

d(x, z) ≤ d(x, y) + d(y, z), x, y, z ∈ S.

Our discussion of functions, integrals, convergence, etc. on S does not require
a familiarity of Polish spaces, since these concepts are understandable by
interpreting them as being on <d. We use terminology involving Polish
spaces and random elements in this appendix because it allows for a rigorous
and unified presentation of background material, but this terminology is not
used throughout the book.

The probability distribution of a random element X in S is the probability
measure

FX(B) ≡ P{X ∈ B} = P ◦X−1(B), B ∈ E .

If X and Y are random elements whose distributions are equal, we say that
X is equal in distribution to Y and denote this by X

d= Y . The underlying
probability spaces for X and Y need not be the same.

Loosely speaking, a stochastic process is a collection of random vari-
ables (or random elements) defined on a single probability space. Hereafter,
we will simply use the term “random elements” (which includes random
variables), and let (S,S) denote the Polish space where they reside.

A discrete-time stochastic process (or random sequence) is a collection
of random elements X ≡ {Xn : n ≥ 0} in S defined on a probability space
(Ω,F , P ). The nonnegative integer n is a time parameter and S is the state
space of the process. The value Xn(ω) ∈ S is the state of the process at time
n associated with the outcome ω.

Note that X is also a random element in the infinite product space
S∞ with the product σ-field S∞: the smallest σ-field generated by sets
B1 × · · · × Bn, Bj ’s ∈ S. Its distribution P{X ∈ B}, for B ∈ S∞, is
uniquely defined in terms of its finite-dimensional distributions

P{X1 ∈ B1, . . . , Xn ∈ Bn}, Bj ’s ∈ S, n ≥ 1.

One consequence is that if Y is another random element in S∞ whose finite-
dimensional distributions are equal to those of X then X

d= Y . We some-
times refer to the process {Xn : n ≥ 0} simply by Xn.

Stochastic processes in continuous time are defined similarly to those in
discrete time, but their evolutions over time are more subtle. A continuous-
time stochastic process is a collection of random elements {X(t) : t ≥ 0}
in S defined on a probability space, where X(t, ω) is the state at time t
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associated with the outcome ω. The function t → X(t, ω) from <+ to S,
for a fixed ω, is the sample path or trajectory associated with the outcome
ω. Accordingly, X(t) is a random function from <+ to S. More precisely,
the entire process X ≡ {X(t) : t ≥ 0} is a random element in a space of
functions from <+ to S. We sometimes refer to the process {X(t) : t ≥ 0}
simply by X(t).

A standard example is when the sample paths of X are in the set
D(<+, S) of functions from <+ to S that are right-continuous with left
hand limits — often called cadlag functions (from the French continu à
droite, limites à gauche). Then X is a random element in D(<+, S), with
an appropriate metric depending on one’s application (commonly a met-
ric for the Skorohod topology [5, 20]), and P{X ∈ B} is for a Borel set
B ⊂ D(<+, S) of sample paths. The distribution of X is uniquely deter-
mined by its finite-dimensional distributions

P{X(t1) ∈ B1, . . . , X(tn) ∈ Bn}, t1 < · · · < tn, Bj ∈ S, n ≥ 1.

In summary, a stochastic process is a family of random variables or ran-
dom elements defined on a probability space that contains all the probability
information about the process. We will use the standard convention of sup-
pressing the ω in random elements such as Xn or X(t), and not displaying
the underlying probability space (Ω,F , P ), unless it is essential for the ex-
position. Also, all the functions appearing in this book are measurable, and
we will mention this property only when it is needed.

4. Expectation

The expectation (or expected value or mean) of a random variable is
defined as follows. Recall the notation above for discrete and continuous
random variables. We also say that an integral

∫∞
−∞ g(x) dx exists if it is

absolutely convergent:
∫∞
−∞ |g(x)| dx < ∞. Existence of an infinite sum is

defined similarly.

