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We study online profit-maximizing auctions for digital goods with adversarial bid selection and uniformly
random arrivals; in this sense, our model lies at the intersection of prior-free mechanism design and sec-
retary problems. Our goal is to design auctions that are constant competitive with F (2). We give a generic
reduction that transforms any offline auction to an online one with only a loss of a factor of 2 in the com-
petitive ratio. We also present some natural auctions, both randomized and deterministic, and study their
competitive ratio. Our analysis reveals some interesting connections of one of these auctions with RSOP.
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1. INTRODUCTION

The design of auctions that maximize the auctioneer’s profit is a well-studied question
in mechanism design. Even though most of the economics literature assumes a
prior on the distribution of bidders’ values and aims at maximizing the expected
profit [Myerson 1981], the question of designing a profitable auction without any prior
assumptions has also received a lot of attention during the past decade [Aggarwal
et al. 2005; Dhangwatnotai et al. 2010; Feige et al. 2005; Goldberg et al. 2002; Hartline
and Roughgarden 2008]. This is called prior-free mechanism design [Goldberg et al.
2002] and it adopts the following worst-case approach: bids are no longer coming from
a distribution, but are rather picked by an adversary, and the goal is to design an
auction that performs favorably compared to some well-behaved benchmark.

Most of the work in prior-free mechanism design assumes that the bids are known in
advance; we consider instead the online setting where bidders arrive one at a time with
a random order. In this setting, the design of a profitable, truthful auction reduces to
making the “right” take-it-or-leave-it offer to every bidder as she arrives at the auction,
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10:2 E. Koutsoupias and G. Pierrakos

using the previous bids as the only information. We call such auctions online sampling
auctions.

This model bears a lot of similarities to the secretary model: the adversary picks the
values of the elements, which are then presented in (uniformly) random order, and we
are called to design an algorithm that maximizes the probability of picking the largest
element. There is an extensive literature about online auctions and generalized sec-
retary problems (for a survey, see Babaioff et al. [2008]). In the generalized secretary
problem, the difficulty for designing an algorithm comes from the restriction to select
among a feasible subset of the input; for example, a subset of at most k elements in the
k-choice secretary problem, or an independent set in the matroid secretary problem. In
contrast, in our work there is no such restriction since all possible subsets are feasible
as we consider digital goods; the difficulty arises for setting the appropriate take-it-
or-leave-it offer. Combining the two models remains an interesting open problem. For
example, the k-choice secretary problem corresponds to online sampling auctions with
limited supply. Another difference between the generalized secretary problems and our
model is on the objective: in the secretary problem the objective is the social welfare
(total value of selected elements), while in our model the objective is the extracted
profit.

1.1. The Model

We study auctions of digital goods where bidders arrive online. Formally, we have n
bidders with valuations v1, . . . , vn (where we assume v1 ≥ . . . ≥ vn) and n identical
items for sale. Bidders arrive in a random order, specified by the function π : [ n] →[ n],
which is a permutation on [ n] = {1, . . . , n}; we assume a uniform distribution over all
different permutations of the n bids and adversarial (worst-case) choice of the values
of the bids.

As each bidder arrives, we make her a take-it-or-leave-it offer for a copy of the item
at some price p. We want to make the offer before the bidder declares her bid (or
equivalently we do not want our offer to depend on her declared bid) so that our auction
is truthful (i.e., it is in the bidder’s best interest to bid her true value vi); hence, from
now on we shall use b1, . . . , bn to refer to both bids and actual values of the players.
Formally, we want to make the j-th bidder bπj an offer pj = p(bπ1 , . . . , bπj−1); the bidder
will accept the offer if bπj ≥ pj and will pay pj.

Our goal is to maximize the expected profit of our auction, defined as
E

[∑n
j=1 pj · I(bπj ≥ pj)

]
, where I(·) is an indicator function. We are going to consider

both deterministic and randomized pricing rules p(bπ1 , . . . , bπj−1); therefore the ex-
pectation is over all possible orderings of the input bids and—in the case of random
pricing—over the randomization in our mechanism.

