Министерство образования и науки Российской Федерации ФГБОУ «Петрозаводский государственный университет» Институт математики и информационных технологий Кафедра информатики и математического обеспечения

Отчет по учебной практике (компьютерные технологии в математике)

Выполнил:
Федоров С. В. группа 2103
T V
Руководитель практики:
1
к.т.н., доцент О. Ю. Богоявленская
$no\partial nuc$ o
7,007,000
Итоговая оценка:
оиенка
0 40,000

Содержание

Описание работы 1

Я успешно завершил две задачи. Во втором задании я создал документ с математическим текстом, предоставленным инструктором, используя LaTeX. Я добавил разделы и автоматическую нумерацию формул, а также создал новые окружения для примеров, определений и других математических объектов. В третьей задаче я построил кривую в декартовых координатах, используя интерпретатор команд gnuplot, и добавил это изображение в документ, который я создал во втором задании. В процессе работы я изучал скринкасты и использовал учебники из предложенной литературы. Результаты моей работы, я предоставил ниже.

Результаты работы 2

2.1Задание 2

 $\int_{0}^{1} f(x)dx = \int_{0}^{1} \frac{dx}{\sqrt{x}}$ сходится, а интеграл $\int_{0}^{1} f^{2}(x)dx = \int_{0}^{1} \frac{dx}{x}$ расходится.

 Π р и м е р ы. 1. Посредством замены переменной x=1/t вычислим интеграл

$$\int_{1}^{+\infty} \frac{dx}{x\sqrt{x^2 - 1}} = \int_{0}^{1} \frac{dt}{\sqrt{1 - t^2}} = \arcsin t |_{0}^{1} = \frac{\pi}{2}.$$

2. Вычислим интеграл $I_n = \int\limits_0^{+\infty} x^n e^{-x} dx \;, n=0,1,2,\cdots$ Проинтегрировав по частям при n > 0, будем иметь

$$I_n = -\int_0^{+\infty} x^n de^{-x} = -x^n e^{-x} \mid_0^{+\infty} + n \int_0^{+\infty} x^{n-1} e^{-x} dx = n I_{n-1}.$$
 (1)

Поскольку $I_0 = -\int\limits_0^{+\infty} x^n de^{-x} = -x^n e^{-x}|_0^{+\infty} + n\int\limits_0^{+\infty} x^{n-1} e^{-x} dx = nI_{n-1}$, то, применив последовательно рекурсивную формулу (??), получим:

$$I_n = nI_{n-1} = n(n-1)I_{n-2} = \dots = n!I_0 = n!$$

29.3. Несобственные интегралы от неотрицательных функций. Установим признаки сходимости для несобственных интегралов от неотрицательных функций.

 Π емма 1 . Если функция f неотрицательна на полуинтервале [a,b), то для сходимости интеграла $\int\limits_a^b f(x)dx$ необходимо и достаточно, чтобы множество всех интегралов $\int_{0}^{b} f(x)dx, n \in [a,b),$ было ограничено сверху, т.е. чтобы существовала такая постоянная c>0, чтобы для всех $n\in [a,b)$ выполнялось бы неравенство

$$\int_{a}^{\eta} f(x)dxc. \tag{2}$$

⊳ Положим

$$\phi(\eta) = \int_{a}^{def} \int_{a}^{\eta} f(x)dx. \tag{3}$$

Еслиan < n' < b, то

$$\phi(\eta') = \int_{a}^{\eta'} f(x)dx = \int_{a}^{\eta} f(x)dx + \int_{\eta}^{\eta'} f(x)dx \int_{a}^{\eta} f(x)dx = \phi(\eta)$$

, ибо в силу неотрицательности функции f имеет место неравенство $\int\limits_{\eta}^{\eta'}f(x)dx0,$ т.е. функция

 $\phi(\eta)$ возрастает на прлуинтервале [a,b). Существование несобственного интеграла $\int\limits_a^b f(x)dx$ означает существование конечного предела

$$\lim_{\eta \to b} \int_{a}^{b} f(x) dx,$$

что имеет место тогда и только тогда, когда функция $\phi(\eta)$ ограничена сверху (см. теорему 4 в п. 6.11), а это в силу (??) равносильно условию (??). \triangleleft

Замечание. При доказательстве леммы 1 было показано, что в случае неотрицательности функции f функция $\phi(\eta)$ (см. ($\ref{eq:constraint}$)) вод- растает на [a,b) и, следовательно, всегда имеет при $\eta \to \phi$ конечный или бесконечный, равный $+\infty$, предел в зависимости от того, ограничена она или нет. Если функция $\phi(\eta)$ неограничена на [a,b), то

$$\lim_{\eta \to b} \int_{a}^{b} f(x)dx =_{(??)} \lim_{\eta \to b} \phi(\eta) = +\infty,$$

и в этом случае пишут

$$\int_{a}^{b} f(x)dx = +\infty$$

(как мы уже и поступали в примерах п. 29.1).

