Министерство образования и науки Российской Федерации ФГБОУ «Петрозаводский государственный университет» Институт математики и информационных технологий Кафедра информатики и математического обеспечения

Отчет по учебной практике (компьютерные технологии в математике)

Быполнила:
Ефимова А. А. группа 22104
nodnucb
noonaco
Руководитель практики:
к.т.н., доцент О. Ю. Богоявленская
,,,,
nodnucb
noonaco
Итоговая оценка:

Петрозаводск – 2022

оценка

Содержание

42	2 Описание работы	3
43	В Результаты работы	4
	43.1 Задание 2	4
	43.2 Прямой метод отыскания точек условного экстремума	4
	43.3 Метод неопределенных множителей Лагранжа	6
	43.4 Задание 3	7

42 Описание работы

В ходе прохождения компьютерной практики по дисциплине "Компьютерные технологии в математике"на протяжении 2 семестра были получены следующие навыки:

- 1. Работа с текстовым редактором LATEX
 - (а) набор математическим формул
 - (b) оформление рубрик и специальных абзацев
 - (с) создание окружений для оформления лемм, теорем и пр.
- 2. Работа с графическим редактором gnuplot
 - (а) оформление графика математической функции

В результате прохождения практики были выполнены две задачи:

- 1. написание математического текста (в качестве задания 2)
- 2. построение графика функции $z = x^2 y^2$ (в качестве задания 3)

содержание задач описано в соответствующих разделах данного отчета.

43 Результаты работы

43.1 Задание 2

§41. Условный экстремум

43.2 Прямой метод отыскания точек условного экстремума.

Пусть на множестве $X\subset R^n$ задано m+1 функций f_0,f_1,\ldots,f_m ,и пусть X_0 – подмножество множества X, на котором помледние m функций одновременно обращаются в нуль:

$$X_0 = \{x \in X : f_1(x) = \dots = f_m(x) = 0\}$$

Уравнения

$$f_1(x) = 0, \dots, f_m(x) = 0$$
 (41.1)

называются уравнениями связи.

Определение 1 Точка $x^{(0)} \in X_0$ называется точкой условного или относительного экстремума функции f_0 при выполнении ксловий связи (41.1), если она является точкой обычного экстремума сужения функции f_0 на множестве X_0

Точка условного экстремума может быть либо точкой условного (строго) максимума, либо точкой условного (строго) минимума.

Если $x^{(0)}$ — точка услоного экстремума функции f^0 , то говорят, что функция f_0 имеет в этой точке условной экстремум.

 Пример. Рассмотрим функцию $f(x,y)=y^2-x^2$ (рис.145). Она не имеет обычных эксремумов.

При уравнении связи y=0 имеем $f(x,0)=-x^2$. Эта функция имеет максимум при x=0. Следовательно, точка (0,0) является точкой условного эксремума функции $f(x,y)=y^2-x^2$ при уравнении связи x=0

Если в качестве уравнения связи взять уравнение y=x+1, то $f(x,x+y)=(x+1)^2-x^2=x^2+1$. Эта функция не имеет экстремумов. Поэтому функция $f(x,y)=y^2-x^2$ не имеет условного эксремума при уравнении связи y=x+1.

Метод, примененный при решений этой задачи, можно применить

и в общем случае для изучения условного экстремума.

Пусть все функции f_0, f_1, \ldots, f_m непрерывно дифференцируемы в некоторой окрестности точки $x^{(0)}$, а градиенты $\nabla f_1, \nabla f_2, \ldots, \nabla f_m$ последних m функций линейно зависимы в точке $x^{(0)}$, или, что то же самое, ранг матрицы Якоби

$$\begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \cdots & \cdots & \cdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

$$(41.2)$$

равен m (отсюда, очевидно, следует, что $m \leq n$, так как ранг матрицыне может быть больше числа ее столбцов).

Равенство ранга матрицы (41.2) числу m равносильно существованию у нее миноров порядка m, не равного нулю.

Пусть для определенности

$$\left. \frac{\partial(f_1, \dots, f_m)}{\partial(x_1, \dots, x_m)} \right|_{x^{(0)}} = 0$$

и n>m. Тогда согласно теореме о неявных функциях, система уравнений 41.1 в некоторой окрестности U точки $x^{(0)}=(x_1^{(0)},\ldots,x_1^{(0)})$ в пространстве R^n переменных x_1,\ldots,x_n равносильна заданию m функций

$$\begin{pmatrix}
x_1 = \phi(x_{m+1}, \dots, x_n), \\
\dots \\
x_m = \phi(x_{m+1}, \dots, x_n)
\end{pmatrix}$$
(41.3)

в некоторой окрестности U точки $\tilde{x}^{(0)} = (x_{m+1}^{(0)}, \dots, x_n^{(0)})$ в пространстве R^{n-n} переменных (x_{m+1}, \dots, x_n) .

