Министерство образования и науки Российской Федерации ФГБОУ «Петрозаводский государственный университет» Институт математики и информационных технологий Кафедра информатики и математического обеспечения

Отчет по учебной практике (компьютерные технологии в математике)

Выполнил:
Бондар Г. A. группа #22103
r v r
Руководитель практики: к.т.н., доцент О. Ю. Богоявленская
nodnucь
Итоговая оценка:
оценка

Содержание

1	Опи	исание работы	9
2 Результаты работы		3	
	2.1	Задание 2	3
		2.1.1 Признаки сходимости Дирихле и Абеля	3
	2.2	Задание 3	6
		2.2.1 График функции: Парабола	6

1 Описание работы

В рамках курса: "Учебная практика: компьютерные тенологии в математике", мы:

- 1. Освоили инструменты набора и трансдяции математических текстов с помощью издательской системы $atural ET_EX$.
- 2. Овладели инструментами построения научных графиков с помощью системы Gnuplot.

Задание номер 2 представляло собой набор текста из учебника по Математичекмоу Анализу Кудрявцева Л. Д.. Во время выполнения задания мы обращались к пакетам различным пакетам LATEX, например amsmath. При наборе текста учебника нам повстречались различные формулы, интегралы и логорифмы, а также такая структура данных как список. Мы содавали отдельное окружение для параграфов и теорем.

Задание номер 3 представляло собой построение научного графика с помощью системы Gnuplot и вставка его в документ со вторым заданием. График был испортирован с формате: .pdf и внесён в документ второго задания с помощью окружения: figure.

2 Результаты работы

2.1 Задание 2

и ограничена на полуинтервале [a,b), то интеграл $\int_a^b f(x)g(x)dx$ также абсолютно сходится.

В самом деле, произведение интегрируемых по Риману функций также интегрируемо по Риману (свойство 5 в п. 24.1), поэтому функция f(x)g(x) интегрируема на любом отрезке $[a,\eta]\subset [a,b),$ и, следовательно, можно говорить о несобственном интеграле $\int\limits_{a}^{b}f(x)g(x)dx.$

Из ограниченности функции g(x) следует, что существует такая постоянная c>0, что для всех $x\in [a,b)$ выполняется неравенство $|g(x)|\leqslant c$, а поэтому и неравенство $|f(x)g(x)|\leqslant c|f(x)|$, из которого явствует, что сходимость интеграла $\int\limits_a^b|f(x)g(x)|dx$ вытекает, согласно признаку сравнения для сходимости интегралов от неотрицательных функций, из сходимости интеграла $\int\limits_a^b|f(x)|dx$.

Определение абсолютно сходящегося интеграла естественным образом обобщается на несобственный интеграл общего вида, определяемый с помощью правильных разбиений промежутка интегрирования (см. п. 29.1), и для него остаются верными аналоги теорем, доказанных выше в этом пункте для абсолютно сходящихся интегралов специального вида (определение 1, п. 29.1).

2.1.1 Признаки сходимости Дирихле и Абеля.

Теорема 1 (признак Дихле). *Если на полуоси* $x \ge a$:

- 1. функция f непрерывна и имеет ограниченную первообразную;
- 2. функция g непрерывно дифференцируема и убывает, стремясь нулю при $x \to +\infty$, m. e. $\lim_{x \to +\infty} g(x) = 0$

то интеграл

$$\int_{a}^{+\infty} f(x)g(x)dx \tag{1}$$

сходится.

 \triangleright Пусть F - ограниченная первообразная функции f на полуоси $x \geqslant a, F'(x) = f(x)$. По условию функция f непрерывна, поэтому функция F непрерывно дифференцируема. Проинтегрируем по частям интеграл $\int f(x)g(x)dx, a < b < +\infty$:

$$\int_{a}^{b} f(x)g(x)dx = \int_{a}^{b} g(x)dF(x) = F(b)g(b) - F(a)g(a) - \int_{a}^{b} F(x)g'(x)dx.$$
 (2)

Поскольку по условию функция F ограничена на полуоси $x \geqslant a$, то существует такая постоянная c > 0, что для всех $x \geqslant a$ выполняется неравенство

$$|F(x)| \leqslant c \tag{3}$$

u, следовательно, $|F(b)g(b)| \leqslant c|g(b)|$. B силу стремления κ нулю функции g при $x \to +\infty$ отсюда получаем

$$\lim_{b \to +\infty} F(b)g(b) = 0. \tag{4}$$

Докажем теперь, что интеграл $\int\limits_{0}^{b}F(x)g'(x)dx$, стоящий в правой части равенства (2), абсолютно сходится. Из убывания функции g(x) (второе условие теоремы) вытекает, что $g'(x) \leq 0 \ npu \ x \geqslant a, \ m. \ e.$

$$|g'(x)| = -g'(x) \tag{5}$$

Далее, из того, что функция q при $x \geqslant a$, убывая, стремится к нулю, когда $x \to +\infty$, следует, что $g(x) \geqslant 0$ при $x \geqslant a$, в частности,

$$g(b) \geqslant 0 \tag{6}$$

В результате
$$\int\limits_{a}^{b} |F(x)g'(x)| \, dx = \int\limits_{(29.45)}^{b} -\int\limits_{a}^{b} |F(x)|g'(x)dx \leqslant \int\limits_{(29.43)}^{b} -c\int\limits_{a}^{b} g'(x)dx = c[g(a)-g(b)] \leqslant cg(a)$$