We are going to use the competitive framework proposed in Goldberg et al. [2002]
and compare the expected profit of our auctions to the profit of the optimal single-price
auction that sells at least two items, namely F (2)(b1, . . . , bn) = maxi≥2 i ·bi. Notice that
although the benchmark F (2) uses a single price, we impose no such restriction on our
auctions. We say that an online auction is ρ-competitive if its expected profit is at least
F (2)/ρ. Our goal is to design constant-competitive auctions (i.e., auctions where ρ is a
constant).

1.2. Related Work

The work closest in spirit to ours is Hajiaghayi et al. [2004]. This article studies
limited-supply online auctions where an auctioneer has k items to sell and bidders ar-
rive and depart dynamically; the analysis assumes worst-case input bids and random
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arrivals and the main result is an online auction that is constant competitive for both
efficiency and revenue. The profit benchmark considered for k > 1 items is essentially
the same as the one here, namely the optimal single-price sale profit that sells at least
two items F (2). The setting considered in that paper is strictly more general than the
one considered here because of the limited supply; moreover that paper also address
the issue of possible arrival times misreports. For that more complicated problem
they give an auction that is 6,338-competitive. Our auctions achieve much better
competitive ratios (below 10), and are arguably simpler to analyze for the particular
problem we are interested in.

One of the simplest offline competitive auctions, and arguably the most stud-
ied [Alaei et al. 2009; Feige et al. 2005; Goldberg et al. 2002], is the Random Sampling
Optimal Price auction (RSOP). In RSOP the bidders are uniformly partitioned into two
parts, and the optimal single price of each part (i.e., arg max i · bi) is offered to the bid-
ders of the other part. RSOP is conjectured to be 4-competitive; to date the best upper
bound is 4.68 [Alaei et al. 2009].

Online auctions for digital goods have also been studied before in Bar-Yossef et al.
[2002], Blum et al. [2004], Blum and Hartline [2005], and Balcan et al. [2008]. Their
model is different from ours in that they do not assume random arrivals. Most of the
algorithms presented in these papers are based on techniques from machine learning
and their performance depends on h, the ratio of the highest to the lowest bid. Our
auctions are arguably more natural and in most cases achieve better competitive ra-
tios; however, in our model, auctions heavily rely on learning the actual values of past
bids and not just whether a bidder accepted or rejected the offer (as opposed to some
of the auctions in Blum and Hartline [2005]).

1.3. Our Results

Our main result in Section 2.1 is a general black-box reduction that transforms any
ρ-competitive offline auction to an online auction while blowing up the competitive
ratio by at most a factor of two. Using the best known offline algorithm, this yields
a competitive ratio of 6.48 for the problem in hand; we also provide a lower bound
of 4 for all randomized online sampling auctions. Next, in Section 2.2, we propose a
natural family of deterministic online auctions, the best-price-so-far auctions, and we
show that one representative of this family achieves a constant-competitive ratio. We
conjecture that its actual competitive ratio is 4, same as the conjectured competitive
ratio of RSOP, and we highlight some connections between the two auctions.

2. ONLINE SAMPLING AUCTIONS

2.1. Randomized Competitive Online Sampling Auctions

We start by noting that it is relatively straightforward to implement an auction that
achieves constant competitive ratio; indeed the following simple application of the
existing literature achieves a competitive ratio equal to twice that of RSOP (i.e., at
most 9.36): We start by noticing that RSOP partitions the bidders in two sets of size
(k, n − k) where k ∼ Binomial(n, 1/2); let this k be the first k bidders that arrive in our
setting, and suppose we offer the optimal price of those k bidders to the remaining n−k
bidders. This of course results in the loss of the profit that RSOP extracts from the first
k bidders when offering them the optimal price of the remaining n−k bidders; however,
because of the random order assumption about the input, it follows that this extracts
at least half of RSOP’s revenue. Since RSOP is at most 4.68-competitive, it follows that
the preceding auction is at most 9.36-competitive. (In fact we can achieve an even bet-
ter competitive ratio of 8 by using RSPE instead of RSOP, a slightly different auction
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that relies on the same random partitioning approach; see Goldberg et al. [2002] for
more details.) The obvious drawback of this approach is that the number of bidders n
must be known in advance; in this section we provide a generic reduction from offline
to online auctions, yielding algorithms that do not assume such prior knowledge
of n, and with a competitive ratio at most twice as large as that of their offline
counterpart.

