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Abstract—An autonomous mobile robots have been discov-
ering recently a wide range of applications in various areas of
human activities, including industry, commerce, social life, envi-
ronmental projects, health care, science, education, agriculture,
housekeeping. The amount of sensors carried by a robot normally
is rather considerable. In the sensor data stream the items are not
equally important. We propose a method for data selection which
is based on Additive Increase Multiplicative Decease Algorithm
and could reduce the amount of data passed to the data fusion
module.

I. BACKGROUND

An autonomous mobile robots have been discovering re-
cently a wide range of applications in various areas of human
activities, including industry, commerce, social life, environ-
mental projects, health care, science, education, agriculture,
housekeeping. For several decades the efforts of the research
community in the area is directed to the development of
methods and technologies that could make such devices able
to navigate in a completely or partly unknown environment
without any or with a restricted supervision of a human distant
operator, e.g. [1], [2].

Autonomous mobile robot as a system operates in the
environment which is either completely unknown and to be
discovered or is partly described by a map and a path within the
map the robot has to follow. Also the environment can change
during the operation and those changes could be unpredictable.
For the proper operation of the system the changes should be
detected and a reaction should be designed. For these reasons
an autonomous navigation is based upon sensors data which
provide varied information about surrounding objects and inner
information that could be useful for locomotion and navigation.

Nowadays there exists a wide variety of sensors that deliver
diverse multitude of raw data. The sensors could be classified
by the nature of the data they perceive, e.g., spatial, temporal,
electromagnetic, mechanical and others, or by the nature of
the sensor activity, e.g. inner (battery level, wheel angle) ex-
ternal (distance to the obstacle), active (sonar sensor), passive
(camera). A range of classifications exists in the literature as
well. Basically using sensor assumes that further processing
of the sensors data could infer some information about the
world around necessary for a robot safe navigation and mission
completion. There are two major problems to be solved:

1) The raw sensors data carry uncertainty due to the lack

of precision, external factors intervention or noise of
the signal (Gaussian of non Gaussian).

2) The amount of sensors carried by a robot normally is
rather considerable. Hence the amount of the infor-
mation they produce is rather considerable as well. In
the data stream the items are not equally important.
Some of them are critical for the device integrity,
some are essential for it’s proper operation and some
are useless. In many cases the attributes enumerated
above could not be attached to a particular sensor (if
so, dismount it). Let’s consider a battery level sensor.
If the battery level is high there is no need to monitor
it on the regular basis. But if the charge is low or it
is high but decreases faster than expected these data
should be examined by the inference modules.

To deal with the first problem the methods of control theory
are widely used. The sensor producers and the robot designers
apply filters to smooth raw data. Different variations of the
Kalman filter [3] could be applied for the state estimation if
there is a linear low that bounds observed variables, e.g. veloc-
ity and acceleration, or distance and velocity. Another major
method is Particle Filer [4] which is sequential Monte-Carlo
technique. Due to the computation complexity of these two
methods simple techniques as moving arithmetical average,
median, mode filters are widely used in practice as well.

Smoothed data are further processed by sensor fusion algo-
rithms [5], [4], which combine data from several sensors and
relevant information from corresponding databases to produce
more precise and specific inference about the surrounding
environment. Meanwhile Kalman filter and Partical filter could
be treated as fusion technique as well, e.g. [6].

Although the first problem enlisted above is researched
extensively, the second problem is to be solved now by the
choice of sensors set and their allocation. Meanwhile the bat-
tery charge and the computational facilities of an autonomous
device are restricted and fusion useless data from the stream
remains an important problem. We propose an approach to data
selection which is based on Additive Increase Multiplicative
Decease (AIMD) Algorithm and could reduce the amount
of data passed to the data fusion module. The selection
algorithms could be applied before, if possible, or after raw
data smoothing stage and dynamically control the data flow
passed to further processing.