Иначе говоря, существуют такие окрестности $U=U(x^{(0)})$ и $\tilde{U}=\tilde{U}$ $(\tilde{x}^{(0)})$ точек $x^{(0)}$ и $\tilde{x}^{(0)}$ соответственно в пространствах R^n и R^{n-m} , что точка $x=(x_1,\ldots,x_n)\in U$ удовлетворяет условию (41.1) огда и только тогда и только тогда, когда она имеет вид $(\varphi_1(\tilde{x}),\ldots,\varphi_m(\tilde{x}),x_{m+1},\ldots,x_n),\tilde{x}=(x_{m+1},\ldots,x_n)\in U.$

Определим функцию $f_0(x), x = (x_{m+1}, \dots, x_n)$, как результат подстановки выражений (41.3) для переменных x_1, \dots, x_n в $y = f_0(x_1, \dots, x_n)$, т.е.

$$\overset{\sim}{f_0}(\tilde{x}) = \overset{\sim}{f_0}(x_{m+1}, \dots, x_n) \overset{def}{=} f_0(\varphi_1(\tilde{x}), \dots, \varphi_m(\tilde{x}), x_{m+1}, \dots, x_n).$$

Функция \tilde{f}_0 (\tilde{x}) определена в вышеуказанной фокрестности \tilde{U} точки $\tilde{x}^{(0)}$.

Ввиду равносильности условий (41.1) и (41.3) точка $x^{(0)}$ является точкой условного экстремума для функций f_0 при выполнении уравнений связи (41.1) тогда и только тогда, когда точка $\tilde{x}^{(0)}$ является точкой обычного экстремума для фунция $\overset{\sim}{f_0}$.

Затруднение при практическом использовании изложенного метода сведения задачи отыскания точек условного экстремума к задаче отыскания точек обычного экстремума состоит в том, что решение системы уравнений (41.1) не выражается через элементарные функции даже во многих простейших случаях. В следующем пункте будет изложен метод отыскания точек условного экстремума, значительно более удобный для применения

43.3 Метод неопределенных множителей Лагранжа.

Теорема 1 Пусть функция f_0, f_1, \ldots, f_m непрерывно дифференцируемы в окрестности точки $x^{(0)} \in R^n, n > m$. Если $x^{(0)}$ является точкой условного экстремума функции f_0 относительно уравнений связи (41.1), то в этой градиенты $\nabla f_0, \nabla f_1, \ldots, \nabla f_m$ линейно зависимы, т.е. существуют такие числа $\lambda_j, j = 0, 1, \ldots, m$, одновременно не равные нулю, что

$$\lambda_0 \nabla f_0 + \lambda_1 \nabla f_1 + \dots + \lambda_m \nabla f_m = 0. \tag{41.4}$$

Следстие 1 Если в точке $x^{(0)}$ условного экстремума функции f_0 относительно уравнений связи (41.1) градиенты $\nabla f_1, \ldots, \nabla f_m$ линейно независимы, то существуют такие числа $\lambda_1, \ldots, \lambda_m$, что

$$\nabla f_0 + \lambda_1 \nabla f_1 + \dots + \lambda_m \nabla f_m = 0, \tag{41.5}$$

или, в координатной форме,

$$\frac{\partial f_0}{\partial x_i} + \sum_{k=1}^m \lambda_k \frac{\partial f_k}{\partial x_i} = 0, i = 1, 2, \dots, n.$$
(41.6)

Существование множителей $\lambda_0, \lambda_1, \ldots, \lambda_m$ в теореме 1 (соответственно множителей $\lambda_1, \ldots, \lambda_m$ в ее следствии) является необходимым условием для точки относительного экстремума $x^{(0)}$ функции f_0 при выполнении уравнений связи (41.1). Если градиенты $\nabla f_1, \ldots, \nabla f_m$ линейно независимы, то функция

$$F(x) = f_0(x) + \lambda_1 f_1(x) + \dots + \lambda_m f_m(x), \tag{41.7}$$

где числа $\lambda_1,\dots,\lambda_m$ удовлетворяют условию $(\ref{eq:constraint})$, называется функцией Лагранжа, а сами числа $\lambda_1,\dots,\lambda_m$ -множителями Лагранжа.

Условие (41.6) означает, что $\nabla F = 0$, или, в координатной записи,

$$\frac{\partial F(x^{(0)})}{\partial x_i} = 0, i = 1, 2, \dots, n,$$
(41.8)

иначе говоря,

$$dF(x^{(0)}) = 0. (41.9)$$

Таким образом, точка $x^{(0)}$ является стационарной точкой функции Лагранжа. \triangleleft Пусть точка $x^{(0)} = (x_1^{(0)}, \dots, x_n^{(0)})$ удовлетворяет уравнениям связи (41.1):

$$f_k(x^{(0)}) = 0, k = 1, 2, \dots, m$$
 (41.10)

и в ней градиенты $\nabla f_0, \nabla f_1, \dots, \nabla f_m$ линейно независимы. Покажем, что в этом случае точчка $x^{(0)}$ не может быть точой условного экстремума

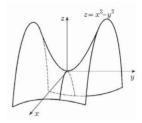


Рис. 145

43.4 Задание 3