
Petrozavodsk State University
Department of Computer Science

Kirill Kulakov, Sergei Marchenkov, Sergey Tishkov

An Approach to Generating OntologyBased Object
Model for Smart-M3 platform

The research was financially supported by the Ministry of Education and Science of Russia within project # 2.5124.2017/8.9 of
the basic part of state research assignment for 20172019.

The reported study was funded from Russian Fund for Basic Research according to research project # 19-07-01027.
The results were implemented by the Government Program of Flagship University Development for Petrozavodsk State University

in 20172021.

24th FRUCT Conference
April 11, 2019, Moscow, Russia

FRUCT24, 8-12 April 2019 Sergei Marchenkov 1 / 15

http://petrsu.ru
http://cs.petrsu.ru

Motivation

Smart-M3 based service development:
I Semantic information broker (SIB)
I Set of knowledge processors (KP)

SIB provides low-level API (insert, remove, query, subscribe)
Low-Level support libraries:

I kpi low, java KPI, C KPI
I works with “object–predicate–subject” triplets
I implements SSAP protocol

High-Level support libraries:
I users ontology model
I provides “object-to-triplets” translation

Java development (desktop, mobile platforms)
I most implementation in object oriented style
I interaction with SIB implements by Java KPI or JNI + C KPI

FRUCT24, 8-12 April 2019 Sergei Marchenkov 2 / 15

Idea

Basic idea: convert ontology model to the Java objects

Expectations:
I Developer uses objects as presented in the model (objects,

methods, properties)
I Knowledge of SIB work is not required
I Asynchronous programming
I Platform-independent API
I “Easy to use”

Implementation option: code generator based ontology

FRUCT24, 8-12 April 2019 Sergei Marchenkov 3 / 15

Object model

Ontology classes→ Object classes
Instances→ Objects
Data type properties or slots→ Data attribute variables & get/set
methods
Object type properties or slots→ Object attribute variables &
get/set methods
Value-type/space facets→ Attribute variables types & if-then-else
statements in set methods
Cardinality facets→ Additional attributes & if-then-else statements
in set methods
Multiple inheritance→ Single inheritance & multiple interface
inheritance

FRUCT24, 8-12 April 2019 Sergei Marchenkov 4 / 15

KP’s interaction methods

Two types of interaction between KP and SIB
I “Query—Answer” interaction
I “Subscription—Notification” interaction

High-level interaction methods
I Insert object with properties
I Update object properties
I Remove object with properties
I Search one or more objects (triple template or SPARQL query)
I Object inserting notification
I Object updating notification
I Data updating notification

FRUCT24, 8-12 April 2019 Sergei Marchenkov 5 / 15

Source code generation process

FRUCT24, 8-12 April 2019 Sergei Marchenkov 6 / 15

Common source files

class BaseRDF — parent class for all ontology objects;
class KPIproxy — JavaKPI library wrapper;
interface QueryListener — notification interface;
class SIBFactory — main point to work with one or more SIBs,
uses “Factory” template;
class SIBQueryTask — parent class for asynchronous access to
SIB;
class SIBSubscribeTask — parent class for subscription
processes;
class SubscribeQuery — main point of subscriptions,
implements wrapper for JavaKPI subscriptions;
interface SubscribeListener — subscription notification interface;
class TaskListener — parent class for all tasks;
interface UpdateListener — object changes notification interface.

FRUCT24, 8-12 April 2019 Sergei Marchenkov 7 / 15

Templates

FRUCT24, 8-12 April 2019 Sergei Marchenkov 8 / 15

SmartJavaLog architecture

FRUCT24, 8-12 April 2019 Sergei Marchenkov 9 / 15

Example of usage

Smart service “GeoCode”
I GeoCode test — geo point

generation KP
I GeoCode teacher — KP of

adding geo-dependent
information to geo point

I GeoCode Android — KP for
showing result to user

Two objects: Place and Point
I GeoCode test generates

pair Place—Point with
random coordinates

I GeoCode teacher
determines a direction of
the world

I GeoCode Android shows
result

FRUCT24, 8-12 April 2019 Sergei Marchenkov 10 / 15

Example: Fragment of source code generation

public Ar rayL i s t<Point> getHasPoint () {
i f (HasPoint new != nul l)

return HasPoint new ;

Ar rayL i s t<Point> r e t = new A r r a y L i s t () ;
/ / search IDs i n t r i p l e s
Ar rayL i s t<St r ing> HasPointIDs = g e t I n T r i p l e s (

HasPoint URI) ;
for (S t r i n g loc ID : HasPointIDs) {

Poin t value = Poin t . ge t Ins tance (locID ,
accessPointName) ;
r e t . add (value) ;

}

return r e t ;
}

FRUCT24, 8-12 April 2019 Sergei Marchenkov 11 / 15

Example: Fragment of code to connect to SIB
SIBFactory . ge t Ins tance () . getAccessPoint () . setAddr (”

l o c a l h o s t ” , 10101) ;

/ / r e g i s t e r used classes before connect ion
Poin t . ge tC lassUr i () ;

/ / connect to SIB
SIBFactory . ge t Ins tance () . getAccessPoint () . connect () .

addLis tener (new TaskLis tener () {
@Override
public void onSuccess (SIBResponse response) {

/ / i n t e r a c t i o n wi th SIB was here
}
@Override
public void onError (Except ion ex) {

/ / do something when connect ion was not es tab l i shed
}

}

FRUCT24, 8-12 April 2019 Sergei Marchenkov 12 / 15

Example: Point creation
Place gp = Place . get Ins tance () ;
Po in t p t = Po in t . ge t Ins tance () ;
gp . setHasPoint (p t) ;
gp . setName (” Generated po in t ”) ;
p t . se tHasLat i tude (Math . random () ∗ 180 − 90) ;
p t . setHasLongitude (Math . random () ∗ 180 − 90) ;

/ / update po in t
pt . update () . addL is tener (new TaskLis tener () {

@Override
public void onSuccess (SIBResponse response) {

/ / update place
gp . update () . addL is tener (new TaskLis tener () {

@Override
public void onSuccess (SIBResponse response) {

/ / i t ’ s OK
}

. . . .
}

FRUCT24, 8-12 April 2019 Sergei Marchenkov 13 / 15

Example: Subscription source code

SubscribeQuery . ge t Ins tance () . addSubscr ip t ion (Place .
ge tC lassUr i () , new Subscr ibeL is tener<Place >() {

@Override
public void addItem (Place i tem) {

/ / i tem was added to SIB
}

@Override
public void removeItem (Place i tem) {

/ / i tem was removed from SIB
}

@Override
public void onError (Except ion ex) {

/ / something happen
}

}) ;

FRUCT24, 8-12 April 2019 Sergei Marchenkov 14 / 15

Conclusion
Approach to generating ontology–based object model for the
Smart-M3 platform

Implemented as a source code generator (SmartJavaLog) for the
Java language

SmartJavaLog will be useful for Java developers

Open source code (MIT license)
https://github.com/seekerk/smartjavalog

Thank to you attention
Email: marchenk@cs.petrsu.ru

FRUCT24, 8-12 April 2019 Sergei Marchenkov 15 / 15

https://github.com/seekerk/smartjavalog