We first notice that any truthful (offline) auction A for digital goods has the following
format: every bidder i is given a take-it-or-leave-it offer pi which is a function f (b−i)
of the bids of the other players; if the bidder accepts she pays pi, otherwise she pays
nothing (this follows from Myerson’s characterization [Myerson 1981]). Then we notice
that every such truthful offline auction gives rise to the following auction for the on-
line setting, called the online version of auction A: simply set the price offered to the
j-th arriving bidder to be pj = f (bπ1 , . . . , bπj−1), for the same function f . Intuitively this
means that we run the offline auction on the whole set of revealed bids, but actually
charge only the bidder that has just arrived; because we restrict our attention to truth-
ful offline auctions, we know that the price offered to pj will not depend on bj and so we
can offer the j-th bidder a price before she even reveals her bid. Our theorem now says
that the resulting online auction has at most twice the competitive ratio of the offline
auction.

THEOREM 2.1. The online version of an offline auction with competitive ratio ρ has
competitive ratio at most 2ρ. More precisely, if bk is the price of the optimal single-price
auction, then the competitive ratio of the online auction is at most ρ · k/(k − 1).

PROOF. Consider the first t bids of the online auction. The online auction runs the
offline auction on them. The expected profit of the offline auction from this set of t bids
is at least 1

ρ
F (2)(bπ1 , . . . , bπt); by the random-order assumption about the input, the

expected profit from every bid is equal and, in particular, the expected gain from bπt is
at least 1

t
1
ρ
F (2)(bπ1 , . . . , bπt).

Let F (2)(b1, . . . , bn) = kbk; with probability
( t
m

)( n−t
k−m

)
/
(n

k

)
the first t bids have ex-

actly m of the highest k bids which contribute to the optimum. Also, for m ≥ 2,
F (2)(bπ1 , . . . , bπt) ≥ mbk.1 So, it follows that when m ≥ 2, with the previous proba-
bility the expected gain of the online auction from bπt is at least 1

t
1
ρ

mbk.
So, the expected profit of the online auction is at least

n∑
t=2

min{t,k}∑
m=2

( t
m

)( n−t
k−m

)
(n

k

) 1
t

1
ρ

mbk = 1
ρ

bk

(
n
k

)−1 n∑
t=2

k∑
m=2

(
t − 1
m − 1

)(
n − t
k − m

)
.

The rest of the proof is a technical result that simplifies

(
n
k

)−1 n∑
t=2

k∑
m=2

(
t − 1
m − 1

)(
n − t
k − m

)

1Notice that when m = 1, there is no decent lower bound for F (2); this is the reason that the online auction
has larger competitive ratio than the offline auction.
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to k − 1. Indeed we have that
(

n
k

)−1 n∑
t=2

k∑
m=2

(
t − 1
m − 1

)(
n − t
k − m

)
=

(
n
k

)−1 n−1∑
t=1

k−1∑
m=1

(
t
m

)(
n − 1 − t
k − 1 − m

)
,

=
(

n
k

)−1 n−1∑
t=1

((
n − 1
k − 1

)
−

(
n − 1 − t

k − 1

))
,

=
(

n
k

)−1
⎛
⎝(n − 1)

(
n − 1
k − 1

)
−

n−2∑
j=k−1

(
j

k − 1

)⎞
⎠ ,

=
(

n
k

)−1 (
(n − 1)

(
n − 1
k − 1

)
−

(
n − 1

k

))
,

= k − 1,

where in the second equality we used the Chu-Vandermonde identity and in the
second-to-last equality we used the identity

∑n
j=k

( j
k

) = (n+1
k+1

)
. The theorem now fol-

lows, since the expected profit of the online auction is at least

(k − 1)
bk

ρ
= k − 1

k
kbk

ρ
.

The competitiveness of online sampling auctions follows by combining the preceding
theorem with known guarantees for offline digital goods auctions.

COROLLARY 2.2. The competitive ratio of online sampling auctions is between 4
and 6.48.

PROOF. The upper bound is given by the online version of the (offline) auction pre-
sented in Hartline and McGrew [2005] which achieves a competitive ratio of 3.24. The
lower bound follows from the next lemma, which shows that no randomized online
algorithm can have a competitive ratio less than 4.

