
�

�

�

�

�

�

�

�

6

Network Formation in the Presence of Contagious Risk
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There are a number of domains where agents must collectively form a network in the face of the following
trade-off: each agent receives benefits from the direct links it forms to others, but these links expose it to
the risk of being hit by a cascading failure that might spread over multistep paths. Financial contagion,
epidemic disease, the exposure of covert organizations to discovery, and electrical power networks are all
settings in which such issues have been articulated.

Here we formulate the problem in terms of strategic network formation, and provide asymptotically tight
bounds on the welfare of both optimal and stable networks. We find that socially optimal networks are,
in a precise sense, situated just beyond a phase transition in the behavior of the cascading failures, and
that stable graphs lie slightly further beyond this phase transition, at a point where most of the available
welfare has been lost. Our analysis enables us to explore such issues as the trade-offs between clustered and
anonymous market structures, and it exposes a fundamental sense in which very small amounts of “over-
linking” in networks with contagious risk can have strong consequences for the welfare of the participants.
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1. INTRODUCTION

Social networks have particular features that distinguish them from biological and
physical networks as a class, and which are important for the propagation of net-
worked agents’ behaviors. Two kinds of models have been used to shed light on
the structure of social networks. Probabilistic models, such as small-world models
[Kleinberg 2000; Watts and Strogatz 1998] and preferential attachment [Barabási and
Albert 1999], posit a few simple rules describing the probabilistic formation of links.
The application of such models to social phenomena presumes that the networks are
exogenous from the point-of-view of the phenomena being studied. Strategic models,
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6:2 L. Blume et al.

on the other hand, presume that network formation and agents’ behaviors are closely
connected. This article contributes to the study of this second kind of network forma-
tion. Recent surveys of endogenous, or strategic, network formation include the survey
of Tardos and Wexler [2007] and the relevant chapters of the book by Jackson [2008].

A common approach in the strategic network formation literature (e.g., the connec-
tions model [Jackson and Wolinsky 1996]) assumes that links are costly for an agent
to form or maintain, and that benefits come from the indirect access to others that the
network provides, as measured by distances [Corbo and Parkes 2005; Fabrikant et al.
2003; Jackson and Wolinsky 1996], by component sizes [Bala and Goyal 2000], or by
point-to-point connectivity [Anshelevich et al. 2003]. There are many instances, how-
ever, in which this cost-benefit trade-off is inverted. Benefits come from direct links,
while the cost is that of exposure to a failure that propagates through the network. In
financial markets, benefits come from transacting with others, but counterparty risk,
the risk to an agent that its partners cannot complete their side of a transaction, is
increased to the extent that the partners are exposed to the failures of their other
partners. The possibility exists that a single agent’s failure can cause his partners to
fail, and so on, leading to a cascade of financial collapse [Allen and Babus 2008; Allen
and Gale 2000; Caballero and Simsek 2009; Haldane and May 2011]. Even when cas-
cades do not happen, the fear of cascades can lead to market behavior that is costly
for all agents, such as happened with the capital markets shutdown in the financial
crisis of Fall 2008. Epidemiology provides still other examples of this inverted cost-
benefit structure, wherein the pattern of social contacts has significant implications
for the spread of disease. This is demonstrated in a model of HIV transmission in a
structured population [Jacquez et al. 1988], while Epstein et al. [2004] demonstrate
the importance of network structure for the construction of containment strategies
for a smallpox bioterror event; an analogous cost-benefit structure is also present in
needle-sharing practices among intravenous drug users [Barnard 1993]. Additionally,
Gutfraind [2010] observes that clandestine organizations are subject to the risk of be-
ing exposed and compromised, and that this risk may be mitigated or magnified by the
network structure of agent contacts. Asavathiratham et al. [2001] and Asavathiratham
[2000] use a similar model for analyzing cascading failures in power grids.

In our model, individuals first construct a social network. In this network, each node
fails spontaneously with a small probability q. After this initial phase of spontaneous
node failures, each edge transmits the failure with a small probability p. We can think
of the set of edges that transmit failure as a random subgraph of the social network,
and now the nodes which fail are all those in a component of the random subgraph con-
taining a node which has spontaneously failed. Classical results on Bernoulli random
graphs can be viewed as statements about random subgraphs of a complete network,
and one of the technical contributions of this article lies in generalizing this point-of-
view from complete graphs to arbitrary graphs.

We examine networks that are optimal with respect to a Rawlsian social welfare
criterion as well as networks that are stable in a sense different from (but closely re-
lated to) the stability concepts of Gale and Shapley [1962] and Jackson and Wolinsky
[1996]. In addition to the probabilities p and q, we use two other parameters: a and b,
which measure the value of a direct link and the cost of failure. We are interested in
a region of the model’s parameter space where there is a tension between the desire
for more direct links and the fear of failure. We have two kinds of results. Our general
results provide welfare upper bounds for optimal and stable networks, and we see that
for small p and q any stable network has small welfare. Specific results for the case
where p = q describe the structure of optimal and stable networks, and demonstrate
that the upper bounds are approximately achievable by forming cliques of appropriate
size. Consequently, for small p = q, the welfare loss from stable networks is large:
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Network Formation in the Presence of Contagious Risk 6:3

stable networks have significantly smaller welfare than the maximum possible. Fur-
ther results for the p = q case describe the welfare cost to constructing optimal net-
works when agents are anonymous; the social planner can choose the degree of an
individual node but not the agents at the other end of its edges. We also show that the
welfare cost of anonymity is large.

Our formulation of the payoffs is intended to capture the basic trade-off in a simple
way, using very few parameters. Links confer benefits that scale linearly in the de-
gree, and failures spread through direct probabilistic contagion across edges. One can
imagine more complex models for both of these aspects of the payoff, with more com-
plex notions of the way in which a node’s links increase its payoff, and more complex
mechanisms for the spread of failures. For example, Amini et al. [2010] extend the tra-
ditional graph contagion framework to better model financial networks, studying con-
tagion in random networks with inhomogeneous degrees and an arbitrary distribution
of weights on edges. Extending our analysis of strategic network formation to models
with this greater level of complexity is an interesting direction for further analysis.
Here we will see that the present model already exhibits rich behavior, and suggests
avenues for pursuing such generalizations.

2. THE MODEL

In this article, we develop a model to capture the underlying trade-off between the
benefit of link formation and the problem of contagious risk, using simple definitions
for the payoffs arising from these underlying processes. The model is formulated as
follows. To begin with, we have a set V of n agents, and agents can choose to form
bilateral relationships with one another, resulting in an undirected graph G = (V, E).
An agent receives a payoff of a > 0 from each relationship in which it takes part. Once
the network is formed, a random process creates cascading failures as follows. First,
nodes fail independently with probability q, and then failed nodes have a probability
of p of causing their neighbors to fail as well, with the failure potentially continuing to
spread from these newly failed nodes. Following is a more detailed explanation.