Definition 15. Let X be a random variable, and denote its distribution
function by F (x) = P{X ≤ x}. The expectation of X is defined by

(4.1) EX ≡
∫

<
xdF (x),

(a Riemann-Stieltjes integral defined below) provided the integral exists. In
particular,

EX ≡
∑

x∈S

xP{X = x}, if X is discrete,

EX ≡
∫

<
xf(x) dx, if X is continuous,

provided the sum and integral exist.
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The general formula (4.1) is needed for random variables that are not
discrete or continuous. For instance if X has positive probabilities at points
in a countable set S, and also has a density f(x) elsewhere on <, then

EX =
∑

x∈S

xP{X = x}+
∫

<
xf(x) dx.

Riemann-Stieltjes integrals are similar to Riemann integrals in calculus.
A Riemann-Stieltjes integral of a function g : [a, b] → < with respect to F
is constructed by limits of the upper and lower Darboux sums Dχ and Dχ

defined on the set of points χ = {a = x0 < x1 < . . . < xn = b} by

Dχ ≡
n∑

j=1

sup{g(x) : xj−1 ≤ x ≤ xj}[F (xj)− F (xj−1)],

and Dχ is defined similarly with sup replaced by inf. Specifically, the
Riemann-Stieltjes integral of g exists if, for any ε > 0, there is a set χ
depending on g and ε such that Dχ − Dχ < ε. When it exists, the integral
has the form (e.g., see [18])∫

[a,b]
g(x)dF (x) = inf

χ
Dχ = sup

χ
Dχ.

This integral is a Riemann integral
∫
[a,b] g(x)f(x)dx when dF (x) = f(x)dx

and dx is the Lebesgue measure on <.
Riemann-Stieltjes integrals on infinite intervals are defined similar to

Riemann integrals. For instance, for g : < → <,∫

<
g(x)dF (x) = lim

a,b→∞

∫

[−a,b]
g(x)dF (x),

provided the limit exists and is finite.
These Riemann-Stieltjes integrals on intervals in < are equivalent to

Lebesgue integrals [18], where F is a measure defined by F ((a, b]) = F (b)−
F (a), a < b. For instance,∫

<
g(x)dF (x) =

∫

<
g(x)F (dx),

where the latter is a Lebesgue integral and F (dx) denotes that F is to be
interpreted as a measure. Riemann-Stieltjes integrals are defined only for
measures on <, while Lebesgue integrals are defined for measures on general
spaces. Another equivalent expression for the expectation of X in terms of
the probability P is the Lebesgue integral

EX ≡
∫

Ω
X(ω)P (dω).

This form is not used in the text.
A few properties of the expectation operator are Ea = a, for a ∈ <,

E[X + Y ] = EX + EY, EX ≤ EY if X ≤ Y ,
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E[
n∑

j=1

ajXj ] =
n∑

j=1

ajEXj .

In addition to the mean EX, other summary measures of a random
variable X are as follows. The nth moment of X is E[Xn], and the nth
moment about its mean µ = EX is E[(X − µ)n]. The variance of X is

VarX ≡ E[(X − µ))2] = E[X2]− µ2.

Whenever we refer to these moments, we assume they are finite.

5. Functions of Stochastic Processes

Many features of a stochastic process, or related quantities of interest,
are expressed as functions of the process. This section contains several
examples and a formula for evaluating expectations of real-valued functions
of random elements and processes.

Suppose X is a random element in a Polish space S, such as a discrete-
or continuous-time process X ≡ {Xn : n ≥ 0} or X ≡ {X(t) : t ≥ 0},
and denote its distribution by FX(B) = P{X ∈ B}, B ∈ S. Consider a
measurable function g : S → S′ and define Y = g(X). This Y is a random
element in S′ since it is a composition of X and g, which are measurable.
When X is a continuous-time process, g(x) is a function on the space of
sample paths x = {x(t) : t ≥ 0}. The distribution of Y is

P{Y ∈ B} = P{g(X) ∈ B} = P{X ∈ g−1(B)},
where g−1(B) = {x ∈ S : g(x) ∈ B}. Then the distribution of Y as a
function of FX is the probability measure

FY (B) = FX ◦ g−1(B) ≡ FX(g−1(B)), B ∈ S ′.
In some cases, the function g is a standard measurable operation on

real numbers such as addition, subtraction, maximum, etc. For instance, if
X ≡ {Xn : n ≥ 0} is a family of random variables, then Y = X1 + · · ·+ Xn

is a random variable for fixed n < ∞, since the addition function g(x) ≡
x1 + · · · + xn from <∞ to < is measurable. Other standard examples of
random variables that are measurable functions of X include

n∏

j=1

Xj , max
1≤j≤n

Xj ,
n∑

j=1

an(Xn −Xj).

