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Mobile radiation detector systems aim to help identify dangerous sources of radiation
while minimizing frequency of false alarms caused by non-threatening nuisance sources
prevalent in cluttered urban scenes. We develop methods for spatially aggregating evi-
dence frommultiple spectral observations to simultaneously detect and infer properties of
threatening radiation sources.

Our Bayesian Aggregation (BA) framework allows sensor fusion across multiple mea-
surements to boost detection capability of a radioactive point source, providing several
key innovations previously unexplored in the literature. Our method learns the expected
Signal-to-Noise Ratio (SNR) trend as a function of source exposure using Bayesian non-
parametrics to enable robust detection. The method scales well in spatial search by
leveraging conditional independence and locality in Bayesian updates. The framework
also allows modeling of source parameters such as intensity or type to enable property
characterization of detected sources. Approaches for incorporating modeling information
into BA are compared and benchmarked with respect to other data fusion techniques.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

From preventing the proliferation of nuclear weapons
to assessing radiation health risks from a collapsed power
plant, a nation's capability to effectively monitor radiation
sources in its cities is increasingly crucial to its safety. Dirty
bombs built from radioactive material or radioactive
emanation from stolen medical or industrial-use isotopes
are frightening but very real threat scenarios. Mobile
radiation detection systems provide promise for effective
nuclear search and broad area monitoring for threats in
urban scenes. They aim to help law enforcement officers
ndon).
detect and localize sources of radiation in complex urban
environments that have frequently changing radiation
landscapes.

Advances in hardware design have allowed for the
ability to collect significant amounts of radiation spectrum
data. One of the fundamental challenges is to automate the
mining and analysis of the large amounts of sensor data
that can be collected in real time to provide sensitive
detection capabilities but maintain low false detection
rates. Naturally occurring variability in the background
radiation photon count rates as well as possible nuisance
sources in an environment can cause false alarms for
mobile radiation detector systems. The remedy is to
account for the expectable variation in background and
common potential nuisances via computational models, so
a system can tell a truly threatening radioactive source of
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interest from a benign one. For appropriate response by
authorities, a significant useful capability of algorithms is
to infer properties of a detected radiation source such as
its intensity or isotope type.

1.1. Related work

The problem of detecting a radioactive point source
from observations of radiation spectra has been previously
studied by many efforts.

A well-known early study in radiation source detection
looked at the case of detecting a fully isotropic source
using a mobile spectrometer [1]. Since background photon
count rates are typically unknown, the study identified
that characterizing and suppressing the background is an
important challenge in finding the source. Interestingly,
the mathematical model they used found that background
and source photon counts both scale proportionally with
the surface area of the sensor, making it difficult to gain
from a larger detector.

To improve robustness and performance on actual
collected sensor data, algorithms in the literature lever-
aged statistical models that could capture variability and
imperfections in data in an attempt to improve detection
of radioactive sources in real world settings. These for-
mulations were based both on frequentist and Bayesian
approaches and resulted in better signal separation mod-
els for signal and noise components on actual collected
sensor data.

One of the popular approaches is K-Sigma, which
models collected photon counts under a Poisson likelihood
model that takes into account the distribution of total
gross photon counts in collected radiation spectra [2]. The
K specifies a detection parameter such that a spectrum is
flagged as containing a source if the total counts in the
spectrum is larger than K standard deviations away from
the total counts in a mean background spectrum.

Building upon the anomaly detection theme, the
Spectral Anomaly Detector algorithm [3] employs Principal
Component Analysis (PCA) to capture major directions of
background fluctuation and variation. The Spectral
Anomaly Detector algorithm can be used to capture the
key principal linear directions of variance in background
spectra containing multiple energy bins. Projecting a new
radiation observation onto a learned basis for background
(and subtracting out projections in these directions)
results in a spectral anomaly score, which can be used to
decide whether the observation exhibits source-like
behavior or is more background-like.

Both vanilla K-Sigma and the Spectral Anomaly Detec-
tor score individual sensor spectrum observations. Using
Bayesian techniques, algorithms could be extended to
account for fluctuations in signal and noise across multiple
correlated sensor observations via Bayesian data fusion [4–
6]. For instance, particle filters [7–9] are a popular
approach to aggregating multiple observations to detect a
target in a Bayesian framework.