LEMMA 2.3. In the random-order model, no randomized online algorithm has com-
petitive ratio less than 4 against F (2).

PROOF. We will show the lemma for two bids. This extends directly to many bids,
by padding the 2 bids with other bids of 0 value.

A randomized algorithm for two bids is defined by a cdf P1(x), which is the probabil-
ity to offer price at most x to the first bid, and by a cdf P2(x|y), which is the probability
to offer price at most x to the second bid, given that the history is y (y encapsulates
both the first price and the first bid). It is not clear how to use Yao’s lemma in this
case. However, a simple variant which uses Yao’s lemma for the second bid suffices:
The adversary selects the two bids independently from the equal-revenue distribution
with cdf Fa(x) = 1 − a/x, for some a which depends on P1(x). In other words, the auc-
tion designer selects P1(x), then the adversary selects a that defines a cdf for the two
(independent) bids. In the next paragraph we show that for every P1(x), the adversary
can select an a for which the expected profit from the first bid is very small. In partic-
ular, for every ε > 0 and P1(x), there is a value a such that the expected online gain
from the first bid is at most εa. The expected online gain from the second bid is at
most a; this is the expected gain from the equal revenue distribution Fa(x) and it is

ACM Transactions on Economics and Computation, Vol. 1, No. 2, Article 10, Publication date: May 2013.
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10:6 E. Koutsoupias and G. Pierrakos

independent of the selected strategy of the algorithm. The total online gain from both
bids is at most (1 + ε)a. On the other hand, the expected value of F (2) for the equal-
revenue distribution Fa(x) is well-known to be exactly 4a (see, for example, Goldberg
et al. [2002]). The lower bound is therefore 4/(1 + ε), for every ε > 0, which proves the
lemma.

It remains to show that there is a such that the expected gain from the first bid is at
most εa. Indeed, for given a, the expected gain from the first bid is given by

∫ ∞

a

∫ b

0
xP′

1(x) dxF′
a(b) db =

∫ ∞

a

a
b2

∫ b

0
xP′

1(x) dx db

=
∫ ∞

0

∫ ∞

max(a,x)

a
b2 xP′

1(x) db dx

=
∫ ∞

0
xP′

1(x)
a

max(a, x)
dx

=
∫ a

0
xP′

1(x) dx + a
∫ ∞

a
P′

1(x) dx

= a −
∫ a

0
P1(x) dx.

The limit of the expression (a − ∫ a
0 P1(x) dx)/a as a tends to infinity is the same with

the limit of 1 − P1(a) (l’Hôpital’s rule). Since the last tends to 0, for every ε there is a
sufficiently high a for which the expected online gain from the first bid is at most εa.
The proof of the lemma is complete.

In a first attempt to bridge the gap between the lower and the upper bound we stud-
ied the competitive ratio that can be achieved by the online version of the Sampling
Cost Sharing auction (SCS); this auction partitions bidders uniformly into two parts
and extracts the optimal single-price sale profit of each side from the other (if possible,
otherwise it extracts no profit) [Goldberg et al. 2002]. Given that the competitive ratio

of SCS is no more than ρ(k) =
(

1
2 − ( k−1

�k/2	
)
2−k

)−1
(as proved in Goldberg et al. [2002]),

where k is the number of winners, it is tempting to conclude that the online version
of SCS will have competitive ratio at most k

k−1ρ(k); unfortunately this is not true be-
cause Theorem 2.1 gives guarantees only in terms of ρ = maxk≥2 ρ(k). The proof of the
theorem fails when we replace ρ with ρ(k), because the optimal value of k may not be
the same for all prefixes of the input sequence2.

2.2. A Deterministic Online Sampling Auction: BPSFrrr

The two online auctions considered in the previous section are randomized, like their
offline counterparts. In this section we shift our focus to deterministic online sam-
pling auctions. For the offline setting, we know from Goldberg et al. [2002] that ev-
ery symmetric and deterministic truthful auction has unbounded competitive ratio
against F (2).