— First, each agent randomly experiences a failure, independently with probability
q > 0. We refer to these as the root failures in the graph.

— Next, we declare each edge of G to be active independently with probability p and
blocked with probability 1 − p. We think of the active edges as those that transmit
failure, and the blocked edges as those that do not transmit failure. Any node that
can reach a root failure using a path consisting entirely of active edges is declared
to fail also.

If an agent fails, it loses any benefit from the links it forms, and instead it pays a cost
of b > 0. We assume that there is an upper bound � on the number of links a node
is able to form. Much of the interesting behavior in this model turns out to take place
in graphs where the average degree is close to 1/p. As a result, we want to have �
larger than 1/p, but not so large that any single node can dominate the structure of
the graph. In particular, we assume that � = c∗/p for a constant c∗ > 1.

Letting di denote the degree of node i in G, and φi denote the probability that it
fails (taken over the random choices of root failures and active edges), we can write i’s
expected payoff as

πi = adi(1 − φi) − bφi = adi − (adi + b)φi.

We employ a Rawlsian notion of welfare. In particular, we measure the “quality” of
a graph via its minimum welfare (henceforth abbreviated min-welfare), the minimum
payoff of any node in the graph. A socially optimal graph is one that maximizes this
quantity. This notion of welfare is convenient for our analysis, and well-founded in
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6:4 L. Blume et al.

principles of fairness known as distributive justice [Rawls 1973]. Min-welfare satisfies
criteria of anonymity and the weak Pareto principle.

One could study strategic network formation by defining a noncooperative game
whose outcomes are graphs. However, in such noncooperative models, small details
of the specification of the game will determine the precise structure of equilibrium
networks. To avoid this problem and capture the notion that it takes two nodes to
agree on the formation of a link, but any node can unilaterally withdraw from its
links, network theorists, following Gale and Shapley [1962] and Jackson and Wolinsky
[1996], identified stable networks as a class of networks that we could expect to be
equilibrium outcomes of any interesting network formation game.

We say that a graph is stable if: (i) no node can strictly increase its payoff by deleting
all its incident links (hence removing itself from the network), and (ii) there is no pair
of nodes (i, j) such that (i, j) is not an edge of G, but both i and j would have higher
payoffs, with at least one of them strictly higher, if (i, j) were added to G.

Our definition of stability is similar to the notion of pairwise Nash stability [Jackson
2008], which modifies (i) to allow a node to drop any subset of its incident links. In the
settings that motivate our model, we can view our definition of stability as capturing
strategic settings in which nodes have the ability to withdraw from the system, but
not to selectively break bilateral agreements with certain nodes while keeping others
operational. In the context of the article’s technical content, we can think about the
relation between our notion of stability and the pairwise Nash notion as follows. Any
pairwise Nash stable graph is also stable under our definition, and because of this all
the results in the work carry over to the case of pairwise Nash stability except for the
result of Section 6—proving the existence of a stable network. In particular, the large
gap between the achievable min-welfare in optimal and stable networks continues to
hold as is if we use pairwise Nash stability as our underlying notion. The networks we
construct in Section 6, on the other hand, are only shown stable under our definition,
and it is an open question to show that pairwise Nash stable networks exist.

When we consider the structures of socially optimal and stable graphs, much of the
interesting behavior emerges in a natural range of the parameters a, b, p, and q mo-
tivated by the following considerations. Suppose we have just two nodes i and j, and
suppose that i is deciding whether to link to j. If i forms the link, it receives a benefit
of a but there is a probability of pq that j will fail and that this failure will spread to i.
We want i to be willing to form the link to j under these conditions, and so we assume
a > bqp. Otherwise no links will form. On the other hand, suppose that i knew that j
were going to fail, so that the only thing protecting i from failure is the transmission
probability p. Under these conditions we do not want i to form the link to j, so we
assume a < bp. Otherwise nodes will want to form as many links as possible. Analo-
gously, suppose that i knew that any failure at j would definitely spread to i, so that
the only thing protecting i from failure is the chance 1 − q that j does not fail. Under
these conditions we also do not want i to form the link to j, so we assume a < bq.

In our analysis, we focus on the range of parameters in which these bounds hold
by arbitrarily large constant factors. That is, we consider the case in which p and q
are small, the quantity a exceeds bqp by a large amount, and in turn that min(bp, bq)
exceeds a by a large amount. Our assumption is that for a small constant δ > 0, we
have

δ−1bqp < a < δ min(bp, bq).

For ease of future reference, we call this Assumption P(δ) and refer to δ as the key
separation parameter in our model. Finally, we consider the case in which the num-
ber of nodes n is arbitrarily large compared to these other quantities (and/or their
reciprocals).

ACM Transactions on Economics and Computation, Vol. 1, No. 2, Article 6, Publication date: May 2013.
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Network Formation in the Presence of Contagious Risk 6:5

In what follows, Sections 3 and 5 give general upper bounds on the min-welfare for
optimal and stable graphs respectively. Sections 4 and 6 give constructions of networks
establishing the existence of certain properties: large min-welfare for optimal graphs
in the former section, and the existence of stable graphs in the latter section. For
these constructions in Sections 4 and 6, we employ the additional assumption that
p = q (whereas for Sections 3 and 5 we allow arbitrary p and q). One consequence of
combining the construction in Section 4 with the upper bound in Section 3 is that when
p = q, the ratio between the welfare achievable in optimal and stable graphs diverges
as δ goes to zero.

3. AN UPPER BOUND ON THE OPTIMAL MIN-WELFARE

We begin by establishing an upper bound on the min-welfare of any graph. Min-welfare
is directly related to degree and we will see that critical graphs are those in which the
average degree is close to 1/p, and thus the average direct benefit from links is close

to a/p. Suppose that the min-welfare in a graph G exceeds
(1 + ε)a

p
. Since πi ≤ adi,

this implies that all node degrees must be at least
(1 + ε)

p
. If there is a node that

can reach many others along active-edge paths with reasonable probability, then this
node experiences a large probability of failure, and hence has a sharply reduced payoff,
which will ultimately contradict our assumption that G has large min-welfare.