Examples based on multiple compositions of functions are

sup
n≥0

Xn − inf
n≥0

Xn, sup
n≥0

[
e−aXn

n∑

j=1

(Yj − Yj−1)
]
,

provided they exist.
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Examples of g(X) for a continuous-time process X include analogues of
those above as well as

∫ t

0
X(t− s) ds,

∫

<+

e−a(t) inf
s≤t

X(s) dt.

In modelling a stochastic system, the state of the system, or a performance
measure for it, are often of the form Y (t) = g(t, X), where the process X
represents the time-dependent system data, and the function g(t, x) repre-
sents the dynamics of the system.

We will now describe a useful formula for the mean of a real-valued
function Y = g(X) of the random element X. The mean of the random
variable Y in terms of the distribution FX of X is

(5.1) E[g(X)] =
∫

S
g(x)FX(dx),

provided the (Lebesgue) integral exists. This follows since FY = FX ◦ g−1

and, by the change-of-variable formula below, we have

EY =
∫

<
yFX ◦ g−1(dy) =

∫

S
g(x)FX(dx).

Change-of-variable Formula for Lebesgue integrals. Suppose F is a measure
on S, and g : S → S′ and h : S′ → < are measurable. Then

(5.2)
∫

S
h(g(x))F (dx) =

∫

S′
h(y)F ◦ g−1(dy),

provided both integrals exist (one exists if and only if the other one does).
Important functions of random variables are generating functions and

transforms. They are tools for characterizing distributions and evaluating
their moments. The moment-generating function of a random variable X is

mX(s) ≡ E[esX ] =
∫

<
esxdFX(x),

provided the integral exists for s in some interval [0, a], where a > 0. A
major property is that a moment-generating function uniquely determines
a distribution and vice versa (mX = mY if and only if FX = FY ). Also, the
nth moment of X, when it exists, has the representation

E[Xn] = m
(n)
X (0),

which is the nth derivative of mX at 0. Moment generating functions of
some standard distributions are given in Section 2 below.

Two variations of moment generating functions for special types of ran-
dom variables are as follows. For a nonnegative random variable X, its
Laplace transform (or the Laplace-Stieltjes transform of FX) is

E[e−sX ] =
∫

<+

e−sxdFX(x), s ≥ 0.
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For a discrete random variable X whose range is contained in the nonnega-
tive integers, its generating function is

E[sX ] =
∞∑

n=0

snP{X = n}, −1 ≤ s ≤ 1.

Laplace transforms and generating functions play the same role as moment
generating functions in that they uniquely determine distribution functions
and yield moments of random variables. Laplace transforms are also de-
fined for increasing functions F that need not be bounded, such as renewal
functions, and they can also be extended to the complex plane. A similar
statement applies to generating functions.

A generalization of a moment generating function is a characteristic func-
tion. The characteristic function of a random variable X (or the Fourier-
Stieltjes transform of FX) is defined by

E[eisX ] =
∫

<
eisxdFX(x) s ∈ <,

where i =
√−1 and eisx = cos sx + i sin sx. A characteristic function,

which is complex-valued, exists for “any” random variable (or distribution
function). In contrast, a moment generating function is real-valued, but it
only exists for a random variable whose moments exist. There is a one-to-one
correspondence between distribution functions and characteristic functions,
and moments are expressible by derivatives of characteristic functions at
0. A characteristic function is typically used when the more elementary
moment generating function, Laplace transform, or generating function are
not applicable.

The following are useful inequalities involving expectations of functions
of random variables. For a random variable X and increasing g : < → <+,

P{X ≥ x} ≤ E[g(X)]/g(x), Markov’s Inequality.

An example is

P{|X −EX| ≥ x} ≤ VarX/x2, Chebyshev’s Inequality.

For random variables X, Y with finite second moments,

E|XY | ≤
√

E[X2]E[Y 2], Cauchy-Buniakovsky-Schwarz.

