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TCP Congestion Control

e The paradigm of Distributed Control in Packet Switching Network
e Transmission Control Program, 1974.
e Congestion collapse

e Variance not important yet



TCP Congestion Control Development

e Jitter sensitive applications
e TCP vs UDP
e High BDP links utilization vs Congestion Control

e Best effort vs QoS guarantees



Variety of Experimental Versions

e T'CP CUBIC - cubical growth period. RT'T independent
e High Speed TCP (HSTCP), S. Floyd 2003. Congestion Avoidance co-

eff. of linear growth and multiplicative decrease are convex functions
of current window size

e Scalable TCP (STCP) T. Kelly, 2003. Decreases time of data recovery

e T'CP Hybla 2003-04. Developed for satellite links. Scales throughput
to mimic NewReno and utilize link at the same time.

e TCP-YeAH



Two mainstream modeling approaches to TCP begavior
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Figure 1: The step-wise random process of the congestion window size.
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Two mainstream modeling approaches to TCP begavior
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Figure 2: The piecewise linear random process of the congestion window size.
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Definitions

Let’s t,, — denote ends of TCP rounds

‘tn_1,tn| is RTT and

En =1tn — t,—1 18 RT'T length.
Let’s w(t) — denotes cwnd.
We define stepwise process {w(t)} such that

w(ty +0) = <

( {w(tn)

J , if during [t,,—1, tn]
o)

TCP lost data,

w(tn) + 1, if all data delivered.

Between moments t,, the process {w(t)} stays constant.



Definitions

Lets {X (t)}4>( takes values from R™ and

for the intervals [0y,,0,,41) n = 0,1,... grows linearly with the speed
b=E[g] ™, . X(t) = X(to) + b, ¥ [to, 1] C [0, Op1).

At random moments {0p},>0 the process {X(¢)};~0 makes a jump
X(0p+0)=X(0n)/a, a>1.

We assume that the sequence {60y}, >0 forms poisson flow with param-
eter 0 < A < o0.



Convergence Theorem

We propose following transformation of coordinates for the process {w(t)}
t=ns w=|nX|. (1)

Lets consider following sequence of stepwise processes wp(s) = w(ns) :

An = A/n. We denote wn,(0) = |nxg| X(0) = xo.

Theorem 1V s takes place

w(ns)

lim
n—o0o n
i 1 -1

o
by distribution. And b= | [ zdR(x)
0




Proof

Let us consider a growth period of X(s). For the interval [s{, s9], C
0, 0,,11] 1t takes place X (s) = X (s1) + b(s — s1).

Let’s denote up(s, s1) the number of the moments t,,, happened in
the interval [nsi,ns|. The sequence {tj}° ; makes renewal process
and according to Smith theorem

Elun(s, s1)]

I =b 3
n—00 n(s — s1) (3)
Then according to Chebyshev inequality
. un(87 81) L .
i I s ) ()

by probability:.



Proof

Now denote wy, . = wp(7; — 0) and jp, 1 = un(op g, Oy k—1), Where
Tl — nO‘mk.

wn,k—lJ . Wy, k—1

Wy k= L o +Ink = o — In.k + jn,ka (5)

where 0 < 7y, . < 1.

The interval 7. — 73._1 = n(anjk — O'n’]{_l) = 7. + 0p, where 0. =
T /M, has distribution F (z) =1 — e~ s,
and r.v. d;./n converges by probability to zero.

Henceforth
nh—>moo(0n’k — Un,k—l) = Nk- (6)

by distribution.
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Proof

Let nf;, — the moment of the last jump of wy(s) before moment ns,
vp — its number and wy(0) = jj. then

Up - Un
1 Jn,vn—1 Tn,vp—1
wﬂ@:g;EZ iy -> = Fup(s—06). (7
1=0 1=0

From (6) one infers that v, — v, by probability and v satisfies Poisson
distribution.

Also 0, — @' by distribution too, and @ is the moment of the last
jump of the process X ( ) before time moment s. Hence

E:m”+b — 0 = X(s) (8)

lim
n—so0o n

by distribution, where ng = xy.

11



Conclusion

e The Development of Congestion Control schemes and two main ap-
proaches to its modelling are considered.

e The sequence of the stepwise AIMD models is built.
e For the sequence the convergence theorem is proved.

e Further development: investigate the speed of the convergence.

12