Now, how do we show that some node has a reasonably high chance of reaching
many others on active-edge paths? There is a connection to the basic random graph
model G(n, p), in which an edge is inserted between each pair among n nodes indepen-
dently with probability p. We can think of G(n, p) equivalently as the model in which
one starts with an n-node clique and declares each edge to be active independently
with probability p, and then considers the active-edge subgraph. The challenge in our
case is that our graphs G are not necessarily cliques, or even close to being cliques,
and relatively little is known about adapting results from G(n, p) to the case of ar-
bitrary underlying base graphs (see Alon et al. [2004]). Fortunately, however, we are
able to prove a result that is strong enough for our purposes, adapting techniques for
analyzing connected components in G(n, p) to the setting of active-edge subgraphs of
arbitrary underlying graphs.

We begin with adapting random graph techniques to apply to a random subgraph of
an arbitrary graph.

THEOREM 3.1. For all ε > 0 there exist constants α, β > 0 such that the following

holds. Let H be a graph in which each node has degree at least r ≥ 1 + ε

p
. Construct a

random subgraph of H by declaring each edge to be “active” with probability p. Then
for every node i ∈ V, the number of nodes reachable from i on active-edge paths is at
least αr with probability at least β.

PROOF. Let i be any node in H. We analyze the process of breadth-first search over
the active edges, based on the analysis of random subgraphs of the bidirected com-
plete graph [Karp 1990] and analysis of infinite branching processes [Alon and Spencer
2000]. We first take all the nodes (if any) that i can reach via active edges and put them
in a queue. We then repeatedly delete a node j from the queue and add to the queue all
the nodes (if any) that j can reach via active edges, other than the ones already “dis-
covered” (added to the queue) in previous iterations. Notice, crucially, that the outcome
of the random active/blocked decision for each edge (j, j′) is only examined once in this
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6:6 L. Blume et al.

process, when one of nodes j or j′ first comes to the front of the queue. Thus, we can
assume that the active/blocked status of (j, j′) is first determined at that moment.

For a small constant α > 0, we say that this process succeeds if at least αr nodes are
added to the queue before the queue ever becomes empty. If the process succeeds with
probability at least β, for a constant β > 0, then our result follows.

Let Qt be the number of nodes in the queue at the end of iteration t, where we define
Q0 = 1 to indicate that i starts in the queue. We have

Qt = Qt−1 − 1 + Xt,

where the “-1” is because we delete a node jt from the queue in iteration t (with j1 = i),
and Xt is a random variable equal to the number of not-yet-discovered nodes that jt
can reach via active edges. (This is where it is useful to assume that the active/blocked
status of edges from jt to not-yet-discovered nodes is only determined when jt reaches
the front of the queue.) Unrolling this recurrence, we have

Qt =
( t∑

u=1

Xu

)
− t.

We are interested in showing that with probability at least β, we have Qt > 0 for
all t from 1 until at least αr. If this is true, the search for nodes using active-edge
paths continues successfully until at least αr nodes have been discovered (added to the
queue), as required.

The expectation of Xt, prior to the point at which at least αr nodes have been discov-
ered, can be determined as follows. The node jt has degree at least r in H, and at most
αr nodes have been discovered by the process thus far, so there are at least (1 − α)r
edges emanating from jt leading to not-yet-discovered nodes. We choose α small enough

that (1 − α)r ≥ 1 + ε/2
p

; since each of these edges is active with probability p, we have

E [Xt] ≥ 1 + ε/2. Thus, until αr nodes have been discovered, we can think of the queue
length as a random walk on the integers with positive drift; as a result, there is a
positive probability that the walk never returns to 0, which is the result we want.

We can briefly verify this in more detail for our particular case as follows. Let St =∑t
u=1 Xu; by the Chernoff bound, we have

Pr
[
St ≤ t

]
< Pr

[
St ≤ (1 − ε/4)E

[
St

]]
< e− 1

2
ε2
16 t.

Now, the sum
∑∞

t=1 e− 1
2

ε2
16 t converges; let us choose t0 large enough that

∞∑
t=t0

e− 1
2

ε2
16 t < 1.

For p sufficiently small, there is a positive probability that X1, the number of nodes
i can reach directly via active edges, is at least t0. It then follows that St > t for all

t < t0. Finally, for all t we have Pr
[
St ≤ t | X1 ≥ t0

] ≤ Pr
[
St ≤ t

]
< e− 1

2
ε2
16 t (as X1 ≥ t0

is negatively correlated with St ≤ t); summing over t we obtain
∞∑

t=0

Pr
[
St ≤ t | X1 ≥ t0

]
< 1.

Next, we simply want to argue that if a node can reach many other nodes via active-
edge paths with reasonably large probability, then it has a large probability of failing

ACM Transactions on Economics and Computation, Vol. 1, No. 2, Article 6, Publication date: May 2013.
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Network Formation in the Presence of Contagious Risk 6:7

and hence a negative payoff. To do this, we first state a simple lemma about the union
of many independent events, and then we use this to draw the resulting conclusion for
a node’s payoff.

LEMMA 3.2. Consider a collection of independent events E1, . . . , En, each of probabil-
ity p > 0. Then the probability of their union is at least min(1

3 , 2
3np).

PROOF. If p ≥ 1
3 then the result follows immediately. If p < 1

3 and np ≤ 2
3 , then we

have

Pr

⎡
⎣ n⋃

j=1

Ej

⎤
⎦ ≥

n∑
j=1

Pr
[
Ej

] −
∑
j,j′

Pr
[
Ej ∩ Ej′

]

= np −
(

n
2

)
p2

≥ np − 1
2

(np)2

= np(1 − 1
2

np)

≥ 2
3

np.

Finally, if p < 1
3 and np ≥ 2

3 , we can choose a subset S of k ≤ n of the events such that
2
3 < kp ≤ 1. We have

Pr

⎡
⎣⋃

j∈S

Ej

⎤
⎦ ≥

∑
j∈S

Pr
[
Ej

] −
∑

j,j′∈S

Pr
[
Ej ∩ Ej′

]

= kp −
(

k
2

)
p2

≥ kp − 1
2

(kp)2

= kp(1 − 1
2

kp)

≥ 2
3

· 1
2

= 1
3

.

Now, for a node i, let the set of nodes it can reach on active-edge paths in G be called
its active component, and let ri(G) be a random variable denoting the size of i’s active
component. We are ready to prove that if a node’s active component ri(G) is large with
sufficiently high probability, then the node must have negative payoff.

LEMMA 3.3. For all γ0, γ1 > 0 there exist α, δ > 0 such that when p, q ≤ α and
Assumption P(δ) holds, we have the following. If G is a graph with a node i for which
ri(G) ≥ γ1

p
with probability at least γ0, then the payoff of node i satisfies πi(G) < −bq.

