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Motivation and Problem Statement

• Internet needs a tool to control its performance and resource sharing

• This service is provided at the end-to-end level by Transmission Con-
trol Protocol (TCP)

• TCP performs distributed flow control. It controls performance of
the network to prevents it from congestion collapse.

Key metrics of congestion control performance:

• Average congestion window size

• Variance of of congestion window size
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Motivation and Problem Statement

Application areas:

• Performance Evaluation and Capacity Planning of networking links
and networks

• Throughput evaluation across end-to-end path

• Performance prediction for jitters sensitive applications (variance),
e.g. media streams

• Choose cloud provider for fetching contents

• Support network administration and design

• Provides foundation for further research and development on trans-
port layer protocols.
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Distributed Flow Control

• Sliding window is amount of data which sender is allowed to inject in
the network without acknowledgment

• Flow control means control on sliding window size. TCP uses set of
algorithms to control its window size W

Additive Increase Multiplicative Decrease Algorithm (AIMD)

W
delivery
−−−−−→ W + 1

↓ loss
Wα

α < 1 is rational number α =
n

m
, n < m
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Details on Sliding Window Size

Figure 1: Evolution of TCP congestion window size
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Main Definitions

Let w(t) be cwnd size, tn are AIMD-rounds end-points.
Let τk be equal to the first moment tn, arrived after kth data loss event,
i.e.

τk = tn : w(tn + 0) =

⌊

w(tn)n

m

⌋

, k = 1, 2. . . .

and τk1 < τk2, if k1 < k2.

Discrete distribution {fj}j≥0, i. e. the distribution of the number of
the consequential rounds at the end of which w(t) size increased.

In other words fj is the probability that a sequence of j rounds with-
out losses took place after a segment loss event occurred.
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Ergodic Properties

According to the assumptions and definitions above the sequence
{wk = w(τk + 0)}k>0 is the Markov chain.

Let’s define the expectation determined by fj as R =

∞
∑

j=1

jfj.

Theorem 1 If R is finite then the Markov chain {wk} has steady

state distribution.
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The Expectation Estimate

wk+1 =

⌊

(wk + rk)n

m

⌋

, (1)

where rk is the random variable with the distribution {fj}.

wk+1 =
(wk + rk)n− ik

m
, (2)

where ik is the integer random variable and 0 ≤ ik < m. Difference
equation (2) has a stationary solution

w∗
k =

∞
∑

j=0

( n

m

)j+1
rk−j −

1

m

∞
∑

j=0

( n

m

)j
ik−j. (3)
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The Expectation Estimate

Theorem 2 If the inequality R >
m

n
holds then the stationary ex-

pectation of the congestion window size can be estimated as follows

E[w∗
k] ≥ R

n

m− n
−

m− 1

m− n
. (4)

P R O O F. Processing of the expression (3) yields the following

E[w∗
k] =

∞
∑

j=0

( n

m

)j+1
E[rk−j]−

1

m

∞
∑

j=0

( n

m

)j
E[ik−j]. (5)

By definitions ∀k, j E[rk−j] = R and E[ik−j] ≤ m− 1. Hence

E[w∗
k] ≥ R

∞
∑

j=0

( n

m

)j+1
−

m− 1

m

∞
∑

j=0

( n

m

)j
= R

n

m− n
−

m− 1

m− n
.

The last expression is positive if Rn > m. �
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Second Moment Estimate

E

[

w∗2
k

]

= E











∞
∑

j=0

( n

m

)j+1
rk−j





2





− (W1)

−
2

m
E





∞
∑

j=0

( n

m

)j+1
rk−j

∞
∑

s=0

( n

m

)s
ik−s



+ (W2)

+
1

m2
E











∞
∑

j=0

( n

m

)j
ik−j





2





(W3)
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Second Moment Estimate

Let’s ∀k, j R(2) = E[r2k−j] and ∀k, j 6= s R2 = E
[

rk−jrk−s

]

. Then

W1 = R(2)
∞
∑

j=1

( n

m

)2j
+ 2R2

∞
∑

j=0

∞
∑

s=j+1

( n

m

)j+s+2
=

R(2) n2

m2 − n2
+ 2R2 n3

(m− n)(m2 − n2)
(6)
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Second Moment Estimate

W2 =
2

m

∞
∑

j=0

∞
∑

s=0

( n

m

)j+s+1
E[rk−jik−s] <

2R

∞
∑

j=0

( n

m

)j+1 (

1−
n

m

)−1
=

2Rmn

(m− n)2
= El. (7)

Furthermore ∀k, j E[i2k−j] < m2. Also ∀k, j 6= s E[ik−jik−s] < m2

as well.

W3 <

∞
∑

j=0

( n

m

)2j
+ 2

∞
∑

j=0

∞
∑

s=j+1

( n

m

)j+s
=

m2

m2 − n2
+

2nm2

(m− n)(m2 − n2)
= Eg. (8)
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Second Moment Estimate

Theorem 3 If
n2R

m + n
> m. (9)

then the following interval estimate holds

W1 − El < E
[

w∗
k
2] < W1 + Eg. (10)

Compare with

Altman E., Avrachenkov K., Barakat C. A Stochastic model of TCP/IP
with Stationary Random Losses, Proceedings of ACM SIGCOMM’00.
Stockholm, 2000. pp. 231-242.
The termW1 coincides up to notation and the terms El and Eg appear

due to the discrete nature of the random process considered and due to
the using of the floor operation in the AIMD control.
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Conclusion

• The stepwise model of AIMD New Reno congestion control with
arbitrary decrease coefficient is analyzed.

• The theorem on its ergodic properties is proved.

• The estimate of stationary expectation of congestion window size
is obtained and its applicability terms are derived.

• The interval estimates of stationary congestion window size second
moment is obtained and its applicability terms are derived.

• Further analysis yields bounds of the standard deviation which could
not be obtained through expectation estimates constructed using
Goelder’s inequality.
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