II. DATA SELECTION ALGORITHMS

Let’s consider a sensor as a mapping Sm 7→ Sn, where
Sm ⊂ Rm and Sn ⊂ Rn. In most cases |Sm| > |Sn|. This
inequality forms one of the main sources of uncertainty for
the raw sensor data since the actual mapping is many to one.
The set Sm represents the real world phenomenon. It could be
continuous or discrete. Also it could be a conjunction of several
continuous intervals or be any other subset of Rm. The set Sn

is discrete in most cases due to the sensor output granularity.
Smoothing raw data done internally by the sensor producer or
by the robot computing facilities still keeps it discrete due to
the discrete nature of the computing architecture but the latter
transforms Sn 7→ S̃n and |Sn| ≤ |S̃n|.

Let’s consider x, y ∈ Sn and introduce the norm ||x −
y|| ∈ R which defines the distance between two values
measured by a sensor. The norm is additive and ||ax|| =
a||x||, a ∈ R, x ∈ Sn. Then let’s denote a sequence
si = {si0, si1, . . . }, sik ∈ S̃n of data produced by ith sensor
and a sequence ti = {ti0, ti1, . . . } of timestamps that label the
corresponding elements of the sequence si.

The selection method maintains the geometrical average of
si sequence i.e.

||ŝik|| = κ||ŝik−1||+ (1− κ)||ŝik||, (1)

where 0 < κ < 1. This additional filter is applied if primary
filters don not succeed. Otherwise the primary filter output
could bu used as ŝi sequence. The filter is not applied for
periodical or fluctuating data. Also we consider which presents
a feedback Then let’s define a delay τn which is applied before
the sensor data are passed to the inference modules.

The delay is dynamically adjusted depending on the prop-
erties of the data in the stream. Also it evaluates according
to the feedback which selection algorithms obtain from the
inference module. The feedback is presented as a sequence
{kn}∞n=0, where kn estimates importance and usefulness of
the selected data sent after tn interval. The value kn ∈ R and
0 < kn ≤ 1. It evaluates a measure of new information about
the environment brought by the new portion of data selected.

In the scale 1 means crucial or very important and 0 means
useless. If there is a lack of computing facilities the discrete
or even binary value crucial/useless could be applied. Also we
define one special signal kurgent which means that sensors
data should be sent immediately. The general scheme of the
interaction is presented at Fig. 1.

Hence the delay tn evaluates dynamically as follows:

τn+1 =


α

kn + 1
τn, if specified events has happened

τn + δ, otherwise
(2)

Here 0 < α < 1 is a delay decrease factor and δ > 0 is a
constant that increases the delay. So the method reduces the
sending rate if the device operation is stable and increases it
if the environment or the operation mode had changed. The
decrease rate stays within the limits [α/2, α].

The specified events are one of the following

1) The value of ||ŝik− ŝik−1|| > 0 for ν time in the row,
where ν is a parameter.

Fig. 1. The sensors data processing stages.

2) The ||ŝik|| = (1 + β)||ŝik−1||, where β > 0.5 is a
parameter.

3) If KF or PF are used the event is: the error evaluated
before a correction step does not change sign ν′ times
in a row.

4) A critical event is identified. The list of the critical
events is formed in advance and normally they mean
something which needs immediate reaction, e.g. sharp
increase of acceleration.

At the end of τn interval the current value ŝik is passed to the
inference facility.

Thus if the sensor data are stable, uniform and correspond
the current operation of the autonomous mobile robot they
don’t contain new insight about the environment and hence
are not passed to the data fusion modules. If noticeable change
happen then the data could be significant and are passed to the
inference facility.

If the feedback is not taken into account than (2) transforms
into AIMD algorithm as follows:

τn+1 =

{
ατn, if specified events has happened

τn + δ, otherwise
(3)

III. CONCLUSION

In this work the method of sensor data selection is pro-
posed. It identifies data significant for autonomous mobile
robot inference subsystem and reduces the amount of data pro-
cessed. The method also employs feedback exchange between
selection algorithms and the sensor data fusion methods as
well.
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