(We note that the right-hand side is the payoff i would receive if it had no links.)

PROOF. If i can reach at least γ1p−1 nodes on active-edge paths, then by Lemma 3.2,
the probability that it fails is at least min(1

3 , 2
3γ1p−1q). Removing the conditioning on
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6:8 L. Blume et al.

this event, the probability it fails is at least φi ≥ min(1
3γ0, 2

3γ0γ1p−1q). We also have
di ≤ � = c∗p−1.

If φi ≥ 1
3γ0, then

πi ≤ adi − bφi ≤ ac∗p−1 − 1
3

bγ0

≤ δbc∗ − 1
3

bγ0 = b(δc∗ − 1
3

γ0)

where the last line is less than −bq for δ sufficiently small and q < 1
3γ0.

If φi ≥ 2
3γ0γ1p−1q, then defining γ2 = 2

3γ0γ1, we have

πi ≤ adi − bφi

≤ ac∗p−1 − γ2bqp−1

= p−1c∗(a − γ2c∗−1bq).

< p−1c∗(δbq − γ2c∗−1bq)

= p−1c∗(δ − γ2c∗−1
)bq.

Now if δ < 1
2γ2c∗−1, then δ − γ2c∗−1 < −1

2γ2c∗−1, and so we have

πi < p−1c∗(δ − γ2c∗−1
)bq

< p−1c∗(−1
2

γ2c∗−1
)bq

= −1
2

γ2p−1bq.

Finally, if p < 1
2γ2, then we have

πi < −1
2

γ2p−1bq < −bq

as required.

Finally, combining Theorem 3.1 with Lemma 3.3, we get an immediate consequence
for the payoffs when all nodes have large degrees.

COROLLARY 3.4. For all ε > 0, there exist α, δ > 0 such that when p, q ≤ α and

Assumption P(δ) holds, we have the following. If each node has degree at least
(1 + ε)

p
,

then for each node i we have πi < −bq.

PROOF. For each node i ∈ V, Theorem 3.1 implies that we have ri(G) ≥ γ1

p
with

probability at least γ0, It then follows from Lemma 3.3 that πi < −bq.

The upper bound on min-welfare follows directly from the preceding claims.

THEOREM 3.5. For all ε > 0, there exist α, δ > 0 such that when p, q ≤ α and

Assumption P(δ) holds, no graph can have min-welfare greater than
(1 + ε)a

p
.

ACM Transactions on Economics and Computation, Vol. 1, No. 2, Article 6, Publication date: May 2013.
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Network Formation in the Presence of Contagious Risk 6:9

PROOF. Choose δ > 0 as in Corollary 3.4, and suppose by way of contradiction that

there is a graph with min-welfare greater than
(1 + ε)a

p
. It follows that every node i has

degree greater than
1 + ε

p
. But then by Corollary 3.4 we have πi < −bq, contradicting

the assumption that the min-welfare is greater than
(1 + ε)a

p
.

4. SUPER-CRITICAL PAYOFFS AND ANONYMOUS MARKET STRUCTURES

We consider networks formed under two rules: nonanonymous market formation,
wherein individuals are assigned links to particular other individuals, and anonymous
market formation, wherein the market designer chooses the degree of each market par-
ticipant, but the requisite number of links are formed at random. In this section, we
will consider how the optimal networks differ under the two regimes.

We now show that the upper bound in Section 3 can essentially be achieved, in an
asymptotic sense, and also consider some of the structural implications of this fact.

To begin with, it is instructive to think about the analysis in Section 3 in terms of the
random graph G(k, r).1 One of the central facts about G(k, r) is that in a small window
around probability r = 1/k, the expected size of the largest connected component jumps
from a constant value to a constant fraction of k. This is the basic phase transition for
G(k, r), and Theorem 3.1 in Section 3 is a reflection of this phase transition for an
arbitrary underlying graph.

In order for a graph to achieve payoffs of the form
(1 + ε)a

p
for some ε > 0, it must

lie on the side of the phase transition where the active components are likely to be
large, proportional to 1/p. For this to be possible, it must cross the phase transition
by little enough that these large components do not eliminate the payoff of the nodes.

We say that a graph achieves supercritical payoffs if the payoff is at least
(1 + ε)a

p
for

some ε > 0, and construct a family of graphs built from disjoint cliques that achieves
supercritical payoffs.

Some basic facts about G(k, r). We begin by carefully stating some quantitative re-
sults about the phase transition in G(k, r) in a form that will be useful for the analysis.

LEMMA 4.1. Let Ci denote the component containing node i in G(k, r). If we fix some
other node j and look at the event j ∈ Ci, then we have

Pr
[
j ∈ Ci

] = 1
k

· E
[|Ci|

] − 1
k

.

1Since n and p are basic parameters in our model, we adopt the different variable names k and r in dis-
cussing G(k, r). Also, in keeping with standard terminology, we will often refer informally to G(k, r) as “a
random graph,” as though it is a single graph rather than a distribution over graphs.
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6:10 L. Blume et al.

PROOF.

Pr
[
j ∈ Ci

] =
k∑

s=1

Pr
[|Ci| = s

] · Pr
[
j ∈ Ci | |Ci| = s

]

=
k∑

s=1

s − 1
k

Pr
[|Ci| = s

]

= 1
k

k∑
s=1

(s − 1)Pr
[|Ci| = s

]

= 1
k

(

k∑
s=1

sPr
[|Ci| = s

] −
k∑

s=1

Pr
[|Ci| = s

]
)

= 1
k

· E
[|Ci|

] − 1
k

Thus, the probability a node belongs to i’s component is essentially proportional to the
expected size of i’s component.

The following pair of standard results describe the well-known contrasting behavior
of component sizes on opposite sides of r = 1/k (see Chapter 5 of Janson et al. [2000]):
a random graph with expected degree less than 2 consists of many small components,
while above expected degree 2 a large fraction of the nodes all belong to a single giant
component.

THEOREM 4.2 (RESTATED FROM THE LITERATURE). Fix x < 1, and consider the
component of a given node i in G(k, r), where kr = x. Then for k sufficiently large, we
have the following.

(i) The probability that i’s component exceeds size c decreases exponentially in c.
(ii) Consequently, the expected size of i’s component is bounded by a constant c = c(x),

independent of k, and the maximum size of any component in the graph is O(log k)
with high probability.