For random variables X1, . . . , Xn and convex g : <n → <,

E[g(X1, . . . , Xn)] ≥ g(EX1, . . . , EXn), Jensen’s Inequality.

6. Independence

In this section, we define independent random variables and random
elements, and describe several functions of them including summations.
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Random variables X1, . . . , Xn are independent if, for any Borel sets
B1, . . . , Bn,

P{X1 ∈ B1, . . . , Xn ∈ Bn} =
n∏

k=1

P{Xk ∈ Bk} =
n∏

k=1

FXk
(Bk).

An infinite family of random variables are independent if any finite collection
of the random variables are independent. The same definitions apply to
independence of random elements such as stochastic processes.

There is the subtle issue of the existence of independent random ele-
ments. That is, given a sequence of distributions, does there exist a prob-
ability space and random elements on the space that are independent and
have these distributions? The existence is justified by the following result.

Theorem 6.1. (Existence of Independent Random Elements) If P1, P2, . . .
are probability measures on the respective Polish spaces S1, S2, . . ., then
there exist a probability space (Ω,F , P ) and independent random elements
X1, X2, . . . defined on it such that P{Xn ∈ ·} = Pn(·) for each n ≥ 1.

Many properties of functions of random elements can be analyzed in
terms of the separate distributions. Here is an important formula for expec-
tations. Suppose X and Y are independent random elements in S and S′,
respectively, and g : S × S′ → < is measurable. Then by (5.1) and Fubini’s
theorem stated below, we have

E[g(X,Y )] =
∫

S×S′
g(x, y)FX(dx)FY (dy)

=
∫

S′

[ ∫

S
g(x, y)FX(dx)

]
FY (dy),(6.2)

provided the integral exists.
For the next result, we use the notion that a measure space (S,S, µ) is

σ-finite if there is a partition B1, B2, . . . of S such that µ(Bn) < ∞, for each
n. A Polish space has this property.

Theorem 6.3. (Fubini) Suppose µ and η are measures on the respective
σ-finite spaces (S,S) and (S′,S ′), and g : S × S′ → < is measurable. If g is
nonnegative or

∫
S×S′ |g(x, y)|µ(dx)η(dy) is finite, then

∫

S×S′
g(x, y)µ(dx)η(dy) =

∫

S′

[ ∫

S
g(x, y)µ(dx)

]
η(dy)

=
∫

S

[ ∫

S′
g(x, y)η(dy)

]
µ(dx).

This says that if the integral exists on the product space, then it equals
the single-space integrals done separately (in either order).

A special case of (6.2) is

E[g(X)h(Y )] = [
∫

S
g(x)FX(dx)][

∫

S′
h(y)FY (dy)] = E[g(X)]E[h(Y )].
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This generalizes, for independent X1, . . . , Xn in S and gj : S → <, to

E[
n∏

j=1

gj(Xj)] =
n∏

j=1

E[gj(Xj)].

provided the expectations exist.

Example 6.4. Suppose X1, . . . , Xn are nonnegative random variables.
Then the moment generating function of Y =

∑n
j=1 Xj is

E[esY ] =
n∏

j=1

E[esXj ].

Now, assume each Xj has an exponential distribution with rate λ, and so
E[esXj ] = λ/(λ− s), 0 ≤ s < λ. Consequently, E[esY ] = [λ/(λ− s)]n, which
is the moment generating function of a gamma (or Erlang) distribution with
parameters λ and n (see Section 2). Hence Y has this gamma distribution.

One can also determine distributions of sums of random variables by
convolutions of their distributions. Specifically, if X and Y are independent
random variables, then

(6.5) P{X + Y ≤ z} =
∫

<
FY (z − x)dFX(x).

That is, FX+Y (z) = FX ?FY (z), where ? is the convolution operator defined
below. To prove (6.5), first note that by (5.1) (even for dependent X and
Y ), we have

P{X + Y ≤ z} = E[1(X + Y ≤ z)] =
∫

x+y≤z
FX,Y (dx× dy).

Then applying FX,Y (dx × dy) = dFX(x)dFY (y) (from the independence)
and Fubini’s theorem to this double integral yields (6.5).