Aside from the Bayesian data fusion approach, the
Weighted Combining (WC) method [10] has been popular
for fusing evidence from multiple observations to detect
sources. The WC method uses 1=r2 distance weighting on
measurements to flag a source location. The method is
presumed to be very powerful for flagging the locations in
the environment that maximize the estimated SNR at the
locations, given the source is isotropic. The algorithm
maintains a geographic background “map” and a geo-
graphic source “map” which are iteratively updated. Given
a new measurement, WC estimates the signal and noise
components of the measurement and adds these estimates
to its running estimates of signal and noise at geographic
locations in its maps. The geographic location with the
highest SNR score, after aggregation, is predicted to be the
source location.

1.2. Innovations of Bayesian aggregation

Our Bayesian Aggregation (BA) approach builds upon
many of the existing works but provides many improve-
ments not previously explored in the literature.

First, BA provides key innovation on the radiation source/
background signal separation problem. It is one of the pre-
mier Bayesian methods to fully utilize spectral information in
empirical modeling of data likelihoods from real-world
background data instead of just total photon counts
in a spectrum. Using nonparametric density estimation
techniques and appropriate measurement scoring schemes,
BA can effectively suppress background radiation and non-
threatening radiation emanated by nuisance sources without
making a priori parametric assumptions about the distribu-
tion of local background and nuisances. These capabilities
help provide robust signal separation when compared to
other methods of aggregating evidence.

Second, our framework enables not only source locali-
zation from multiple spatially-correlated observations but
inference of characteristics of the source such as the source
intensity multiplier or source type. The inferential cap-
abilities of BA allow simultaneous tracking of multiple,
multi-modal hypotheses about the source parameters in a
joint space while detecting the source. Modeling of source
intensity and source type information in a Bayesian fra-
mework enables this previously unexplored capability.

BA resembles the framework underlying particle fil-
tering [11,18] and sequential importance sampling [12]
and, given sufficiently extensive posterior sampling, offers
equivalent theoretical detection performance as particle
filters [13]. However, BA is designed to be substantially
more computationally scalable by using fast data struc-
tures and a manageably complex space of source para-
meter hypotheses. By using data structures such as kd-
trees to speed up computation of hypotheses, BA can
enable rapid evaluation of many real world scenarios.
2. Methods

2.1. Data

In this study, we focus on gamma-ray spectrometry
measurements, where each measured photon has an
associated scalar energy estimate. A single gamma-ray
spectrometry measurement (after calibration) is a 128-
dimensional numeric vector that histograms the energies



Fig. 1. Division of the available urban data into 8 geographically disjoint
subsets. These subsets are chosen as training, validation, and test disjoint
subsets of data to avoid overfitting while performing experiments.
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of received particles using 128 different energy bins,
quadratically spaced across the 80–2800 keV energy
range. Each measurement is collected at a particular time
and location and is a 128-dimensional vector of photon
counts received at the 128 monitored energy levels. Since
different threats have characteristic photon energies, the
use of spectra provides resolution into the type of threat
being detected. The choice of 128 bins and quadratic
energy binning provides maximal resolution on the threat
space, putting particular emphasis on the low energy
range where threats are likely to appear in the gamma-ray
sensor's sensitivity band.

Our experimental set contains real field data collected
over a period of five consecutive days using a double
4�16 in NaI planar spectrometer installed on a van driv-
ing in an urban area. The data contains 70,000 radiation
spectrum measurements, reflective of background and any
existing nuisance sources, collected at 2 s intervals while
the vehicle was in motion. Annotation data recorded for
each measurement include timestamp, longitude and
latitude obtained from the GPS receiver, and the current
speed of the vehicle.

Fig. 1 shows the GPS layout of the primary 2.5-km by
2.5-km rectangular region of collected data and parti-
tioning of it into geographically disjoint subregions. Par-
titioning into subregions allowed us to use geographically
disjoint sets of data for training, validating, and testing the
models to avoid overfitting. Each geographic subregion
was traversed multiple times during the five-day data
collection effort, allowing models to capture temporal
variation.

2.2. Point source simulator

A source simulator is used to inject user-supplied syn-
thetic radiation profiles into collected background radia-
tion data to simulate the presence of point sources. Given a
geographic subregion, the simulator chooses a random
location which is within a prescribed distance to at least
one measurement (and not too close to surrounding
measurements) and adds simulated source photon counts
to the pre-existing background measurements. The simu-
lator models injection counts, taking into account relative
location of the sensor and the source, velocity of the
sensor-carrying vehicle, measurement time interval, and
the Poisson distribution of photon counts.