THEOREM 4.3 (RESTATED FROM THE LITERATURE). There is an increasing func-
tion θ : [ 1, ∞] →[ 0, 1] that is continuously differentiable on (1, ∞) and continuously
differentiable from the right at x = 1, with θ(1) = 0 and θ ′(1) a positive real number,
such that the following holds. Fix x > 1 and ε > 0, and consider G(k, r), where kr = x.
Then for k = k(x, ε) sufficiently large, we have the following.

(i) With probability 1 − exp(−k), there is a component of size between (1 − ε)θ(x)k and
(1 + ε)θ(x)k.

(ii) Conditioned on not belonging to the giant component in (i), the probability that a
node i belongs to a component of size greater than c decreases exponentially in c.

(iii) Consequently, the expected size of i’s component is between (1 − ε)2(θ(x))2k and
(1 + ε)2(θ(x))2k + c for a constant c = c(x).

Point (iii) follows from (i) and (ii) by considering that with probability (1 ± ε)θ(x), node
i belongs to a component of size (1 ± ε)θ(x)k, and with the remaining probability i
belongs to a component of expected size at most c.

A family of graphs with supercritical payoffs. For parameters k and s, let Fs
(
k
)

de-
note the disjoint union of s cliques of size k.

ACM Transactions on Economics and Computation, Vol. 1, No. 2, Article 6, Publication date: May 2013.



�

�

�

�

�

�

�

�

Network Formation in the Presence of Contagious Risk 6:11

THEOREM 4.4. When p = q, the graph Fs

(
1 + γ

p

)
, for arbitrary s ≥ 1 and a small

constant γ > 0, achieves supercritical node payoffs.

PROOF. A useful feature of the special case p = q is that we can represent the
spread of failures in Fs

(
k
)

in the following equivalent way. We imagine a single “failure
node” i∗ associated with each clique, and attached to each real node in the clique,
resulting in a clique on k + 1 nodes. There is a transmission probability p on the edges
from i∗ to each node in its clique, as there is on all other edges. In this view, a node
i fails if it is in the same active-edge component as i∗; in other words, the probability
i fails is the probability it belongs to the same component as a given fixed node i∗ in
G(k + 1, r). By Lemma 4.1 we know this probability is

1
k + 1

· E
[|Ci|

] − 1
k + 1

,

where Ci denotes the active-edge component of i.
With p = q, we define σ to be the ratio a/bp = a/bq; by Assumption P(δ), we have

σ < δ, and we assume as usual that δ and p are sufficiently small. We let the number
of nodes k in each clique be (1+γ )/p for a small value γ > 0 that we determine shortly.

First, Theorem 4.3(iii) implies that the probability φi that i fails satisfies

(1 − ε0)(θ(1 + γ ))2 ≤ φi ≤ (1 + ε0)(θ(1 + γ ))2

for a constant ε0 that goes to 0 with p. Thus, the payoff to a node i is

πi ≥ a(1 + γ )

p
−

(
b + a(1 + γ )

p

)
(1 + ε0)(θ(1 + γ ))2

= a(1 + γ )

p
− b(1 + σ(1 + γ ))(1 + ε0)(θ(1 + γ ))2

≥ a(1 + γ )

p
− 2b(θ(1 + γ ))2

= σbp(1 + γ )

p
− 2b(θ(1 + γ ))2

= b
[
σ(1 + γ ) − 2(θ(1 + γ ))2

]
.

Now, let

h0(x) = σx − 2(θ(x))2,

so that

πi ≥ bh0(1 + γ ).

We have

h′
0(x) = σ − 4θ(x)θ ′(x).

Since θ(1) = 0 and θ ′(1) is a positive real number, we have h′
0(1) = σ , and hence

the function h0(x) is strictly increasing over the interval x ∈ [ 1, w0] for a constant w0
depending on σ . Since h0(1) = σ , we have h0(w0) = σ(1 + σ0) for a constant σ0 > 0
depending on σ .

Returning to the lower bound on πi, we choose γ = w0 − 1, and so

πi ≥ bh0(w0) = a
σp

· σ(1 + σ0) = a(1 + σ0)

p
.
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6:12 L. Blume et al.

Consequently, the payoff to each node exceeds
a
p

by a multiplicative factor greater than

1 that depends on σ .

Comparison to an anonymous structure. The preceding construction achieves super-
critical payoffs by allowing nodes to cluster into communities of an appropriate size,
and thus to insulate themselves from failures originating in other communities. Draw-
ing on a market motivation, it is interesting to ask whether supercritical payoffs can be
achieved through structures that are based instead on anonymous interaction, where
nodes can specify the number of partners they want to connect to, but have no control
over who these partners are; the partners are chosen uniformly at random from the
population. As we now show, in fact, anonymous interaction structures are not able to
yield supercritical payoffs.

To define these anonymous structures precisely, we use the configuration model for
random graphs [Bender and Canfield 1978; Bollobas 2001; Wormald 1978]. Each of
the n nodes is assigned k “half-edges”; these half-edges are then matched up uniformly
at random into pairs, with each matching pair of half-edges forming an edge in the
resulting random graph. Note that the pairing may cause two edges to go between the
same pair of nodes, or for a node to form an edge that loops to itself; we remove these
parallel edges and self-loops to obtain the final graph. Failures then propagate in this
graph according to our model, spreading from root failures along active-edge paths.

With high probability, the local neighborhood of a node in this random graph will
have a particularly simple structure, as follows. For node i, define B(i, �) to be the ball
of radius � centered at i, that is, the induced subgraph of G on the set of all nodes
reachable from i in � or fewer hops. For fixed integers k, � and any node i, the probabil-
ity that B(i, �) is a tree of depth � and degree k (i.e., one whose internal nodes all have
degree k and whose leaves are all at distance � from the root) tends to 1 as n → ∞.

For our analysis, we will therefore connect the propagation of failures in the con-
figuration model to a related, simpler model based on an infinite k-regular tree. In
particular, let B(k, r) denote the distribution over trees obtained by starting with an
infinite k-regular tree and including each edge in the random tree with probability r.
We can think of the resulting tree as the outcome of a branching process with branch-
ing factor rk, and use this to get a pair of results analogous to Theorems 4.2 and 4.3
(see Chapter 2 of Durrett [2006]).

THEOREM 4.5 (RESTATED FROM THE LITERATURE). Let x < 1, and consider a tree
generated from B(k, r) where kr = x.

(i) The probability that the tree’s size exceeds size c decreases exponentially in c.
(ii) The expected size of the tree is bounded by a constant c = c(x).

THEOREM 4.6 (RESTATED FROM THE LITERATURE). There is an increasing func-
tion τ : [ 1, ∞] →[ 0, 1] that is continuously differentiable on (1, ∞) and continuously
differentiable from the right at x = 1, with τ(1) = 0 and τ ′(1) a positive real number,
such that the following holds. Consider a tree generated from B(k, r), and let ψr(k) be
the probability that it has an infinite node set.