Properties of convolutions are as follows. The convolution of two distri-
butions F and G is defined by

(6.6) F ? G(z) =
∫

<
G(z − x)dF (x).

Note that F ? G = G ? F . Also, if F (0−) = G(0−) = 0, then

F ? G(z) =
∫ z

0
G(z − x)dF (x).

If F and G have respective densities f and g, then the derivative of (6.6)
yields the formula

f ? g(z) =
∫

<
g(z − x)f(x)dx.

These formulas reduce to sums when F and G are discrete distributions.
Convolutions of several distributions are defined in the obvious way, for

instance F ?G?H = F ?(G?H), and if X, Y and Z are independent random
variables, then FX+Y +Z = FX ? FY ? FZ . The nth fold convolutions Fn?(x)
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of a distribution F , for n ≥ 0, are defined recursively by F 0?(x) = 1(x ≥ 0)
and, for n ≥ 1,

Fn?(x) = F (n−1)? ? F (x) = F ? · · · ? F n convolutions.

If Tn = X1 + · · · + Xn where the Xj are independent with distribution F ,
then FTn = Fn?.

The definition (6.6) of a convolution also extends to more general func-
tions µ?h, where µ is a measure on < and h : < → < is such that the integral
exists. For example, renewal theory involves convolutions of the form

U ? h(t) =
∫

[0,t]
h(t− s)dU(s),

where U(t) =
∑∞

n=0 Fn?(t), F (0) = 0 and h(t) is bounded on compact sets
and is 0 for t < 0.

7. Conditional Probabilities and Expectations

We will define conditional probabilities for random elements that apply
to random variables as well. Suppose X and Y , defined on a common
probability space (Ω,F , P ), are random elements in Polish spaces S and S′,
respectively. A probability kernel from S′ to S is a function p : S′×S → [0, 1]
such that p(y, ·) is a probability measure on S for each y ∈ S′, and p(·, B)
is a measurable function for each B ∈ S. There exists a probability kernel
p(y, B) from S′ to S such that

(7.1) P{X ∈ B} =
∫

S′
p(y, B)FY (dy), B ∈ S.

The kernel p is unique in the sense that if p′ is another such kernel, then
p(Y, ·) = p′(Y, ·) a.s. (e.g., see [20]).

Definition 16. Using the preceding notation, the (random) probability
measure

P{X ∈ B|Y } = p(Y,B), B ∈ S
is the conditional probability measure of X given Y . When X is a random
variable with a finite mean, the conditional expectation of X given Y is

(7.2) E[X|Y ] =
∫

S
xp(Y, dx).

Conditional probabilities and expectations — which are random quan-
tities — are sometimes written as non-random quantities

P{X ∈ B|Y = y} = p(y, B), E[X|Y = y] =
∫

S
xp(y, dx) y ∈ S′.

An important property of conditional expectations, which follows from the
definition, is

EX = E[E[X|Y ]] =
∫

S′
E[X|Y = y]FY (dy).
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Similarly, P{X ∈ B} = E[P{X ∈ B|Y }]. These formulas are useful tools
for evaluating the mean or distribution of X in terms of the conditional
means or distributions.

Another important property is that E[X|Y ] is a measurable function
of Y , because E[X|Y ] = h(Y ), where h(y) = E[g(X, y)] =

∫
S xp(y, dx) is

measurable. Since Definition 16 is for random elements, Y may represent
several random elements. For instance E[X|Y, Z] is a measurable function
of Y, Z and

E[X|Z] = E
[
E[X|Y, Z]

∣∣∣Z
]
.

Definition 16 is consistent with the definition used for elementary ran-
dom variables. For instance, in case Y is a discrete random variable, the
probability kernel that satisfies (7.1) is

p(y, B) = P{X ∈ B|Y = y} = P{X ∈ B, Y = y}/P{Y = y}.
Next suppose X and Y are continuous random variables such that

P{X ∈ A, Y ∈ B} =
∫

A×B
f(x, y) dx dy,

where f(x, y) is their joint density. Then the probability kernel satisfying
(7.1) is

p(y, B) =
∫

B
f(x, y)/f(y) dx.

