Министерство образования и науки Российской Федерации ФГБОУ «Петрозаводский государственный университет» Институт математики и информационных технологий Кафедра информатики и математического обеспечения

Отчет о научно-исследовательской работе

Компьютерный практикуум

Выполнил:		
студент 1 курса группы 22101 Д.Д.Р	^Р ойтбурд	
	$no\partial nuc$	
Научный руководитель:		
к.т.н., доцент О.Ю.Богоявленская		
Оценка руководителя:		
оценка руководители.		
	nodnucb	
Представлен на кафедру		
«»	2021 г.	
- $nodnucb$	принявшего работу	

Содержание:

- 1. Краткое описание процесса разработки изображений поверхности (индивидуальное задание) и рисунок поверхности в форматах pdf и png.
- 2.Краткое описание процесса разработки таблицы с указание средств оформления ее основных структурных элементов, таблица (индивидуальное задание).

Краткое описание процесса разработки изображений поверхности

Для построения поверхности эллипсоида через putty использовался следующий сценарий.

```
gnuplot set term post eps set output 'zxc.eps' set mapping spherical set parametric \operatorname{splot} \cos(u) * \cos(v), 2 * \sin(u) * \cos(v), 10 * \sin(v)
```

Далее полученный файл, с помощью команды includegraphicszxc.eps, вставляется в нужный документ LateX.

Для получения изображения поверхности в других форматах (pdf/png) используются следующие сценарии:

```
gnuplot
set term pdfcairo/pngcairo
set output 'zxc.pdf/.png'
set mapping spherical
set parametric
splot cos(u)*cos(v),2*sin(u)*cos(v),10*sin(v)
```

Сделав все эти пункты, на выходе мы получаем изображение поверхности.

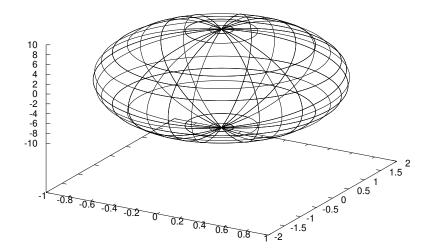


Рис. 1: Сфероид.

Краткое описание процесса разработки таблицы

Построение таблицу преобразования Лапласа :использовалось окружение table.

- 1.Для задания имени таблицы использовалась команда caption.
- 2.Для данной таблицы требуется 6 столбца, следовательно использовалось окружение tabular.
- 3. Произвели центрирование текста в ячейках.
- 4.Выбираем каким образом будут разделены столбцы между собой.

 $\operatorname{begin}\{\operatorname{tabular}\}|c|c|c|c|c|$

Заполнение таблицы:

- 1.Для разделения столбцов использовался символ &
- 2.Для перехода на следующую строку использовалась двойная обратная наклонная и команда hline.

Сделав все эти пункты, на выходе мы получаем таблицу.

Таблица 1: Таблицы преобразования Лапласа

Nº	Оригинал	Изображение	Nº	Оригинал	Изображение
1	1	$\frac{1}{p}$	12	$t\cos\omega t$	$\frac{2p\omega}{(p^2+\omega^2)^2}$
2	t	$\frac{1}{p^2}$	13	$t\sin\omega t$	$\frac{p^2 - \omega^2}{(p^2 + \omega^2)^2}$
3	t^2	$\frac{2}{p^3}$	14	$\operatorname{sh} wt$	$\frac{\omega}{p^2 - \omega^2}$
4	$t^n, n \in N$	$\frac{n!}{p^{n+1}}$	15	$\operatorname{ch} wt$	$\frac{p}{p^2-\omega^2}$
5	$t^{\alpha}(\alpha > -1)$	$\frac{\Gamma(\alpha+1)}{p^{\alpha+1}}$	16	$e^{\lambda t}\sin\omega t$	$\frac{\omega}{(p-\lambda)^2 + \omega^2}$
6	$e^{\lambda t}$	$\frac{1}{p-\lambda}$	17	$e^{\lambda t}\cos\omega t$	$\frac{p-\lambda}{(p-\lambda)^2 + \omega^2}$
7	$te^{\lambda t}$	$\frac{1}{(p-\lambda)^2}$	18	$\frac{\sin t}{t}$	$\operatorname{arcctg} p$
8	$t^n e^{\lambda t}, n \in N$	$\frac{n!}{(p-\lambda)^{n+1}}$	19	$\frac{1}{t}(1-e^{-t})$	$\ln(1+\tfrac{1}{p})$
9	$t^{\alpha}e^{\lambda t}, \alpha > -1$	$\frac{\Gamma(\alpha+1)}{(p-\lambda)^{\alpha+1}}$	20	$\delta(t)$	1
10	$\sin \omega t$	$\frac{\omega}{p^2 + \omega^2}$	21	$\delta(t-\alpha), \alpha > 0$	$e^{-\alpha p}$
11	$\cos \omega t$	$\frac{p}{p^2 + \omega^2}$			