(i) If kr > 1, then ψr(k) > τ(kr).
(ii) For all integers c0, c1 > 1 and k ≥ c0c1/r, we have

ψr(k) ≥ 1 − (1 − ψr (c0/r))c1 > 1 − (1 − τ(c0))c1 .
(iii) Conditioned on not having an infinite node set, the probability that the tree’s size

exceeds c decreases exponentially in c. Its conditional expected size is thus bounded
by a constant c = c(x).
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PROOF. Part (iii) of the claim is a standard result; parts (i) and (ii) are formulated
in ways that are adapted to our present purposes, and we give proofs of them here.

First we prove (i). The probability that the tree is infinite is the unique solution to
z = 1 − (1 − pz)k in the interval (0, 1). Define τ to be the unique solution to τ = 1 − e−xτ

in the interval (0, 1). Writing f0(v) = (1 − pv)k and f1(v) = e−xv, we have

f0(v) = (1 − pv)k = (1 − pv)x/p < e−xv = f1(v).

Thus, the curve y = 1− f0(v) lies above the curve y = 1− f1(v) on the interval (0, 1), and
so y = 1 − f0(v) intersects the line y = v to the right of where y = 1 − f1(v) intersects it.
It follows that z > τ , and hence we can take τ = τ(x) as our function.

To prove (ii), consider k′ = c0c1

r
subtrees of the root in the complete k-ary tree (before

edges are randomly included), and group them into c1 blocks of
c0

r
subtrees each. For

any block, if we consider just the root and the subtrees in a single block, the probability
that the resulting random tree is infinite is at least ψr(c0/r) (since the root has this
degree in the restricted tree, and the nodes in the subtrees have degree k ≥ c0/r). The
tree is infinite if it is infinite in any of the blocks, and so the probability it is infinite is
at least

1 − (1 − ψr (c0/r))c1 > 1 − (1 − τ(c0))c1

where the latter inequality follows directly from (i).

We now want to show an upper bound on the node payoffs in the anonymous struc-
ture that contrasts with the payoffs achievable in Theorem 4.4.

THEOREM 4.7. When each node forms k links in the anonymous structure, for any

k = 1 + β

p
, the node payoffs can be at most a/p as n → ∞.

PROOF. Clearly this is true for β ≤ 0, so we consider the case of an arbitrary β > 0.
When the random graph G is sampled using the configuration model, for any node i

the probability that the ball B(i, �) is a tree of degree k and depth � is 1−o(1) as n → ∞.
Applying Theorem 4.6(i), the probability that i belongs to a active path of length � is
at least τ(1 + β) − o(1); for n sufficiently large, this probability is at least τ(1 + β/2).
In the event that i belongs to a active path of length �, it fails with probability at least
1 − (1 − q)�. By taking � large enough, we may assume that τ(1 + β/2)(1 − (1 − q)�) ≥
τ(1 + β/3) and thus node i fails with probability at least τ(1 + β/3).

Thus, if n is sufficiently large we have

πi ≤
(

a(1 + β)

p

)(
1 − τ

(
1 + β

3

))
− bτ

(
1 + β

3

)

= bσ(1 + β)

(
1 − τ

(
1 + β

3

))
− bτ

(
1 + β

3

)
.

Let
h1(x) = σ(1 + 3x) (1 − τ (1 + x)) − τ (1 + x) ,

so that πi ≤ bh1(β/3). By Theorem 4.6(ii), we know that for y ≥ 4, we have

τ(y) ≥ 1 − (1 − τ(2))�y/2� ≥ 1 − (1 − τ(2))y/4.

We can thus choose w1 ≥ 4 such that

τ(y) ≥ 1 − 1
1 + y

ACM Transactions on Economics and Computation, Vol. 1, No. 2, Article 6, Publication date: May 2013.
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for all y ≥ w1. If 1 + x ≥ w1, we have

h1(x) ≤ σ(1 + 3x)

(
1

2 + x

)
− 1 + x

2 + x
< 0,

provided σ <
1
3

. Now, if σ ≤ 1
3

supy∈[1,w1] τ ′(y), then we have the following for all

x ∈ [ 0, w1 − 1]:

h′
1(x) = 3σ(1 − τ(1 + x)) − (σ + 3σx + 1)τ ′(1 + x)

≤ 3σ − τ ′(1 + x) ≤ 0.

Thus, for all x ∈ [ 0, w1 − 1], we have h1(x) ≤ h1(0) = σ . Since we also have h1(x) < 0
for x ≥ w1 − 1, it follows that h1(x) ≤ σ for all x ≥ 0.

Thus, for any β > 0, we have πi ≤ bσ = a
p

when each node forms k = 1 + β

p
links.

Since πi ≤ a
p

when nodes form at most k ≤ 1
p

links, it follows that for any constant c,

if nodes form
c
p

links then πi ≤ a
p

provided n is sufficiently large as a function of c.

Clustered vs. anonymous markets. It is instructive to consider why a union of disjoint
cliques was able to achieve qualitatively higher payoffs than an anonymous interaction
pattern. In particular, the nodes in the cliques we constructed are linking at a degree
beyond the phase transition point, whereas attempting to do this in the anonymous
structure has negative effects on the payoff.

A quantitative way to think about the contrast is to observe that in the union of
cliques, the failure probability of a node i was approximately controlled by a conjunc-
tion of two events: i belonging to the giant component of the clique, and the “failure
node” i∗ also belonging to the giant component of the clique. As a result, the failure
probability involves a term of the form (θ(x))2, and this has a derivative of 0 at x = 1
— hence, it is safe to increase x a bit past 1 without blowing up the failure probability.
On the other hand, in the anonymous structure, once i belongs to the giant component,
it fails with overwhelming probability; thus, i’s failure probability involves a term of
the form τ(x), which has a strictly positive derivative at x = 1, and this makes it
unprofitable to increase x even arbitrarily little past 1. This is the fundamental differ-
ence between the behavior of the two kinds of structures in the region just past the
phase transition.

5. UPPER BOUND ON THE MIN-WELFARE OF ANY STABLE NETWORK

We now show that any stable graph must have small min-welfare. (We defer the proof
that stable graphs exist to the next section.) To prove an upper bound on the min-
welfare, we proceed as follows. Recall that we assumed that � is an upper bound on
the number of links any one node is able to form. So nodes of degree � cannot form
further edges. We first show, in Lemma 5.1, that if two nodes i and j both have degree
less then the maximum degree � and are not connected by an edge, then at least one
of them must have a large failure probability; this is what dissuades the other from
forming the link.

