

Petrozavodsk State University Department of Computer Science

Kirill A. Kulakov, Oksana B. Petrina, Anastasiya A. Pavlova

Smart Service Efficiency: Evaluation of Cultural Trip Planning Service

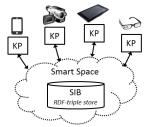
The work is supported by the Ministry of Education and Science of Russia within project # 14.574.21.0060 (RFMEFI57414X0060) of Federal Target Program "Research and development on priority directions of scientific-technological complex of Russia for 2014–2020".

19th FRUCT Conference November 10, 2016, Jyväskylä, Finland

FRUCT19	F	RI	JC	T	19
---------	---	----	----	---	----

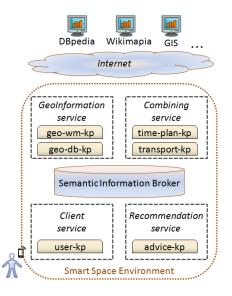
Introduction

- Various smart services in e-Tourism
 - New algorithms
 - New methods
 - New approaches
- Possible disadvantages by using smart services
 - Complexity
 - Development costs
 - High resource usage
 - Management limitations
- Open questions
 - How determine smart and regular service?
 - How do a smart service become fast?
 - How could manual work be decreased in a smart service?


Smart service attributes

Attribute	Description
Multiple data sources	Service uses several third-party sources in
	the same request.
Composed services	Service uses several different services in
	the same request.
Personalized	Service uses user info for clarification of
services	the request, ordering lists and so on.
Human-computer	Service provides user interface close to
interaction	natural.
Self-learning	Service can detect and learn new material
	like facts, actions and so on.
Proactive automation	Service provide ability to perform actions
	without user intervention.
Collaborative work	Service provide ability to communication
	between users.

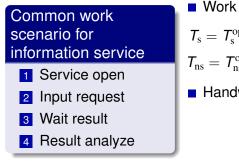
Cultural trip planning service


- Goal: create a trip plan based on tourist preference
- Abilities:
 - Search nearby attractions
 - View attractions on the map
 - Organize new trip by selecting a set of attractions to be visited
 - Calculate trip route as a result of solving traveling salesman problem
 - Create trip plan based on time delays and time costs

- Based on Smart Space technology
- Implementation uses Smart-M3 platform
- Tunable distributed architecture

High-level architecture of Cultural trip planning service

- Client service performs delivery, visualization and personalization of information for the user.
- GeoInformation service interacts with various external Internet services.
- Recommendation service provides a personalization.
- Combining service plans time and provides optimal route for attractions.



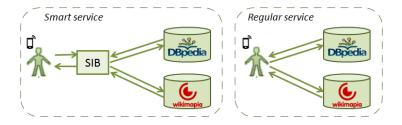
Smart service attribute presence in Cultural trip planning service

Attribute	Presence description
Multiple data	Service uses Wikimapia and DBpedia simultaneously.
sources	User KP shows combined result.
Composed	Search action, route construction action and trip plan-
services	ning action. Actions can be used separately or coher- ently.
Personalized	Service uses user data to personalize search requests
services	and provide recommendations.
Human-computer	Regular user interface, no ability to use natural input
interaction	and output methods.
Self-learning	Each request are processed separately without any data accumulation.
Proactive automa-	The User KP requires user intervention in all actions.
tion	Service provides recommendations in semiautomatic
	mode which is not fully proactive.
Collaborative work	Service does not provide communication between
	users.

Common approach

Goal: estimate total resource usage and human work by comparing smart and regular services

Work time:
$$T = \frac{T_s}{T_{ns}}$$
 $T_s = T_s^{open} + T_s^{input} + T_s^{wait} + T_s^{analyze}$ (1)
 $T_{ns} = T_{ns}^{open} + T_{ns}^{input} + T_{ns}^{wait} + T_{ns}^{analyze}$ (2)
Handwork automation: $A = \frac{A_s}{A_{ns}}$
 $A_s = T_s^{input} + T_s^{analyze}$ (3)
 $A_{ns} = T_{ns}^{input} + T_{ns}^{analyze}$ (4)


Input rate (mobile device) [Source: Soukoreff and Mackenzie, 1995]:

- "novice users": 9 words per minute
- "regular users": 15 words per minute
- "advanced users": 30 words per minute

Multiple data sources

Description

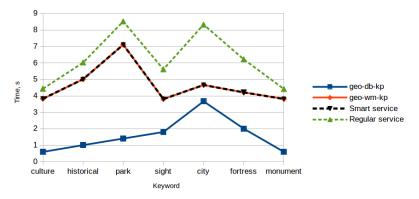
- Smart service: automatically combine results from a set of third-party data sources
- Regular service: set of small services and each service provides access to a single third-party data source

Multiple data sources

Calculation

"Work time" estimation:

$$T_{\rm s} = T_{\rm s}^{\rm open} + T_{\rm s}^{\rm input} + T_{\rm s}^{\rm wait},$$
$$T_{\rm ns} = \sum_{i \in I} \left(T_i^{\rm open} + T_i^{\rm input} + T_i^{\rm wait} \right) + T_{\rm ns}^{\rm combine}$$