Fig. 2a shows a typical background radiation spectrum
measurement, a fissile material source template, and the
signal that results from the additive injection. Fig. 2b
shows the effect of an example injection geographically on
a test subregion of the city. An injected point source affects
proximal measurements (i.e. within 20 m). Simulation can
include varying the point source intensity or isotope type
of injected source.

2.3. Bayesian aggregation

BA relies on field data and injected synthetic sources to
learn statistical models of expected threat. Training pro-
cesses are computationally affordable, and models can be
cheaply and frequently re-trained if needed (for instance,
to adjust to new environment backgrounds). Trained
models are used to process sequences of new spectral
measurements taken along the route of the mobile sensor.
The BA pipeline has three key stages as shown in Fig. 3.

BA receives as input radiation spectra and map loca-
tions of measurements. The first stage of BA is to estimate
the Signal-to-Noise Ratio (SNR) of a measurement in terms
of its source signal and background noise components.
Once the SNR is estimated, location, velocity, and other
positioning information can help quantify the expected
exposure to a source. The second stage of BA builds a
probabilistic sensor model that can score whether the
measurement follows the expected exposure-SNR trend
for a point source at hypothetical source locations on the
map. Finally, evidence is spatially aggregated across mul-
tiple observations using Bayesian data fusion to robustly
test these hypothetical source locations and render a
threat probability map.
2.3.1. Training measurement SNR estimators
The first phase of the Bayesian Aggregation algorithm

involves training a SNR estimator for single measurements
using the geographic region allocated for “training” in our
field data. A radiation measurement Mp (a 128�1 vector),
collected at a particular location and time, is presumed to
be composed of photon counts due to background and
source components. The p subscript on the measurement
indicates a different time and geographic location for each
single spectral measurement. The scalar total sum of
photon counts in a collected spectrum observation, Yp, is
presumed to given by

Yp ¼ BpþSp ð1Þ

where Bp is the scalar number of total photon counts from
background in that spectrum and Sp is the scalar number
of total photon counts from the source of interest in that
spectrum. Note that Sp can be zero if the particular spectral
observation Mp is unaffected by the source.

The goal of SNR estimation is to estimate the quantities
Bp and Sp in Mp. The scalar Signal-to-Noise Ratio (SNR) of



Fig. 3. Stages of BA pipeline.
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Fig. 2. Snapshot of radiation simulator capabilities. (a) shows an example of the source injection process into background radiation, while (b) provides a
geographic view of source injection in an example geographic subregion of the data.
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the measurement Mp can then be defined as:

SNR Mp
� �¼ Spffiffiffiffiffi

Bp
p ð2Þ

The signal term is given by the source signal estimate,
and the noise term is formed from the background esti-
mate. Due to the Poisson character of the data generating
process,

ffiffiffiffiffi
Bp

p
is the noise term in the SNR [14].

We experimented with two types of measurement SNR
estimators commonly used in practice: anomaly detectors
and match filters. The goal of anomaly detection is to flag
spectra that are distinct from typical background. This
approach assumes no knowledge of a source template and
simply uses a model of expected background variability to
measure the background (typical variation) and source
(unusual deviation) components of a measurement. Match
filtering, in contrast, allows the user to specify a source
template or design to match spectrum observations
against. Both approaches estimate Sp and Bp to score the
SNR of a measurement.

In our anomaly detection approach, we leverage the
well-known technique of Principal Components Analysis
(PCA) to learn a model for typical background [15]. If we
stack the P spectral measurements MpAP into a P � 128
data matrix, X, PCA calculates the eigendecomposition of
XTX using Singular Value Decomposition:

XTX ¼ VΣVT ð3Þ
where V contains the eigenvectors of the original data. The
top few eigenvectors (or “principal components”) of V are
the linear directions that retain most of the background
variation of the original data. These identified components
of background can subsequently be removed from new
spectral observations, leaving an estimate of source signal.

In our experiments, we use the Spectral Anomaly
Detector version of PCA [3] that estimates V using the
correlation matrix of background data rather than the
covariance. This ensures that all energy features are on the
same scale and avoids overly biasing the PCA model
towards the most common background energies. The
resulting compressed space is used as the null-space
model, capturing the expected types of variability in the
background data. We retain the top five principal com-
ponents (PCs) in V since these have been empirically
shown to capture the principal modes of variation in the
radiation data, with more components not making a sig-
nificant difference [3].