It follows that in a stable network, all low-degree nodes of low failure probability
must form a clique, since any unlinked pair of them would have an incentive to connect.
If the number of nodes n is sufficiently large, we can then find a node i that is far from
this clique. Hence node i, and every node within a large number of steps of i, must

ACM Transactions on Economics and Computation, Vol. 1, No. 2, Article 6, Publication date: May 2013.
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have a large degree; we can thus apply an analog of Theorem 3.1 to show i has a large
failure probability, and this will conclude the proof.

LEMMA 5.1. Suppose Assumption P(δ) holds. Let G be a stable graph, and let i and
j be two nodes of G such that (i, j) is not an edge of G, and the degrees of i and j are each

strictly less than �. Then we have max(φi, φj) ≥ (1 − δ)a
(1 + δc∗)bp

.

PROOF. Since the degrees of i and j are each strictly less than �, at least one of i
or j does not have a strictly higher payoff if the edge (i, j) is included; let us assume it
is node i. Thus, if G′ denotes the graph G with the edge (i, j) included, then we have
πi(G′) ≤ πi(G).

We imagine evaluating failure in G′ by first making all random root failure decisions
and all random active/blocked decisions in G, then determining which additional nodes
fail, and finally deciding whether the edge (i, j) is active or blocked and determining
further failures. Let �i(G) be the event that i fails in G before (i, j) is examined, and
let Fij(G) be the event that (i, j) is active and j fails in G. Then �i(G′) = �i(G)∪Fij(G),
so

Pr
[
�(G′)

] ≤ Pr
[
�i(G)

] + Pr
[
Fij(G)

]
.

Since Pr
[
Fij(G)

] = pφj, we have

φi(G′) − φi(G) ≤ pφj(G).

Now,

πi(G′) = a(di + 1) − (adi + a + b)φi(G′),
so the fact that πi(G′) ≤ πi(G) implies that

a(di + 1) − (adi + a + b)φi(G′) ≤ adi − (adi + b)φi(G)

and hence

a ≤ (adi + a + b)(φi(G′) − φi(G)) + aφi(G)

≤ (adi + a + b)pφj(G) + aφi(G)

≤ (1 + δc∗)bpφj(G) + δbpφi(G),

where the last line follows from the fact that a < δbp and di + 1 ≤ c∗p−1.
Now, if φi(G) ≥ a

bp
, we are done. Otherwise, we have

a ≤ (1 + δc∗)bpφj(G) + δa,

so

(1 − δ)a ≤ (1 + δc∗)bpφj(G),

and hence

φj(G) ≥ (1 − δ)a
(1 + δc∗)bp

.

Following our preceding informal plan, we note that a stable graph might have some
low-degree nodes, so we require the following direct adaptation of Theorem 3.1, which
applies to nodes that are far from all low-degree nodes.

THEOREM 5.2. For all ε > 0 there exist constants α, β > 0 such that the following

holds. Let H be a graph, and let A be the set of nodes of degree less than
1 + ε

p
. Let i be a
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node of distance greater than
1
p

from A. Construct a random subgraph of H by declaring

each edge to be “active” with probability p. Then the number of nodes reachable from i
on active-edge paths is at least αp−1 with probability at least β.

PROOF. Consider the node-discovery process described in the proof of Theorem 3.1,
starting from the node i, and recall that we declare it to succeed if it adds at least
α

p
nodes to the queue before it ever becomes empty, for the small constant α < 1 used

there. The event that the process succeeds depends only on the active/blocked decisions

for nodes within distance
α

p
of i, and all such nodes have degrees at least

1 + ε

p
; hence,

for this whole time we can apply the argument used in Theorem 3.1.

Finally, we conclude the proof strategy outlined at the beginning of the section, re-
sulting in our upper bound.

THEOREM 5.3. Let n > ��+2. For all ε > 0 there exist α, δ > 0 such that when
p, q ≤ α and Assumption P(δ) holds, no stable graph can have min-welfare greater
than

εa
p

.

PROOF. Suppose by way of contradiction that G = (V, E) is a stable graph in which
πi ≥ εa

p
for all i ∈ V.

Let A ⊆ V denote the set of all nodes i of G for which di < � and φi <
(1 − δ)a

(1 + δc∗)bp
.

Since any node in A is able to form an additional edge, Lemma 5.1 implies that there
must be an edge between each pair of nodes in A — in other words, A induces a clique
in G.

Let B ⊆ V denote the set of all nodes in G of degree equal to �. For any i ∈ V−(A∪B),

we have φi ≥ (1 − δ)a
(1 + δc∗)bp

. Since πi ≥ εa
p

by assumption, we have

εa
p

≤ adi − bφi ≤ adi − (1 − δ)a
(1 + δc∗)p

and hence

di ≥ ε

p
+ 1 − δ

(1 + δc∗)p
.

For δ sufficiently small, the right-hand side of this inequality is at least
1 + ε1

p
for a

constant ε1 > 0. Choosing ε2 = min(ε1, c∗ − 1), it follows that all nodes i ∈ V − A have

degree at least
1 + ε2

p
.

Now, for any j ∈ A, there are at most 1 + � + �2 + · · · + ��+1 < ��+2 < n nodes
within distance � + 1 of j, and hence within distance � of some node in A. Hence
there is some node i ∈ V at distance greater than � > p−1 from A. For this node i,
Theorem 5.2 implies that ri ≥ γ1

p
with probability at least γ0, for constants γ0, γ1 > 0.

By Lemma 3.3 it follows that πi < −bq, contradicting the assumption that the min-
welfare of G is greater than

εa
p

.
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6. EXISTENCE OF STABLE NETWORKS

Finally, we show that there exist arbitrarily large stable networks. As with our con-
structions in Section 4, we will consider graphs that consist of disjoint cliques — graphs

Fs
(
k + 1

)
with k = 1 + γ

p
for an appropriately chosen γ > 0.

The challenge is to find a k where the union of cliques is stable, and this requires
some care for the following reason. Stability requires that no unlinked pair of nodes
wants to form an edge, this can be achieved by making k sufficiently large that creating
a link between two cliques brings about too large an increase in failure probability
to the nodes forming the link. Unfortunately, making k large also raises the failure
probability of each node i based simply on its current set of edges, so we must not raise
k so high that a node i wants to drop all its existing links. The crux of the problem
is thus the following: is there a k that is large enough to discourage the formation of
cross-clique links, but not so large that nodes will drop their current links? The main
part of our analysis will be to show that such a k exists.