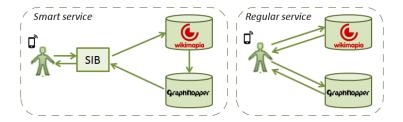

- I a set of data sources
- T_i^{open} a time to open a data source *i*
- T_i^{input} a time to input request into a data source *i*
- T_i^{wait} a time to wait from data source *i*
- T^{combine} a time to combine results from multiple data sources

"Handwork automation" estimation:

$$A_s = T_s^{\text{input}}, \quad A_{\text{ns}} = \sum_{i \in I} \left(T_i^{\text{input}}\right) + T_{\text{ns}}^{\text{combine}}$$

Multiple data sources

Results of experiments



Service	Novice users	Regular users	Advanced users
Smart	$T_{\rm s} = 11.30,$	$T_{\rm s} = 8.63,$	$T_{\rm s} = 6.63,$
service	$A_{\rm s} = 6.67$	$A_{\rm s} = 4.00$	$A_{\rm s} = 2.00$
Regular	$T_{\rm ns} = 66, 22,$	$T_{\rm ns} = 42, 22,$	$T_{\rm ns} = 24, 22,$
service	$A_{\rm ns} = 60.00$	$A_{\rm ns} = 36.00$	$A_{\rm ns} = 18.00$

Composed services

Description

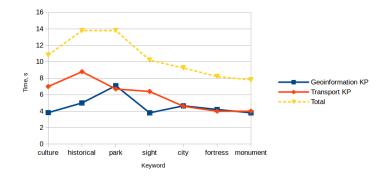
- Smart service: coherently uses actions (search action, route construction action and trip planning action)
- Regular service: manual data transformation from output result of one service to input of another service, manual run separate services

Composed services

Calculation

"Work time" estimation:

$$T_{\rm s} = T_{\rm s}^{\rm open} + T_{\rm s}^{\rm input} + T_{\rm s}^{\rm wait},$$
$$T_{\rm ns} = \sum_{i \in I} \left(T_i^{\rm open} + T_i^{\rm input} + T_i^{\rm wait} + T_i^{\rm transform} \right)$$

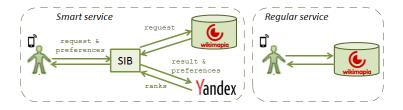

T_i^{transform} is a time of manual data transformation to input for service i

"Handwork automation" estimation:

$$A_s = T_s^{\text{input}}, \quad A_{\text{ns}} = \sum_{i \in I} \left(T_i^{\text{input}} + T_i^{\text{transform}} \right).$$

Composed services

Results



Service	Novice users	Regular users	Advanced users
Smart	$T_{\rm s} = 17.23,$	$T_{\rm s} = 14.56,$	$T_{\rm s} = 12.57,$
service	$A_{\rm s} = 6.67$	$A_{\rm s} = 4.00$	$A_{\rm s} = 2.00$
Regular	$T_{\rm ns} = 243, 90,$	$T_{\rm ns} = 150, 56,$	$T_{\rm ns} = 80, 57,$
service	$A_{\rm ns} = 233.00$	$A_{\rm ns} = 140.00$	$A_{\rm ns} = 70.00$

Personalized services

Description

- Smart service: personalize search request by using additional data (preferences)
- Regular service: the same result for different users if they use the same request

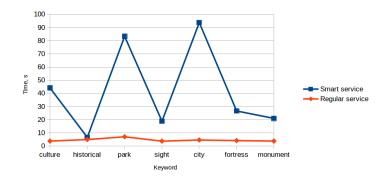
Personalized services

calculation

"Work time" estimation:

$$T_{\rm s} = T_{\rm s}^{\rm open} + T_{\rm s}^{\rm context} + T_{\rm s}^{\rm query} + T_{\rm s}^{\rm wait},$$

 $T_{\rm ns} = T_{\rm ns}^{\rm open} + T_{\rm ns}^{\rm input} + T_{\rm ns}^{\rm wait},$


*T*_s^{context} – a time to create and fill user context
 *T*_s^{query} – a time to input query

"Handwork automation" estimation:

$$A_{\rm s} = T_{\rm s}^{\rm context} + T_{\rm s}^{\rm query}, \quad A_{\rm ns} = T_{\rm ns}^{\rm input}$$

Personalized services

results

Service	Novice users	Regular users	Advanced users
Smart	$T_{\rm s} = 48.86,$	$T_{\rm s} = 46.14,$	$T_{\rm s} = 44.14,$
service	$A_{\rm s} = 6.67$	$A_{\rm s} = 4.00$	$A_{\rm s} = 2.00$
Regular	$T_{\rm ns} = 37.97,$	$T_{\rm ns} = 24.63,$	$T_{\rm ns} = 14.63,$
service	$A_{\rm ns} = 33.33$	$A_{\rm ns} = 20.00$	$A_{\rm ns} = 10.00$

Conclusion

- Presented results of several experiments for efficiency evaluation of a Cultural trip planning service.
- Evaluation was based on introduced list of smart attributes which includes "multiple data sources", "composed services" and "personalized services" smart attributes.
- "Work time" and "handwork automation" estimates showed increasing of speed and reducing of manual work.
- The results of evaluation for "personalized services" smart attribute shows advantage of smart service for manual work but regular service works faster.

Thank you for attention

E-mail: kulakov@cs.karelia.ru