The 128�5 matrix of the top 5 PCs in V, V1:5, can be
used to estimate the SNR of new measurements. The data
projection of a measured spectrum Mp (where Mp is a
128�1 vector) on the learned PCA basis is given by
T ¼MpV1:5. The total sum of squared reconstruction error
over all bins serves as the scalar source estimate,
Sp ¼ jjMp�TVT

1:5jj2. The spectral anomaly detector treats
the noise estimate,

ffiffiffiffiffi
Bp

p
, as proportional to the total counts

in the spectrum and simply uses it as a normalizer.ffiffiffiffiffi
Bp

p ¼ jMpj1. The L2 norm is used for the source estimate
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to maximally highlight anomalies, while the L1 norm is
used for the noise estimate simply to provide a normalizer
in terms of the background for SNR. The SNR score for the
measurement is SNRðMpÞ ¼ Sp=

ffiffiffiffiffi
Bp

p
.

Match filtering [10] is an alternate way to estimate the
SNR of a measurement. Match filtering allows the user to
specify a source template in estimating source amount.
Based on the source template, a particular range of ener-
gies (called the source window W) is monitored as likely
containing source signal. Match filtering estimates source
amount by linearly regressing the background photon
amounts outside the source window (call those energy
bins W ) to predict the number of background photon
counts inside the window (W). Removing the background
from the source window leaves mostly source signal there.

Training a match filter involves the following steps:

1. The user splits the energy space into two subsets: W, a
feature-selected source window where characteristic
source peaks (in the source template) are likely to appear
and W , the complementary set of energy bins that are not
in the source window (and presumed to contain no source
counts). Note that these subsets of the energy space may
be any arbitrary disjoint subsets such that W [ W forms
the full 128-dimensional energy space.

2. A regression estimator is trained to predict, for a new
radiation vector, the background content in the source
window (W) from background counts outside the
source window (in the W energy bins). A data set of
training spectra with known background amounts is
assembled. The standard Least Squares Estimator is fit to
the data:

B̂ðyÞ ¼ ðXTXÞ�1XTy ð4Þ
X is the N � jW j data matrix of predictor energy bins
outside the source window. Each row of the X matrix is
a training data spectrum that keeps only energy bins in
W . y is the N � 1 vector of total sums of photon counts
in the source window for each of the N training spectra.
The regression estimator predicts the number of back-
ground counts in the source window (y) from the vector
of photon energies outside the window (X).

Given a new observed spectrum vector, Mp, define Mp
W

as the jWj � 1 vector of photon counts in source window

energy bins in Mp and MW
p as the jW j � 1 vector of photon

counts of energy bins outside the source window in Mp.

Note that length(Mp
W
)þ length(MW

p )¼ length(Mp)¼128.

The scalar background estimate is given by Bp ¼ B̂
T
MW

p , the
regression prediction of the background amount in the
source window from the background in energy bins out-
side the source window. The scalar source estimate is
given by Sp ¼ jMW

p j1�Bp where jMW
p j1 is the scalar sum of

total photon counts in the source window. The SNR score
is formed as SNRðMpÞ ¼ Sp=

ffiffiffiffiffi
Bp

p
.

2.3.2. Learning probabilistic sensor models
After training a measurement SNR estimator (either an

anomaly detector or a match filter), the second phase of BA
training involves building probabilistic sensor models of
expected SNR score distributions as a function of source
exposure. The probabilistic sensor models are estimated
from actual (and source-injected) field data. In order to
avoid overfitting, BA uses the “validation” subregion of
field data to assemble distributions of SNR scores for
positive observations (source-injected background data)
and negative observations (pure background data). The
score distribution for negative data forms the null dis-
tribution (H0), and the score distribution obtained for
source-injected data becomes the alternate (H1) prob-
ability distribution.

Each distribution is parameterized by the total source
exposure statistic computed from vehicle velocity, hypo-
thesized source intensity, and relative locations of the
source and the vehicle. The source exposure statistic is a
multiplier for the Poisson parameters of injected source
counts. For a detector of negligible volume approximated
as a point, the source exposure statistic can be defined as
proportional to

R
dt=R2, where t is time, R is the distance

between source and detector, and the integral is computed
over the duration of the measurement as the detector
moves along its trajectory. The source exposure statistic
can, in principle, be computed taking known or anticipated
occlusions into account.