Probability texts usually define conditional probabilities P{X ∈ B|F}
and expectations E[X|F ] for conditioning on a σ-field F instead of a random
element. Definition 16 includes these cases when F = σ(Y ), the smallest
σ-field generated by Y . Since we will only be dealing with conditioning on
random elements and not abstract σ-fields, Definition 16 is adequate for our
purposes.

Here are some more properties of conditional expectations (assuming
they exist) for measurable f : S′ → < and g : S × S′ → <:

E[Xf(Y )|Y ] = f(Y )E[X|Y ],
E[g(X, Y )|Y = y] = E[g(X, y)|Y = y].

Furthermore, if X and Y are independent, then

E[g(X, Y )|Y = y] = E[g(X, y)],

or equivalently E[g(X,Y )|Y ] = E[h(Y )], where h(y) = E[g(X, y)]. Most of
the standard properties of expectations extend to conditional expectations.
For instance, P{X ∈ B|Y } = E[1(X ∈ B)|Y ],

E[X|Y ] ≤ E[Z|Y ] if X ≤ Z,

E[f(X) + g(Z)|Y ] = E[f(X)|Y ] + E[g(Z)|Y ].
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8. Convergence Concepts

Many properties of stochastic processes are expressed in terms of conver-
gence of random variables and elements. There are several types of conver-
gence, but for our purposes we primarily use convergence with probability
one and convergence in distribution, which we now describe.

We begin with a review of convergence of real numbers. A sequence of
real numbers xn converges to some x ∈ <, denoted by limn→∞ xn = x, if,
for any ε > 0, there exists a number N such that

|xn − x| < ε, n ≥ N.

We sometimes refer to this convergence as xn → x.
One often establishes convergence with the quantities

(8.1) lim inf
n→∞ xn ≡ lim

n→∞ inf
k≥n

xk, lim sup
n→∞

xn ≡ lim
n→∞ sup

k≥n
xk.

This limit inferior and limit superior clearly satisfy

−∞ ≤ lim inf
n→∞ xn ≤ lim sup

n→∞
xn ≤ ∞.

If both of these quantities are equal to a finite x, then xn → x.
For insight into this result, let a and b denote the lim inf and lim sup in

(8.1) and assume they are finite. By its definition, a is the lower “cluster
value” of the xn’s in that xn is in the interval [a, a+ ε] infinitely often (i.o.),
for fixed ε > 0. Similarly, xn is in the interval [b − ε, b] i.o. Now xn does
not converge to a limit if a < b (since xn is arbitrarily close to both a and b
i.o.). On the other hand, xn → x if and only if a = b = x.

The preceding properties of real numbers readily extend to random vari-
ables. Suppose X,X1, X2, . . . are random variables on a probability space.
The sequence Xn converges with probability one to X if limn→∞Xn(ω) =
X(ω), for ω ∈ Ω′ ⊂ Ω, where P (Ω′) = 1. We denote this convergence by

Xn → X, a.s. as n →∞.

Now, the quantities

lim inf
n→∞ Xn, lim sup

n→∞
Xn

are random variables, since the functions lim infn→∞ xn and lim supn→∞ xn

are measurable. If there is a random variable X such that

lim inf
n→∞ Xn = lim sup

n→∞
Xn = X a.s.,

then Xn → X, a.s. as n →∞. This follows by the analogous property for a
sequence of real numbers.

Next, we consider the convergence in probability as well as convergence
a.s. of random elements.

Definition 17. Let X,X1, X2, . . . be random elements in a metric space
S, where d(x, y) denotes the metric distance between x and y. The sequence
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Xn converges a.s. to X in S, denoted by Xn → X a.s., if d(Xn, X) → 0 a.s.
The Xn converges in probability to X, denoted by Xn

P→ X, if

lim
n→∞P{d(Xn, X) > ε} = 0, ε > 0.

Many applications involve establishing the convergence of a function
f(Xn), when Xn converges. A useful tool for this is the following.

Proposition 8.2. (Continuous-mapping Property) Suppose X, X1, X2, . . .
are random elements in a metric space S, and f : S → S′ where S′ is a met-
ric space. Assume f is continuous on S, or on a set B such that X ∈ B
a.s. If Xn → X a.s. in S, then f(Xn) → f(X) a.s. The same statement is
true for convergence in probability.

