Министерство образования и науки Российской Федерации ФГБОУ «Петрозаводский государственный университет» Институт математики и информационных технологий Кафедра информатики и математического обеспечения

Отчет по учебной практике (компьютерные технологии в математике)

Выполнил:
Поскитт Д.С., группа №22104
nodnucь
Руководитель практики:
преподаватель И.В.Сосновский
$no\partial nuc$
Итоговая оценка:
оценка

Петрозаводск – 2023

Содержание

1	Описание работы	3
2	Результаты работы	3
	2.1 Задание 2	3
	2.2 Залание 3	8

1 Описание работы

Задание номер 2 представляет собой, по сути, тренажёр набора специальных символов и использования окружений в LaTex. Задание позволяет научиться использовать такие окружения, как [equation], [document], [theorem] и другие. Они нужны для того, чтобы структурировать текст, придавать набранным выражением или тексту особые свойства (применять к ним особые правила форматирования). Специальные символы позволяют набирать математические или иные выражения с помощью команд LaTex.

Задание номер 3 позволяет научиться отрисовывать графики функции с помощью GNUPLOT в .tex формате и вставлять их в документ с помощью специального окружения.

2 Результаты работы

2.1 Задание 2

§26. Формулы замены переменной и интегрирования по частям в определённом интеграле

Формула замены переменной. Пусть функция f(x) задана на промежутке Δ_x , а фукнция $\varphi(t)$ – на промежутке Δ_t и $\varphi(\Delta_t) \subset \Delta_x$. Тогда имеет смысл композиция $f \circ \varphi$, то есть сложная функция $f(\varphi(x))$.

Теорема 1 Если функция f(x) непрерывна на промежутке Δ_t , а функция $\varphi(x)$ непрерывна вместе со своей производной $\varphi'(x)$ на промежутке Δ_t , то

$$\int_{a}^{b} f(x) \ dx = \int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t) \ dt \tag{1}$$

где

$$\alpha \in \Delta_t, \beta \in \Delta_t, a = \varphi(\alpha), b = \varphi(\beta)$$

(puc. 104)

Формула (1) называется формулой замены переменной в определённом интеграле.

 \triangleright Пусть F(x) – какая-либо первообразная для функции f(x) на промежутке Δ_x ; тогда функция $F(\varphi(t))$ является первообразной для функции $f(\varphi(t))\varphi'(t)$ на промежутке Δ_x , ибо

$$\frac{d}{dt}F(\varphi(t)) = F'(\varphi(t))\varphi'(t) = f(\varphi(t))\varphi'(t).$$

Поэтому по формуле Ньютона-Лейбница

$$\int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t) \ dt = F(\varphi(\beta)) - F(\varphi(\alpha)) = F(b) - F(a) = \int_{a}^{b} f(x) \ dx. \quad \triangleleft$$

Формула интегрирования по частям.

Теорема 2 Если функции u(x) и v(x) непрерывны вместе со своими производными на отрезке [a,b], то

$$\int_{a}^{b} u dv = uv|_{a}^{b} - \int_{a}^{b} v du \tag{2}$$

Все интегралы в (2) существуют, поскольку подынтегральные функции непрерывны. Для интеграла в левой части равенства, согласно формуле Ньютона-Лейбница, имеем:

$$\int_{a}^{b} (uv)'dx = uv|_{a}^{b}.$$
(3)

Подставив выражение, стоящее в правой части неравенства, в (3), получим

$$\int_{a}^{b} u dv + \int_{a}^{b} v du = uv|_{a}^{b},$$

что равносильно (2). ⊲

Замечание. Можно доказать, что формула интегрирования по частям остаётся верной и в том случае, когда u и v непрерывны, а их производные кусочно непрерывны (см. 2).