The two-dimensional probability densities of expected
SNR as a function of the exposure statistic can be robustly
estimated using nonparametric density estimation. The
two-dimensional Kernel Density Estimator (KDE) [16] is
often used to perform the density estimation:

^f h x1; x2ð Þ ¼ 1
N

XN
i ¼ 1

1
h1h2

K
x1�Xi;1

h1
;
x2�Xi;2

h2

� �
ð5Þ

where ðx1; x2Þ is a query point of the exposure/SNR esti-
mated density, Kðu1;u2Þ is a kernel function, X is the N � 2
matrix of validation data point exposure statistics and SNR
estimates, and h1 and h2 are bandwidth parameters that
control smoothing amount. The dimensions x1 and x2 of
our models are the exposure and SNR respectively. We use
the boxcar kernel and bandwidth choices of 1. Choices of
other standard kernels and bandwidth values did not
significantly influence results.

The SNRs and total exposure values for positive obser-
vations are computed for each observation in validation
data, and density estimation is applied to obtain a two-
dimensional matrix of probability density values, with
axes given by SNR and the exposure statistic. For each
value of the exposure statistic, the corresponding row of
the matrix gives the estimated SNR distribution. The
density matrix is the basis for our estimate of PðDjH1Þ, the
probability of observing a set of given measurements D
under the alternate hypothesis that a source of a particular
intensity and type is present at a particular location.
Similarly, a density matrix for negative observations pro-
duces an estimate of PðDjH0Þ, the probability of observing
given measurements under the null hypothesis that there
is no source at that location.

Fig. 4 shows example null and alternate hypothesis
models obtained for field data for representative anomaly
detector and match filter SNR estimates. For null models,



Fig. 4. Empirical sensor models for null and alternative hypothesis based on exposure and SNR. The difference in probability mass between the null and
alternate densities allows for sensitive source detection. (a) Anomaly detector null model. (b) Anomaly detector alternate hypothesis. (c) Match filter null
model. (d) Match filter alternate hypothesis.
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SNR is flat as a function of exposure since there are no
sources (of the threatening type injected into the data) to
be exposed to. For alternate models, as exposure to a
source goes up, so does the expected SNR. An advantage of
BA is that it can capture error and variation of estimators
in models nonparametrically. There is potential structure
in these distributions (such as intricate double tail beha-
vior) that would be hard to capture well by a parametric
model of manageable complexity.

2.3.3. Spatial aggregation of evidence
The next step of BA is to spatially combine evidence as

it is collected. Alternate source hypotheses H1 state that a
particular location in the environment contains a source of
a particular intensity and type, and null hypotheses H0

state that no source with those parameters is present. For a
given terrain, the scene can be covered with a set of
hypothetical source locations (e.g. distributed over a reg-
ular planar grid). As new measurements are collected and
added to the overall data D, BA maintains and updates
estimates of the probabilities PðH1jDÞ for each source
hypothesis and each null hypothesis PðH0jDÞ.

The exposure and SNR are estimated for individual
measurements Dj. These serve to index into the KDE
function and look up the probabilities PðDjjH0Þ and
PðDjjH1Þ. For a particular hypothesis H (either a H1 or H0),
BA is motivated by the following equation for posterior
probabilities PðHjDÞ, assuming conditional independence
of measurements:

PðHjDÞpPðHÞ ∏
Dj AD

PðDjjHÞ ð6Þ

where PðHÞ is the prior probability (belief) assigned to H.
For sufficiently low values of source exposure statistic,
PðDjjH1ÞCPðDjjH0Þ. This motivates the following algebraic
manipulation when evaluating the Likelihood Ratio
between H1 and H0:

PðH1jDÞ
PðH0jDÞ

C
PðH1Þ
PðH0Þ

∏
Di AD

PðDijH1Þ
PðDijH0Þ

C
PðH1Þ
PðH0Þ

∏
Dk AD4Dk AD0



Fig. 5. Example data processing through BA. (a) shows the raw trajectory with a point source affecting measurements. (b) shows resulting threat prob-
ability map in BA. The boxed region indicates a correctly detected radiation source.
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PðDkjH1Þ
PðDkjH0Þ

∏
Dj AD4Dj =2D0

PðDjjH1Þ
PðDjjH0Þ

C
PðH1Þ
PðH0Þ

∏
Dk AD0

PðDkjH1Þ
PðDkjH0Þ

ð7Þ

where D0 �D is the subset of measurements whose value
of source exposure statistic is sufficiently high for a source
location. The algebraic manipulation shows that, for a new
measurement, only hypothetical source locations within a
particular distance of it (e.g. 20 m) need to have their
posterior scores updated as the measurements with low
exposures cancel from the likelihood ratio. For each new
measurement, kd-trees [17] efficiently find the set of
hypothesized source locations locally affected by the
measurement. This enables more scalable computation of
Bayesian probabilities than cited previous Bayesian
methods.