For instance, if (Xn, Yn) → (X, Y ) a.s. in <2 , then

Xn + Yn → X + Y, XnYn → XY a.s. in < .

This follows since the addition and multiplication functions from <2 to <
are continuous. Similarly, Xn/Yn → X/Y if Y 6= 0 a.s. These statements
also hold for convergence in probability.

Another important mode of convergence of random variables and ran-
dom elements is convergence in distribution or weak convergence. A se-
quence of distributions Fn on < converges weakly to a distribution F , de-
noted by Fn

w→ F , if
lim

n→∞Fn(x) = F (x),

for all continuity points x of F . A sequence of random variables Xn converges
in distribution to a random variable X, denoted by Xn

d→ X, if FXn

w→ FX ,
as n →∞. This notion extends to metric spaces as follows.

Definition 18. A sequence of probability measures Pn on a metric space
S converge weakly to a probability measure P , denoted by Pn

w→ P , if∫

S
f(x)Pn(dx) →

∫

S
f(x)P (dx),

for any bounded continuous f : S → <. A sequence of random elements
Xn in S converges in distribution to a random element X in S, denoted by
Xn

d→ X, if FXn

w→ FX , or equivalently,

lim
n→∞E[f(Xn)] = E[f(X)],

for any bounded continuous f : S → <. Although the Xn take values in
the same space S, their underlying probability spaces need not be the same,
since the definition only depends on their distributions.

The preceding modes of convergence for random elements in a metric
space S have the hierarchy

Xn → X a.s. ⇒ Xn
P→ X ⇒ Xn

d→ X.
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Here are some equivalent ways of characterizing convergence in distri-
bution (δB denotes the boundary of B).

Theorem 8.3. (Portmanteau theorem) For random elements X,X1, X2, . . .
in a metric space S, the following statements are equivalent.
(i) Xn

d→ X.
(ii) lim infn→∞ P{Xn ∈ G} ≥ P{X ∈ G}, for any open set G.
(iii) lim supn→∞ P{Xn ∈ F} ≤ P{X ∈ F}, for any closed set F.
(iv) P{Xn ∈ B} → P{X ∈ B}, for any Borel set B with X 6= δB a.s.

The convergence in distribution of random variables is equivalent to the
convergence of their characteristic functions. Specifically, Xn

d→ X in < if
and only if E[eisXn ] → E[eisX ], s ∈ <. Similar statements hold for moment
generating functions, Laplace transforms or generating functions.

The continuous-mapping property in Proposition 8.2 extends to conver-
gence in distribution as follows.

Theorem 8.4. (Continuous Mappings; Mann and Wald, Prohorov, Ru-
bin) Suppose Xn

d→ X in a metric space S, and B ∈ S is such that X ∈ B
a.s. Let f, f1, f2, . . . be measurable functions from S to a metric space S′.
(a) If f is continuous on B, then f(Xn) d→ f(X).
(b) If fn(xn) → f(x), for any xn → x ∈ B, then fn(Xn) d→ f(X).

As an example, suppose (Xn, Yn) d→ (X, Y ) as n →∞. Then

Xn + Yn
d→ X + Y, XnYn

d→ XY.

This follows by the continuous mapping property for vectors since addition
and multiplication are continuous functions from <d to <.

The next results address the following question for random variables Xn.
If Xn → X a.s. (or in probability or distribution), what are the additional
conditions under which EXn → EX or E|Xn −X| → 0?

Theorem 8.5. (Fatou) If Xn are nonnegative random variables (or are
bounded from below), then lim infn→∞EXn ≥ E[lim infn→∞Xn].

Theorem 8.6. (Monotone Convergence) If Xn are nonnegative random
variables (or are bounded from below) and Xn ↑ X a.s., then EXn ↑ EX as
n →∞, where EX = ∞ is possible.

Theorem 8.7. (Dominated Convergence) If Xn are random variables
such that Xn → X a.s., where |Xn| ≤ Y and EY < ∞, then E|X| exists
and EXn → EX as n →∞.

These results describing the convergence of EXn =
∫
Ω Xn(ω)P (dω),

are random-variable versions of basic theorems for Lebesgue integrals (and
for summations as well). We will use the results a few times for real-valued
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functions f, fn on a measurable space (S,S) with a measure µ. For instance,
the monotone convergence says that if 0 ≤ fn ↑ f , then∫

S
fn(x)µ(dx) →

∫

S
f(x)µ(dx).