ПРИМЕРЫ. 1. Применим формулу интегрирования по частям для вычисления интеграла $\int\limits_{1}^{2} \ln x \ dx$:

$$\int_{1}^{2} \ln x \, dx = x \ln x |_{1}^{2} - \int_{1}^{2} dx = 2 \ln 2 - 1.$$

2. Приведём пример интеграла, при вычислении которого применим и замену переменной, и интегрирование по частям. Вычислим интеграл $I = \int\limits_{-\pi}^{\pi} \sin x \sqrt{1+\cos^2 x} \ dx$

 ${C}$ делав сначала замену переменной $t = \cos x$, а затем проинтегрировав по частям, получим

$$\begin{split} I &= \int\limits_0^\pi \sin x \sqrt{1 + \cos^2 x} \ dx = \int\limits_{-1}^1 \sqrt{1 + t^2} \ dt = \int\limits_{-1}^1 \frac{1 + t^2}{\sqrt{1 + t^2}} \ dt = \\ &= \int\limits_{-1}^1 \frac{dt}{\sqrt{1 + t^2}} + \int\limits_{-1}^1 t \ \frac{t \ dt}{\sqrt{1 + t^2}} = \ln(t + \sqrt{1 + t^2})|_{-1}^2 + \int\limits_{-1}^1 t \ d\sqrt{1 + t^2} = \\ &= \ln\frac{\sqrt{2} + 1}{\sqrt{2} - 1} + t \ \sqrt{1 + t^2}|_{-1}^1 - \int\limits_{-1}^1 \sqrt{1 + t^2} \ dt = \ln(1 + \sqrt{2}) + 2\sqrt{2} - I. \end{split}$$

Из получившегося относительно I находим

$$I = \ln(1 + \sqrt{2}) + \sqrt{2}.$$

Заметим, рассмотренный интеграл можно вычислить, и применяя только замену переменной. Для этого можно воспользоваться уже вычисленным интегралом $\int 1 + x^2 dx$ (пример в п. 19.4).

 3^* . Покажем, что для любого $n = 1, 2, \ldots$

$$I_n = \int_{0}^{\pi \setminus 2} \sin^n x \ dx = \int_{0}^{\pi \setminus 2} \cos^n x \ dx = \begin{cases} \frac{(n-1)!!}{n!!} \frac{\pi}{2} & \text{при } n \text{ чётном} \\ \frac{(n-1)!!}{n!!} & \text{при } n \text{ нечётном.} \end{cases}$$
(4)

Под $n!!, n \in \mathbb{N}$ понимается произведение всех наутральных чисел, не превышающих n и имеющих ту же чётность, что и число n:

$$(2n)!! = 2 \cdot 4 \cdot \ldots \cdot (2n-2) \cdot 2n,$$

$$(2n+1)!! = 1 \cdot 3 \cdot 5 \dots \cdot (2n-1) \cdot (2n+1)$$

По определению 0!! = 1.

Положив для удобства $I_0=\int\limits_0^{\pi/2}dx=\pi/2$ и проинтегрирорав по частям интеграл I_n при $n\geq 2,$ имеем

$$I_n = \int_0^{\pi/2} \sin^n x \, dx = \int_0^{\pi/2} \sin^{n-1} x \, d(-\cos x) =$$

$$= -\sin^{n-1} x \cos x \Big|_0^{\pi/2} + (n-1) \int_0^{\pi/2} \sin^{n-2} x \cos^2 x \, dx =$$

$$= (n-1) \int_0^{\pi/2} \sin^{n-1} x (1-\sin^2 x) dx = (n-1)I_{n-2} - (n-1)I_n,$$

откуда

$$I_n = \frac{n-1}{n} I_{n-2}. (5)$$

Заметим, что

$$I_0 = \frac{\pi}{2}, \quad I_1 = \int_0^{\pi/2} \sin x \, dx = 1.$$
 (6)