As in Section 4, we consider the case in which p = q; defining σ to be the ratio
a/bp = a/bq, we have σ < δ, and we assume δ and p are sufficiently small.

THEOREM 6.1. Given a, b, p, q as before, there exists γ > 0 such that with k = 1 + γ

p
,

the union of cliques Fs
(
k + 1

)
is stable.

PROOF. For the analysis of the construction, we will work with the function θ(x)

defined in Theorem 4.3, as well as the related function λ(x) = x
[
1 − (θ(x))2]

. Observe
that λ(1) = 1, since θ(1) = 0. Taking derivatives, we have

λ′(x) =
[
1 − (θ(x))2

]
− 2xθ(x)θ ′(x),

and hence λ′(1) = 1. Thus we have the following.

LEMMA 6.2. For some constant w > 1, the function λ(x) is strictly increasing on the
closed interval [ 1, w].

As in Section 4, we analyze the failure process by attaching a single “failure node”
i∗ to each clique. The probability φi that node i fails is the probability that i belongs to
the same active-edge component as i∗ in the (k + 2)-node clique where i∗ is added to i’s
clique. The payoff to node i is

πi = ak − (ak + b)φi.

If i drops all its edges, it receives a payoff of −bq < 0. If i forms an edge to a node j in
another clique, it receives an added benefit of a, and incurs an increased expected loss
of at least

(ak + b)pφi(1 − φi).

There are four terms here; the second and third represent the chance that j’s failure
(which is φj = φi by symmetry) spreads to i, and the fourth term represents the fact
that this only matters if i had not already failed in its own clique. In more detail: the
payoff to node i before the addition of this edge is ak − (ak + b)φi, and afterward it is

a(k + 1) − (ak + a + b)(φi + pφi − pφ2
i ),

so the increase in payoff is less than a − (ak + b)pφi(1 − φi).
Now, what is φi? By Lemma 4.1 and Theorem 4.3, we have

(1 − ε1)2(θ(p(k + 2)))2 ≤ φi ≤ (1 + ε1)2(θ(p(k + 2)))2 + c1p
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for a constant ε1 that goes to zero as p does. By choosing a slightly larger ε2, and using
the fact that θ(·) has a bounded first derivative, we have

(1 − ε2)(θ(1 + γ ))2 ≤ φi ≤ (1 + ε2)(θ(1 + γ ))2,

with ε2 going to zero as p does.
In the expression φi(1 −φi), provided the upper bound (1 + ε2)θ(1 + γ )2 ≤ 1

2 , we have

φi(1 − φi) ≥ (1 − ε2)(θ(1 + γ ))2
[
1 − (1 − ε2)(θ(1 + γ )2)

]
≥ (1 − ε2)(θ(1 + γ ))2

[
1 − (θ(1 + γ ))2

]
.

Since a = σbp and k = (1 + γ )/p, if we write σ1 = σ(1 + γ ), then we have ak =
σ(1 + γ )b = σ1b. Now we have

(ak + b)pkφi(1 − φi)

= b(1 + σ1)(1 + γ )φi(1 − φi)

≥ b(1 + σ1)(1 + γ )(1 − ε2)(θ(1 + γ ))2
[
1 − (θ(1 + γ ))2

]
= b(1 + σ1)(1 − ε2)λ(1 + γ )(θ(1 + γ ))2

�= f1(γ ),

where the last line is taken as the definition of f1(γ ).
Observe that f1(0) = 0, and by Lemma 6.2, there is an x1 < 1 such that the function

f1(x) is strictly increasing for x in a closed interval [ 0, x1].
We also have

(ak + b)φi ≤ b(1 + σ1)(1 + ε2)(θ(1 + γ ))2

�= f0(γ ),

where once again the last line is taken as the definition of f0(γ ). We see that f0(x) is
also strictly increasing in [ 0, x1] (and beyond this interval as well).

Now, since λ(1) = 1 and λ(·) is monotone increasing on [ 0, x1], for any small enough
ε2 > 0, there is a unique x0 < x1 such that

λ(1 + x0) = 1 + ε2

1 − ε2
.

Moreover, f1(x) > f0(x) for all x ∈ (x0, x1], and the value of x0 goes to 0 as ε2 goes to 0.
Also, we observe that for γ ∈ (x0, x1], we have

f1(γ ) > f0(γ ) ≥ b(θ(1 + γ ))2.

Now, we choose σ small enough that 2σ < (θ(1 + x1))2. We then choose ε2 small
enough (by choosing p small enough) so that f1(x0) = f0(x0) < bσ . Finally, let g(γ ) =
ak = (1 + γ )bσ . Since bσ < g(γ ) < 2bσ for all γ ∈ (x0, x1], it follows that f0(x0) < g(x0)
but g(x1) < f1(x1). Therefore, since f0(·) and f1(·) are continuous functions, there exist
γ ∗, γ ∗∗ ∈ (x0, x1] for which g(γ ∗) = f1(γ ∗) and g(γ ∗∗) ≥ f0(γ ∗∗), with γ ∗ < γ ∗∗.

We choose any γ ∈[ γ ∗, γ ∗∗] as the value of γ we use to define k. With this value of k,
the payoff i receives from keeping all its edges is

πi = ak − (ak + b)φi ≥ g(γ ) − f0(γ ) ≥ 0,
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and hence i prefers to keep its edges rather than deleting all of them. The change in
payoff i receives from linking to a node j in a different clique is less than

k−1 (
ak − (ak + b)pkφi(1 − φi)

)
≤ k−1

[
ak − b(1 + σ1)(1 − ε2)λ(1 + γ )(θ(1 + γ ))2

]
= k−1 (

g(γ ) − f1(γ )
)

≤ 0,

and hence i will not form this link. Thus, the graph Fs
(
k + 1

)
is stable.

A stable graph with unequal clique sizes. We observe that starting with a set of dis-
joint cliques Fs

(
k + 1

)
, we can create a different stable graph by adding one additional

clique � of size � < k + 1 on a disjoint set of nodes. The size � can be chosen in any way
such that the payoffs of nodes in the clique � each exceed −bq. In this way, nodes in
� will not want to drop their incident edges. Moreover, there is still no edge that can
form so as to improve the payoffs of both its endpoints, since any edge involving a node
i in � must have its other end at a node j in one of the cliques of size k + 1, in which
case the argument for Theorem 6.1 shows that i would not want to form the link.

In particular, this means that we can take � to be a clique yielding the maximum
possible node payoff over all clique sizes, as in Section 4; this shows how certain nodes
in a stable graph can have higher payoffs than others.
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