Министерство образования и науки Российской Федерации ФГБОУ «Петрозаводский государственный университет» Институт математики и информационных технологий Кафедра информатики и математического обеспечения

Отчет о научно-исследовательской работе

Компьютерный практикуум

Выполнил:	
студент 1 курса группы 221	101 К.Д.Петров
	no dnucь
TT v	
Научный руководитель:	
к.т.н., доцент О.Ю.Богоявл	енская
Оценка руководителя:	
	$no\partial nuc$
Представлен на кафедру	
<u> </u>	_» 2021 г.
_	подпись принявшего работу

Содержание:

- 1. Краткое описание процесса разработки изображений поверхности (индивидуальное задание) и рисунок поверхности в форматах pdf и png.
- 2.Краткое описание процесса разработки таблицы с указание средств оформления ее основных структурных элементов, таблица (индивидуальное задание).

Краткое описание процесса разработки изображений поверхности

Для построения поверхности эллипсоида через putty использовался следующий сценарий.

```
gnuplot
set dummy u, v
set key bmargin center horizontal Right noreverse enhanced autotitle nobox
set parametric
set view 45, 50, 1, 1
set isosamples 50, 10
set hidden3d back offset 1 trianglepattern 3 undefined 1 altdiagonal bentover
set style data lines
set ztics norangelimit -1.00000,0.25,1.00000
set urange [ 0.00000 : 6.28319 ] noreverse nowriteback
set vrange [ 0.00000 : 6.28319 ] noreverse nowriteback
set xrange [ * : * ] noreverse writeback
set x2range [ * : * ] noreverse writeback
set yrange [ * : * ] noreverse writeback
set y2range [ * : * ] noreverse writeback
set zrange [ -1.00000 : 1.00000 ] noreverse writeback
set cbrange [ * : * ] noreverse writeback
set rrange [ * : * ] noreverse writeback
NO_A NIMATION = 1
splot (1-0.2*\cos(v))*\cos(u), (1-0.2*\cos(v))*\sin(u), 0.2*\sin(v)
```

Далее полученный файл, с помощью команды includegraphics1.eps, вставляется в нужный документ LateX.

Для получения изображения поверхности в других форматах (pdf/png) используются следующие сценарии:

```
gnuplot
set term pdfcairo/pngcairo
set output '1.pdf/.png'
```

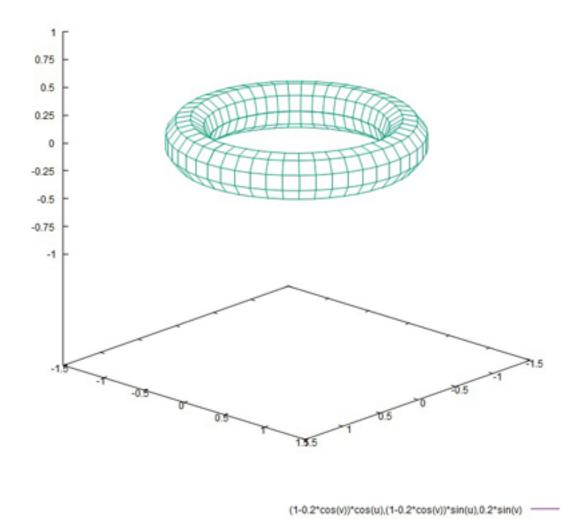


Рис. 1: Тор.

set mapping spherical $set \ parametric \\ splot \ cos(u)*cos(v),2*sin(u)*cos(v),10*sin(v)$

Сделав все эти пункты, на выходе мы получаем изображение поверхности.

Таблица 1: Z - преобразования

Сигнал $x[n]$	Z-Преобразование	Область сходимости
$\delta[n]$	1	$\forall z$
$\delta[n-n_0]$	$\frac{1}{z^{n_0}}$	$z \neq 0$
$\theta[n]$	$\frac{z}{z-1}$	z > 1
$a^n\theta[n]$	$\frac{1}{1-az^-1}$	z > a
$na^n\theta[n]$	$\frac{az^-1}{(1-az^-1)^2}$	z > a
$-a^n\theta[-n-1]$	$\frac{1}{1-az^-1}$	z < a
$-na^n\theta[-n-1]$	$\frac{az^-1}{(1-az^-1)^2}$	z < a
$cos(\omega_0 n)\theta[n]$	$\frac{1 - z^{-1} cos(\omega_0)}{(1 - 2z^{-1} cos(\omega_0) + z^{-2})}$	z > 1
$sin(\omega_0 n)\theta[n]$	$\frac{z^{-1}sin(\omega_{0})}{(1-2z^{-1}cos(\omega_{0})+z^{-2})}$	z > 1
$a^n cos(\omega_0 n) \theta[n]$	$\frac{1-z^{-}azcos(\omega_{0})}{(1-2z^{-}1cos(\omega_{0})+a^{2}z^{-}2}$	z > a
$a^n sin(\omega_0 n)\theta[n]$	$\frac{az^{-1}sin(\omega_0)}{(1-2z^{-1}cos(\omega_0)+a^2z^{-2})}$	z > a

Краткое описание процесса разработки таблицы

Построение таблицы z преобразований:использовалось окружение table.

- 1.Для задания имени таблицы использовалась команда caption.
- 2.Для данной таблицы требуется 3 столбца, следовательно использовалось окружение tabular.
- 3. Произвели центрирование текста в ячейках.
- 4. Выбираем каким образом будут разделены столбцы между собой. begin {tabular}|c|c|c|

Заполнение таблицы:

- 1.Для разделения столбцов использовался символ &
- 2.Для перехода на следующую строку использовалась двойная обратная наклонная и команда hline.

Сделав все эти пункты, на выходе мы получаем таблицу.