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TCP Congestion Control

• The paradigm of Distributed Control in Packet Switching Network

• Transmission Control Program, 1974.

• Congestion collapse

• Variance not important yet
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TCP Congestion Control Development

• Jitter sensitive applications

• TCP vs UDP

• High BDP links utilization vs Congestion Control

• Best effort vs QoS guarantees
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Variety of Experimental Versions

• TCP CUBIC - cubical growth period. RTT independent

• High Speed TCP (HSTCP), S. Floyd 2003. Congestion Avoidance co-
eff. of linear growth and multiplicative decrease are convex functions
of current window size

• Scalable TCP (STCP) T. Kelly, 2003. Decreases time of data recovery

• TCP Hybla 2003-04. Developed for satellite links. Scales throughput
to mimic NewReno and utilize link at the same time.

• TCP-YeAH
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Two mainstream modeling approaches to TCP begavior

t
Figure 1: The step-wise random process of the congestion window size.

4



Two mainstream modeling approaches to TCP begavior

Figure 2: The piecewise linear random process of the congestion window size.
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Definitions

Let’s tn — denote ends of TCP rounds
[tn−1, tn] is RTT and
ξn = tn − tn−1 is RTT length.
Let’s w(t) — denotes cwnd.
We define stepwise process {w(t)} such that

w(tn + 0) =















⌊

w(tn)

α

⌋

, if during [tn−1, tn]

TCP lost data,

w(tn) + 1, if all data delivered.

Between moments tn the process {w(t)} stays constant.
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Definitions

Lets {X(t)}t>0 takes values from R
+ and

for the intervals [θn, θn+1) n = 0, 1, . . . grows linearly with the speed
b = E[ξn]

−1, . . X(t) = X(t0) + bt, ∀ [t0, t] ⊂ [θn, θn+1).

At random moments {θn}n≥0 the process {X(t)}t>0 makes a jump
X(θn + 0) = X(θn)/α, α > 1.

We assume that the sequence {θn}n≥0 forms poisson flow with param-
eter 0 < λ < ∞.

7



Convergence Theorem

We propose following transformation of coordinates for the process {w(t)}

t = ns w = ⌊nX⌋. (1)

Lets consider following sequence of stepwise processes wn(s) = w(ns) :
λn = λ/n. We denote wn(0) = ⌊nx0⌋ X(0) = x0.

Theorem 1 ∀ s takes place

lim
n→∞

w(ns)

n
= X(s) (2)

by distribution. And b =

[

∞
∫

0
xdR(x)

]−1

.
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Proof

Let us consider a growth period of X(s). For the interval [s1, s2],⊂
[θn, θn+1] it takes place X(s) = X(s1) + b(s− s1).
Let’s denote un(s, s1) the number of the moments tm, happened in

the interval [ns1, ns]. The sequence {tk}
∞
m=1 makes renewal process

and according to Smith theorem

lim
n→∞

E[un(s, s1)]

n(s− s1)
= b (3)

Then according to Chebyshev inequality

lim
n→∞

un(s, s1)

n
= b(s− s1) (4)

by probability.
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Proof

Now denote wn,k = wn(τk − 0) and jn,k = un(σn,k, σn,k−1), where
τk = nσn,k.

wn,k =
⌊wn,k−1

α

⌋

+ jn,k =
wn,k−1

α
− γn,k + jn,k, (5)

where 0 ≤ γn,k < 1.

The interval τk − τk−1 = n(σn,k − σn,k−1) = πk + δk, where ηk =

πk/n, has distribution Fηk(x) = 1− e−λs,
and r.v. δk/n converges by probability to zero.

Henceforth
lim

n→∞
(σn,k − σn,k−1) = ηk. (6)

by distribution.
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Proof

Let nθ′n — the moment of the last jump of wn(s) before moment ns,
νn — its number and wn(0) = jn0 . then

wn(s) =
1

α





νn
∑

i=0

jn,νn−i

αi
−

νn
∑

i=0

γn,νn−i

αi



 + un(s− θ′n). (7)

From (6) one infers that νn → ν, by probability and ν satisfies Poisson
distribution.
Also θ′n → θ′ by distribution too, and θ′ is the moment of the last

jump of the process X(s) before time moment s. Hence

lim
n→∞

w(ns)

n
=

b

α

ν
∑

i=0

ην−i

αi
+ b(s− θ′) = X(s) (8)

by distribution, where η0 = x0.

11



Conclusion

• The Development of Congestion Control schemes and two main ap-
proaches to its modelling are considered.

• The sequence of the stepwise AIMD models is built.

• For the sequence the convergence theorem is proved.

• Further development: investigate the speed of the convergence.
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