Fig. 5 shows an example result of BA. Fig. 5a shows
physical locations where measurements were made and
the location of an injected point source. Fig. 5b shows the
mapping of threat probabilities by BA. It shows correct
detection and localization of the injected synthetic source.
3. Experimental setup

Using the point source simulator described earlier, we
repeatedly injected an isotropic point source at a random
location in the subregion off the road with a fixed inten-
sity. Source locations were restricted to be at least 10 m
away from the centers of the roads to simulate realistic
road-side source conditions.

We benchmarked different versions of our BA algo-
rithm against each other as well as in comparison to an
alternative method of evidence aggregation currently used
in the field called the Weighted Combining (WC) Method
[10]. The WC method scores source location hypotheses by
estimating the SNR at each location, aggregating evidence
using the following update rules:

MapS x; yð Þ ¼MapS x; yð Þþ Sp
Rðx; yÞ2

MapB x; yð Þ ¼MapB x; yð Þþ Bp

Rðx; yÞ4

SNR x; yð Þ ¼ MapSðx; yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MapBðx; yÞ

p ð8Þ

WC maintains a geographic “source map” (MapSðx; yÞ)
and a geographic “background map” (MapBðx; yÞ) contain-
ing hypothetical source locations (x,y). For a new mea-
surement Mp, SNR estimators are used to compute Sp and
Bp for that measurement. These quantities are weighted by
the measurement's 1=r2 exposure statistic and added to
running totals. WC is a fierce competitor method, as it is
designed to weight and aggregate measurements to
maximize expected SNR in predicting whether an isotropic
point source exists at location (x,y) or not.

We compared our Bayesian method of aggregation to
the WC method using both the anomaly detection and
match filter estimators. The metrics of success used were
(1) detection performance, (2) localization accuracy, and
(3) accuracy of source intensity and source type inference.

In order to facilitate the evaluation, a grid of hypothe-
tical source locations was overlaid at 2 m resolution within
20 m of the set of field measurements. Each algorithm had
to score each grid location as likely to contain a source. The
grid of hypothetical source locations was scored with and
without the presence of an injected point source.

A true positive is defined as the top scoring grid point
within 40 m of the true injected source when injection of
source counts is performed. A false positive is defined as
the top scoring grid point in the same 40 m disc around
the source location when injection is not performed.
Detection success is measured using Receiver Operating
Characteristic (ROC) curves using true positives and false
positives collected over a set of source location simula-
tions. The 40 m distance was used to avoid symmetry
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effects in localizing a source. When using an omnidirec-
tional sensor on a perfectly straight road, the trajectory
does not give information about which side of the road the
source may be on. Thus, if the source is injected 10–20 m
off the road, the top scoring hypothesis for the source is
degenerated to a maximum of 40 m around the trajectory.
Fig. 6 shows an example of our evaluation setup.

Localization accuracy is quantified by the distance of
the top-scoring source location hypothesis to the true
source location and summarized with a distance cumula-
tive distribution function (CDF).

Accuracy of inference of source parameters is sum-
marized in confusion matrices parameterized with a par-
ticular setting of the false positive rate (FPR). In our
experiments, the numbers reported in confusion matrices
reflect the fraction of correct inferences over the total
number of experiments at FPR¼0.01%. This is a commonly
used metric since the beginning of the ROC curve
(FPR¼0.00%) is prone to noise and less stable than the
FPR¼0.01% mark. In our set of at least 1000 false positives,
FPR¼0.01% was always a stable cutoff. This cutoff is
equivalent to the average interval between consecutive
false alerts being 2 h 46 min 40 s of system operation.
4. Results and discussion

10,000 instances of the same test area of the city were
prepared, each with a single injected point source of a
fixed intensity. Fig. 7 plots the ROC detection curve com-
paring BA and WC with anomaly detector and match filter
SNR estimators. In our experiments, match filtering out-
performs anomaly detection with regularity simply
because it is provided with the exact knowledge of the
source type template.