The next results address the convergence of EXn when Xn converges in
probability.

Theorem 8.8. (Convergence in mean or in L1) Suppose Xn
P→ X in <,

and E|X| and E|Xn| are finite. Then the following statements are equiva-
lent.
(i) E|Xn −X| → 0 (Xn converges to X in L1).
(ii) E|Xn| → E|X|.
(iii) The Xn are uniformly integrable, meaning

sup
n≥0

E[|Xn|1(|Xn| ≥ x)] → 0, as x →∞.

Some convergence theorems such as the dominated convergence theorem
also hold when Xn

d→ X instead of Xn → X a.s. This is due to the following
a.s. representation for convergence in distribution for random elements.

Theorem 8.9. (Coupling; Skorohod, Dudley) Suppose Xn
d→ X in a

Polish space S. Then there exist random elements Yn and Y in S, defined
on a single probability space, such that Yn

d= Xn, Y
d= X, and Yn → Y a.s.

Loosely speaking, coupling is a method for comparing random elements
on different probability spaces, usually to prove convergence theorems or
stochastic ordering properties. For instance, suppose Xn is a random ele-
ment in Sn defined on a probability space (Ωn,Fn, Pn), for n ≥ 0. Random
elements Yn in Sn defined on a single probability space (Ω,F , P ) form a
coupling of Xn if Yn

d= Xn, n ≥ 0.
Theorem 8.9 and the classical dominated convergence yield the following

dominated convergence for convergence in distribution.

Theorem 8.10. Suppose Xn
d→ X in < and there exists a random vari-

able Y with finite mean such that Xn

d≤ Y , meaning

P{|Xn| > x} ≤ P{Y > x}, x ≥ 0.

Then E|X| exists and EXn → EX as n →∞.
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A(t) = t− TN(t) Backward recurrence time
B(t) = TN(t)+1 − t Forward recurrence time
C+

K(S) Set of continuous f : S → <+ with compact support
δx(A) = 1(x ∈ A) Dirac measure with unit mass at 1
DRI Directly Riemann integrable
E Expectation operator
E[X|Y ], E[X|A] Conditional expectations
E[esX ] Moment generating function of X

F̂ (α) =
∫
<+

e−αtdF (t) Laplace transform of F

(S,S) State space and its Borel subsets
ei = (0, . . . , 0, 1, 0 . . . , 0) ith unit vector
f(t), g(t), h(t), H(t) Functions
f(t) = f+(t)− f−(t) f equals its positive part minus its negative part
F (t), G(t) Distribution functions
Fe(x) = 1

µ

∫ x
0 [1− F (s)]ds Equilibrium distribution of F

H(t) = h(t) + F ? H(t) Renewal equation
N(t) Counting process, or renewal process
N(µ, σ2) Normal random variable with mean µ and variance σ2

Random element X in S X is measurable map from a probability space to S

S, S Ŝ Polish space and its Borel sets and bounded Borel sets
Tn Time of nth event occurrence or nth renewal time
U(t) =

∑∞
n=0 Fn?(t) Renewal function

a.s. With probability one
X(t), Y (t), Z(t) Continuous-time stochastic processes
ξn = Tn − Tn−1 nth inter-renewal time, or time between event occurrences

x ∨ y = max{x, y} Maximum of x and y
x ∧ y = min{x, y} Minimum of x and y

X(t) d→ Y X(t) converges in distribution to Y as t →∞
X

d= Y The distributions of X and Y are equal
x+ = max{0, x} Positive part of x
x− = −min{0, x} Negative part of x and x = x+ − x−∑N(t)

n=1 (·) = 0 When N(t) = 0
bxc Largest integer ≤ x, or the integer part of x
dxe Smallest integer ≥ x
f(t) = o(g(t)) as t → t0 limt→t0 f(t)/g(t) = 0
f(t) = 0(g(t)) as t → t0 lim supt→t0 |f(t)|/|g(t)| < ∞
a ⇒ b, a ⇔ a a implies b, and a is equivalent to b