Таким образом, множество интегралов $\int_a^b |F(x)g'(x)| \, dx$ при всех $b \geqslant a$ ограничено сверxy, а это, согласно лемме n. 29.3, u означает сходимость интеграла $\int_a^{+\infty} |F(x)g'(x)| \, dx$. Итак, интеграл $\int_{a}^{+\infty} F(x)g'(x)dx$ абсолютно, а следовательно, и просто сходится, т. е. существует конечньй предел

$$\lim_{b \to +\infty} \int_a^b F(x)g'(x)dx = \int_a^{+\infty} F(x)g'(x)dx \tag{7}$$

В силу выполнения условий (4) и (7) из равенства (2) следует существование конечного предела

$$\lim_{b \to +\infty} \int_{a}^{b} f(x)g(x)dx = -F(a)g(a) - \int_{a}^{+\infty} F(x)g'(x)dx$$

что и означает сходимость интеграла (1). ⊲

Теорема 2 (признак Абеля). *Если на полуоси* $x \ge a$:

1. Функиия f непрерьвна и интеграл

$$\int_{a}^{+\infty} f(x)dx \tag{8}$$

2. функция д непрерывно дифференцируема, ограничена и монотонна;

то интеграл

$$\int_{-\infty}^{+\infty} f(x)g(x)dx$$

сходится.

⊳ Покажем, что эта теорема вытекает из предыдущей. Прежде всего отметим, что интегралы

$$\int_{a}^{+\infty} f(x)g(x)dx \ u \int_{a}^{+\infty} f(x)[-g(x)]dx$$

сходятся или расходятся одновременно и что в силу монотонности функции д одна из функций д или — д убывает. Пусть для определенности убывает функция д. В силу ее ограниченности и монотонности существует конечный предел

$$\lim_{x \to +\infty} g(x) = c$$

а так каю функция g убывает, то, убывая, стремится к нулю и разность g(x)-c при $x\to +\infty$.

Представим произведение f(x)g(x) в виде

$$f(x)g(x) = f(x)[g(x) - c] + cf(x)$$
 (9)

В силу первого условия теоремы интеграл $\int_a^{+\infty} cf(x)dx$ сходится. Из этого же условия следует, что интеграл $F(x)^a = \int_a^x f(t)dt, x \geqslant a$, ограничен. В самом деле, из существования конечного предела $\lim_{x\to+\infty} F(x) = \int_a^x f(t)dt$ следует ограниченность функции F в некоторой окрестности $U(+\infty) = \{x: x > b\}$ бесконечно удаленной точки $+\infty$ (свойство 1° из п. 6.7). На отрезке же [a,b] функция F ограничена, ибо она непрерывна. В результате функция F ограничена на всей полупрямой $x \geqslant a$. Функция F является первообразной функции f, тем самым функция f имеет ограниченную первообразную при $x \geqslant a$.

Таким образом, для интеграла $\int_{a}^{+\infty} f(x)[g(x)-c]dx$ выполнены все условия признака Дирихле, и потому этот интеграл сходится. В силу доказанного из равенства (9) следует сходимость интеграла

$$\int_{a}^{+\infty} f(x)g(x)dx. \triangleleft$$

2.2 Задание 3

2.2.1 График функции: Парабола

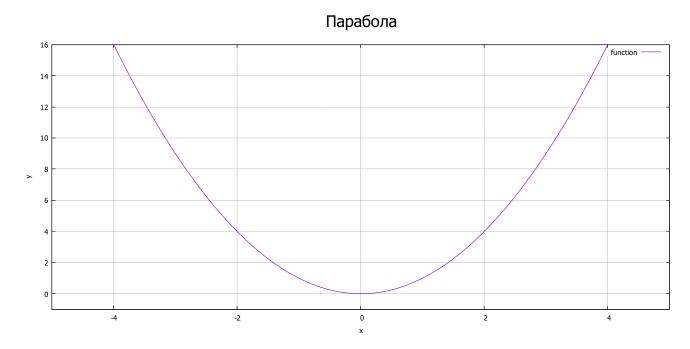


Рис. 1: График Параболы