BA outperforms WC regardless of choice of SNR esti-
mator. BA captures variability in SNR as a function of
expected exposure nonparametrically. It can outperform
WC, which makes a Gaussian assumption about the SNR
estimates. WC cannot capture the more intricate structures
in their distribution. Furthermore, the WC method is
affected by occasional nuisance sources in the data that
lead to erroneous SNR estimates. The exposure-SNR sensor
models in BA help discount such noise.

We compared several methods of including source
intensity and source type information in BA. The simplest
method is BA-Specific which trains a separate model for
each discrete setting of a parameter. Thus if there are four
expected source intensities, fI1;…; I4g, there would be four
distinct alternate hypothesis BA models fMI1 ;…;MI4 g, each
trained on data for one specific intensity parameter set-
ting. BA-Specific methods assume PðH1jDÞ ¼ PðH1jD;MIj Þ.
BA-Agnostic trains a single model learned from data con-
taining all possible settings of the parameter. Thus, for our
four intensity example, there would be only a single BA-
Agnostic model, MI1 ;…I4 , learned from a data set that mixes
simulated data from all four intensities and is effectively
“agnostic” to any setting of the parameter. BA-Agnostic
assumes PðH1jDÞ ¼ PðH1jD;MI1 ;…;I4 Þ.

Posterior distribution information from an ensemble of
BA-Specific models can also be used to detect a source. BA-
Max maximizes over the posterior intensity hypothesis
distribution to score the alternate hypothesis:

PðH1jDÞ ¼max
j

PðH1jD;MIj Þ ð9Þ

BA-Marg, in contrast, marginalizes over the posterior
intensity hypothesis distribution to score the alternate
hypothesis:

PðH1jDÞ ¼
X
j

PðH1jD;MIj Þ ð10Þ

Four different settings of the intensity multiplier were
used, increasing in a geometric series, to simulate
increasingly pronounced sources. Sources are well in the
tolerance of background. At the lowest intensity setting,
source stand-off count rate at the distance of 10 m is 150
photons per second, while mean background count rate is
1263 per second with standard deviation of 267 photon
counts per second. In the energy bins selected by the
match filter as being in the source window, the stand-off
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count rate at 10 m for the lowest intensity is 31
per second, and the mean background count rate is 125
per second with a standard deviation of 31 per second. All
conversions to source count rate for the four used intensity
multipliers are shown in Table 1.

We created four separate sets of 1000 simulated sour-
ces for the same test subregion of the city, one set of
simulated injections for each setting of source intensity.
Then we compared performance of algorithms on these
simulated worlds. Fig. 8a–d shows ROC detection results
for the different algorithms for the four settings of the true
source intensity.
Table 1
Intensity multiplier to count rate conversion.

Intensity Source count rate Feature-selected source count rate

I1 150 counts/s 31 counts/s
I2 196 counts/s 77 counts/s
I3 255 counts/s 101 counts/s
I4 331 counts/s 131 counts/s
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Fig. 8. ROC diagrams for source intensity exper
The results indicate that all BA methods (using match
filter) outperform the WC method (that also uses match
filter). Since the WC method does not specifically model
source intensity, the BA methods trained with the correct
intensity model outperform it easily. The WC method is
prone to flagging nuisance sources or be fooled by a weak
source. In contrast, intensity-aware BA can provide reliable
detection of sources of unknown intensity.

A similar experiment was performed with the source
type parameter. Three different source templates were
chosen for injection. Fig. 9 shows example injections of the
source templates into typical background radiation.

1000 instances of the same test block were simulated
with different injected source types. Fig. 10a–c shows ROC
trends in detecting the three different source types.

Once again, BA methods do well against the WC
method with match filtering. BA-Marg and BA-Max have
little loss when compared to the BA-Specific model trained
for the true source type. BA-Marg is the method of choice
since marginalization over the intensity and source type
variations provides not only the theoretically optimal
detection power but promising empirical results as well.
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iments. All BA methods outperform WC.
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Fig. 11 shows the CDF of source localization error for
performance of BA-Marg in the presence of intensity var-
iations (Fig. 11a) and source type variations (Fig. 11b). The
False Positive Rate (log)

10-3 10-2 10-1 100

Tr
ue

 P
os

iti
ve

 R
at

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC Curve: Source Type 1

WC
BA-Specific
BA-Max
BA-Marg

False Positive 

10-3 10-2

Tr
ue

 P
os

iti
ve

 R
at

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC Curve: So

Fig. 10. ROC diagrams show threat detection

Energy
20 40 60 80 100 120

P
ho

to
n 

C
ou

nt
s

0

10

20

30

40

50

60

70
Source Type Injections

Background
Source Type 1
Source Type 2
Source Type 3
Confidence Intervals

Fig. 9. Source templates injected into background.
algorithm can robustly localize many sources of varying
intensity and source type, even in cases where WC may fail
to detect them at all.