There exist asymmetric deterministic auctions with constant competitive ratio,
but most of them are derived by derandomization [Aggarwal et al. 2005]. In the

2An earlier version of this article included the incorrect claim that the competitive ratio of SCS is at most
4, for the special case in which the optimal single-price auction for the whole set of bids sells the item to at
least 5 buyers. We thank Alkmini Sgouritsa for pointing out the error.
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online setting, where order matters, we can hope to design a constant-competitive
and deterministic (truthful) auction that is also natural. To this end we define the
best-price-so-far auction.

Definition 2.4. Let BPSFr be the auction which offers as price the bid among the
highest r of the previous bids, which maximizes the single-price sale profit of past
requests.

We are going to focus our attention on two representatives of this family, BPSF1 and
BPSF∞, henceforth denoted by BPSF. BPSF1 is an interesting auction which offers as
price the maximum revealed bid. BPSF is an auction that offers the j-th bidder the
price pj = p(bπ1 , . . . , bπj−1) = bπi∗ , where i∗ = arg maxi≤j−1 i · bπi .

THEOREM 2.5. The expected profit of BPSF1 is at least
∑n

i=2
1
i bi; in fact, it is exactly

equal to this quantity when all bids are distinct. Furthermore, if bk is the price of the
optimal single-price auction, then the competitive ratio of BPSF1 is k

Hk−1 , where Hk =
1 + 1/2 + · · · + 1/k is the k-th harmonic number, and this is tight.

PROOF. Assume first that the bids are distinct. Notice that bj is going to be offered
as price exactly when bj appears before b1,. . . ,bj−1. Every such bid is accepted if there
is a higher bid after bj appears. Thus bj is going to be accepted at some point when
j ≥ 2; notice that each bid can be accepted as a price at most once. The probability that
bj appears before b1,. . . ,bj−1 is exactly 1/j. It follows that the expected profit of BPSF1

is
∑n

i=2
1
i bi. When the bids are not distinct, BPSF1 can only have higher expected

profit, as bj can be also accepted when it is followed by a bid bl of equal value and
lower-order statistics, that is, when l < j.

For the second fact, let bk be the optimal single price; then the online profit is at least∑k
i=2

1
i bi ≥ ∑k

i=2
1
i bk = (Hk − 1)bk. Since the optimal profit is kbk, the claim follows.

Finally, it is easy to verify that the preceding bound is tight for any set of n bids with
b1 > . . . > bn and bn ≥ b1 − ε, for sufficiently small ε.

Even though BPSF1 is not constant competitive, we note that, when the number of
winners is small (in particular k ≤ 5), its competitive ratio is at most 4, thus matching
our lower bound. This is interesting since having a small number of winners is in
general considered to be the “hard” case for digital goods auction (see Alaei et al. [2009]
for an example).

It seems plausible that the competitive ratio of BPSFr decreases with r and that
BPSF has the best competitive ratio among these algorithms. BPSF is a very natu-
ral online auction and corresponds to the online version of the (offline) Deterministic
Optimal Price (DOP) auction that offers bidder j the optimal single price of the other
bidders. DOP is not competitive [Goldberg et al. 2002], but BPSF on the contrary is con-
stant competitive as our next theorem shows; this is not very surprising because DOP
fails to be competitive because it is both symmetric and deterministic, while BPSF vi-
olates either one or the other property (depending on how one interprets the random
order of the input).

Before stating and proving the theorem about BPSF’s comptetiveness, we would like
to point out the relationship between BPSF and RSOP (defined in Section 1.2): in both
auctions the price offered to a bidder is chosen to be the optimal price for a subset of
other bidders of cardinality k, which are chosen uniformly at random among all other
n − 1 bidders. The difference between BPSF and RSOP is that, in BPSF k is a random
variable chosen uniformly at random from {0, . . . , n − 1}, while in RSOP k is chosen
from the Binomial(n − 1, 1/2) distribution. Specifically, using Profit(S, bi) to denote

ACM Transactions on Economics and Computation, Vol. 1, No. 2, Article 10, Publication date: May 2013.
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10:8 E. Koutsoupias and G. Pierrakos

the profit we get by offering the optimal single price of S to bidder bi, we can compute
the profit of both auctions with∑

bi

∑
S⊆{b1,...,bn}\{bi}

Profit(S, bi)Pr[ S] =
∑

S⊆{b1,...,bn}
Pr[ S]

∑
bi ∈S

Profit(S, bi),

where, as discussed earlier, the probability of S is determined as

Pr[ S] = f (|S|)
(

n − 1
|S|

)−1

,

where f (·) is the density function of the Binomial(n−1, 1/2) distribution for RSOP and
of the Uniform({0, . . . , n − 1}) distribution for BPSF. Therefore

For RSOP: Pr[ S] = 1
2n−1

For BPSF: Pr[ S] = 1
n

(
n − 1
|S|

)−1

.