Теорема 1 (признак сравнения). Пусть

$$0g(x)f(x), x \in [a, b). \tag{4}$$

Тогда:

- 1. если интеграл $\int\limits_a^b f(x)dx$ сходится, то сходится и интеграл $\int\limits_a^b g(x)dx;$
- 2. если интеграл $\int\limits_a^b g(x)dx$ расходится и $0 < k+\infty$, то расходится и интеграл $\int\limits_a^b f(x)dx$.

Следствие 1 . Пусть функции f и g неотрицательны на промежутке $[a,b),g(x)\neq 0$ при всехх $\in [a,b)$ и существует конечный или бесконечный предел

$$\lim_{x \to b} \frac{f(x)}{g(x)} = k. \tag{5}$$

Тогда:

1. если интеграл $\int\limits_a^b g(x)dx$ сходится и $0k<+\infty$ то и интеграл $\int\limits_a^b f(x)dx$ сходится;

2. если интеграл $\int\limits_a^b g(x)dx$ расходится и $0 < k+\infty$ то и интеграл $\int\limits_a^b f(x)dx$ расходится;

 \mathbf{C} ледствие $\mathbf{2}$. Если функции f(x) и g(x) эквивалентны при $x \to b$, т.е. $f(x) = \phi(x)g(x)$, ax < b, $\lim_{x \to b} \phi(x) = 1$, то интегралы $\int\limits_a^b f(x)dx$ и $\int\limits_a^b g(x)dx$ одновременно сходятся и расходятся.

ightharpoonup Докажем теорему. Для любого $\eta \in [a,b)$ в силу неравенства (??) имеем

$$\int_{a}^{\eta} g(x)dx \int_{a}^{\eta} f(x)dx.$$

Поэтому если интеграл $\int\limits_a^b f(x)dx$ сходится и, следовательно, согласно лемме 1 ограничен сверху и интеграл $\int\limits_a^\eta f(x)dx$, то будет ограничен сверху и интеграл $\int\limits_a^\eta g(x)dx$ откуда, согласно той же лемме, интеграл $\int\limits_a^b g(x)dx$ сходится.

Если же расходится интеграл $\int\limits_a^b g(x)dx$, то в силу уже доказанного интеграл $\int\limits_a^b f(x)dx$ не может сходится, так как тогда бы сходился и интеграл $\int\limits_a^b g(x)dx$, а это противоречит условию.

Таким образом, интеграл $\int_{a}^{b} f(x)dx$ расходится.

Докажем теперь следствие 1.

ightharpoonup Пусть выполняется условие (??) и $0k < +\infty$. Из того, что k является пределом функции $\frac{f(x)}{g(x)}$ при $x \to b$, и из неравенства k < k+1 следует существование такого $\eta \in [a,b)$, что если $\eta < x < b$, то $\frac{f(x)}{g(x)} < k+1$, т.е.

$$f(x) < (k+1)g(x). \tag{6}$$

2.2 Задание 3

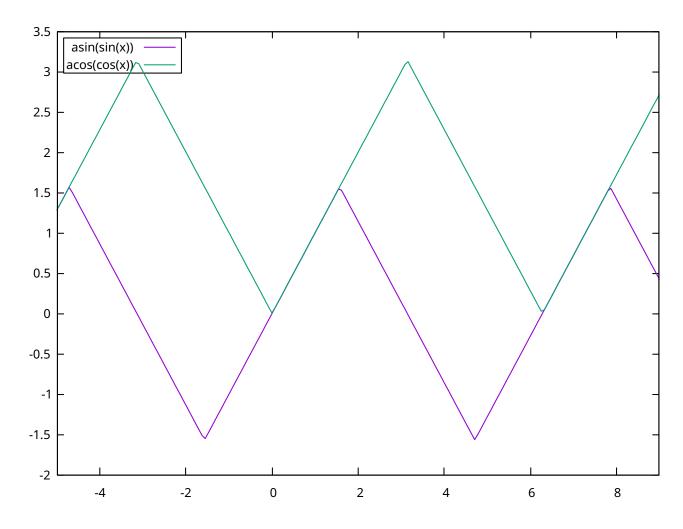


Рис. 1: Графики