In addition to helping provide robust detection and
localization of a radioactive point source, the posterior
probabilities from the BA models can be used to infer the
source intensity and source type parameters for the
source. To evaluate accuracy of such inference capability,
we compared the parameter inferred at the hypothesized
source location at 0.01% false positive rate for each of the
evaluated synthetic environments.

Table 2 shows intensity inference results for our two
methods of inferring a parameter – maximizing over the
BA-specific posterior hypothesis distribution (BA-Max)
and marginalizing over the posterior hypothesis distribu-
tion (BA-marg). BA-Max slightly outperforms BA-Marg in
intensity inference, though differences are not significant.
Intensity is a quite weakly constrained parameter since
there is a fair bit of location leeway in detecting a source
within a 40 m radius. A detection algorithm can model a
source as either being a strong source far away or a weak
source close by and still succeed in detecting it, though
yield incorrect identification of source intensity.
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Table 2
Confusion matrix for intensity inference: BA-Marg/BA-Max.

True intensity- I1 I2 I3 I4

Correct inference 35.4%/
36.2%

20.7%/
21.2%

21.4%/
21.5%

46.8%/
47.0%

Incorrect inference 23.4%/
24.3%

47.4%/
48.2%

55.3%/
57.2%

38.7%/
9.1%

False detection first 41.2%/
39.5%

31.9%/
30.6%

23.3%/
21.3%

14.5%/
13.9%

Table 3
Confusion matrix for source type inference: BA-Marg/BA-Max.

True source Type- Source 1 Source 2 Source 3

Correct inference 57.8%/57.6% 77.5%/77.5% 87.0%/86.3%
Incorrect inference 2.50%/2.50% 0.80%/0.80% 5.40%/5.20%
False detection first 39.7%/39.9% 21.7%/21.7% 7.60%/8.50%
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Table 3 shows source type inference results for BA-max
and BA-marg. Results are not significantly different
between algorithms, though BA-Marg slightly outperforms
BA-max in the experiment. Both algorithms produce
accuracies within the 58–87% range, showing BA's cap-
ability to tell different source types apart robustly.
5. Conclusion

Our results indicate that Bayesian Aggregation of data
can improve the detection of radioactive sources as well as
help determine their characteristics such as location,
intensity, and source type.

With regards to detection, our study illustrates how BA
can boost the performance of anomaly detector and match
filter estimators commonly used among the radiation
sensing community. BA captures the distribution of
expected SNR as a function of exposure without making
parametric assumptions about expected distribution. This
approach allows for more effective dismissal of back-
ground nuisance sources that might otherwise thwart the
capability of such SNR estimators in practice.

In terms of scalability, BA leverages an algebraic
manipulation and conditional independences in its Baye-
sian updates to enable rapid calculation of posterior
probabilities. The use of data structures such as kd-trees
helps speed up computation of the threat probability map.
The speed improvement enables efficient maintenance of
many, multi-modal hypotheses about source parameters.

With regards to determining properties of detected
sources, we have shown how intensity and source type
information can be incorporated into BA models. Our
experimentation with various methods suggests that our
method of choice, BA-Marg, can simultaneously provide
robust detection of sources of different intensities and
source types (as evaluated by ROC curves) while inferring
their characteristics (as evaluated by accuracy on confu-
sion matrices).

BA's algorithmic enhancement of detection capability
enables mobile radiation detection systems to provide
more sensitive and precise nuclear threat detection in
urban scenes. Systems will be able to more accurately
classify threats from non-threats, while lowering the false
alarm rates. BA's source parameter inference capabilities
allow law enforcement officers to have real-time knowl-
edge of the properties of threatening (or non-threatening)
radiation sources discovered in the field, allowing for
appropriate action.

Both the detection and knowledge-providing cap-
abilities of BA seek to empower law enforcement officers
in having a prompt, suitable, and effective response in
dealing with radiological threats.
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