Поэтому при n = 2k + 1,т.е при нечётном n,

$$I_{2k+1} = \frac{2k}{2k+1}I_{2k-1} = \dots = \frac{2k(2k-2)\dots 2}{(2k+1)(2k-1)\dots 1}I_1 = \frac{(2k)!!}{(2k+1)!!},$$
 (7)

а при n=2k, т.е. при чётном n,

$$I_{2k} = \frac{2k-1}{2k} I_{2k-2} = \dots = \frac{(2k-1)(2k-3)\dots 1}{2k(2k-2)\dots 2} I_0 = \frac{(2k-1)!!}{2k!!} \frac{\pi}{2}.$$
 (8)

Равенство интегралов $\int\limits_0^{\pi/2} \sin^n x \; dx$ и $\int\limits_0^{\pi/2} \cos^n x \; dx$ сразу получается с помощью замены переменных $x=\frac{\pi}{2}-t,\; 0\leq t\leq \frac{\pi}{2}.$ Таким образом, формулы (4), доказаны. Из них легко получается формула Валлиса*)

$$\frac{\pi}{2} = \lim_{x \to 0} \frac{1}{2n+1} \left(\frac{(2n)!!}{(2n-1)!!} \right)^2. \tag{9}$$

В самом деле, проинтегрировав по отрезку $[0, \pi/2]$ неравенства

$$\sin^{2n+1} x < \sin^{2n} x < \sin^{2n-1} x, \quad n = 1, 2, \dots,$$

получим

$$\int_{0}^{\pi/2} \sin^{2n+1} x \ dx \le \int_{0}^{\pi/2} \sin^{2n} x \ dx \le \int_{0}^{\pi/2} \sin^{2n-1} x / dx,$$

т.е

$$I_{2n+1} \le I_{2n} \le I_{2n-1}. \tag{10}$$

Отсюда, в силу формул (4) имеем

$$\frac{(2n)!!}{(2n+1)!!} \le \frac{(2n-1)!!}{(2n)!!} \frac{\pi}{2} \le \frac{(2n-2)!!}{(2n-1)!!}.$$
 (11)

Если ввести обозначения

$$x_n = \frac{1}{2n+1} \left(\frac{(2n)!!}{(2n-1)!!} \right)^2, \quad y_n = \frac{1}{2n} \left(\frac{(2n)!!}{(2n-1)!!} \right)^2$$
 (12)

То неравенства (11) можно записать в виде

$$x_n \le \frac{\pi}{2} \le y_n,\tag{13}$$

где

$$y_n - x_n \stackrel{=}{=} \frac{1}{2n} \frac{1}{2n+1} \left(\frac{(2n)!!}{(2n-1)!!} \right)^2 = \frac{1}{2n} x_n \stackrel{\leq}{\underset{(13)}{\leq}}$$
 $\stackrel{\leq}{=} \frac{1}{2n} \frac{\pi}{2} \to 0$ при $n \to \infty$,

и, следовательно, $\lim_{n\to\infty}(y_n-x_n)=0$, т.е. длины отрезков $[x_n,y_n]$, содержащих точку $\pi/2$, стремятся к нулю, а это означает, что

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = \frac{\pi}{2}.$$

Равенство $\lim_{n\to\infty} x_n = \frac{\pi}{2}$ в силу первой формулы (12) и представляет собой формулу Валлиса.

2.2 Задание 3

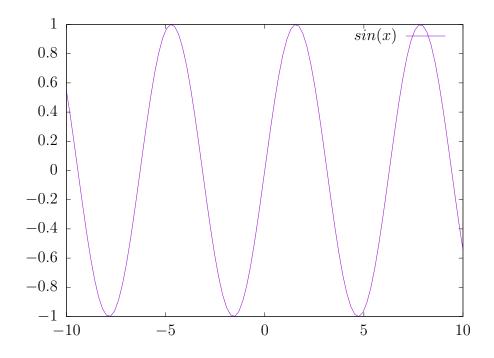


Рис. 1: $\sin(x)$