Keeping this relation between RSOP and BPSF in mind, we can now prove that BPSF
is indeed constant competitive.

THEOREM 2.6. BPSF has constant-competitive ratio.

PROOF. We give a proof that is similar to the proof in Feige et al. [2005] which es-
tablishes that RSOP is 15-competitive. For simplicity, we make no attempt to optimize
the parameters.

We need to set up some notation first. Fix a permutation bπ1 , . . . , bπn of the bids. Let
k∗

t denote the index of the bid that is the best single price for the first t bids, that is, the
optimal single-price value for the first t bids is k∗

t bk∗
t
. Let k∗ be such that F (2) = k∗bk∗ .

Let si,t = |{b1, . . . , bi} ∩ {bπ1 , . . . , bπt}|. Fix two small constants λ and μ and consider the
three events:

R. denotes the event that the maximum bid b1 appears in the second half of the
sequence.
B. denotes the event sk∗,n/4 ≥ λk∗.
E . denotes the event: for every i = 1, . . . , n: si,n/2 ≤ (1 − μ)i.

We want to argue that event E ∩ B occurs with positive constant probability. This
is guaranteed if Pr[ E] + Pr[B] > 1. Unfortunately, this does not hold in general. The
problem is that with probability 1/2 event R does not happen (i.e., the maximum bid
b1 appears in the first half of the sequence) and this immediately forces the probability
of event E below 1/2.

To resolve this, we will assume that event R happens; this assumption will double
the competitive ratio. Under this assumption, the probability of event E |R approaches
1, as μ approaches 0; one can use Chernoff bounds to get an explicit bound3. Also, the
probability of B|R can be easily bounded from below by a constant; again, one can use
Chernoff bounds (or even Markov inequality) to get an explicit bound. Putting the two
together, we get that Pr[ E ∩ B|R] is bounded below by a positive constant.

Suppose then that events B and E happen. Then we can lower bound the expected
gain from bid at position t + 1 when t ∈ {n/4 + 1, . . . , n/2} as follows: the price offered

3A very similar event with 1 − μ = 3/4 was used in the proof of Feige et al. [2005], for which it was shown
that the probability is at least 0.9. Intuitively, the same bound holds for our event E |R, but it does not appear
to exist an obvious way to make a rigorous connection between the two bounds.
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by BPSF to bπt+1 is bk∗
t

and the probability for accepting it is equal to
k∗

t −sk∗
t ,t

n−t bk∗
t
. Event

E guarantees that this can be bounded from below.

k∗
t − sk∗

t ,t

n − t
bk∗

t
≥ k∗

t − sk∗
t ,n/2

n − t
bk∗

t

≥ μ

(n − t)
k∗

t bk∗
t

≥ μ

(1 − μ)(n − t)
sk∗

t ,tbk∗
t

≥ 4μ

3(1 − μ)n
sk∗

t ,tbk∗
t

On the other hand, the optimality of k∗
t and event B guarantee that

sk∗
t ,tbk∗

t
≥ sk∗,tbk∗ ≥ sk∗,n/4bk∗ ≥ λk∗bk∗ = λF (2).

Putting everything together, under the assumption that both events B and E happen,
we get that for t ∈ {n/4 + 1, . . . , n/2}, the expected profit from bπt+1 is at least

4μ

3(1 − μ)n
λF (2).

The expected profit from all t ∈ {n/4+1, . . . , n/2} is at least μλ
3(1−μ)

F (2). This shows that
BPSF has constant-competitive ratio.

The previous theorem shows that the competitive ratio of BPSF is a large constant.
We conjecture that the competitive ratio of BPSF is in fact 4, the same as the conjec-
tured competitive ratio of RSOP.

CONJECTURE 2.7. The competitive ratio of BPSF is 4.
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