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Abstract—The performance of multi-stream sensed data pro-
cessing is a challenging problem for Industrial Internet of Things
(IIoT) monitoring applications. This short paper discusses an
edge computing model for receiving and processing the sensed
data. The key element of our model is specialized computing
modules for reading raw sensed data from multiple sensors
in the physical environment. We experimentally evaluate the
performance varying the number of attached sensors.

I. INTRODUCTION

Industrial Internet of Things (IIoT) monitoring applications
analyze the technical state and utilization conditions of the
industrial equipment [1]. It is necessary for well-timed detec-
tion of shocks and defects and to determine the load on the
unit. In other words, it helps to save money and resources for
equipment maintenance.

During operation (e.g., movement) of equipment units,
defects can manifest themselves in vibrations and current.
Collection methods and various methods of analyzing the
signal from vibration and current sensors in the time and
frequency domains are used to determine the presence of
defects. These methods implemented in a raw data reading
module (RDRM) according to a multi-stream data processing
model.

The purpose of this work is to develop and evaluate the load
of the RDRM for current, vibration, and temperature sensors. It
used for continuous monitoring of production equipment under
IIoT conditions. The solution can also be used in wider areas
related to the Tactile Internet and its applications [2].

This paper discusses the modules responsible for the col-
lection and processing of the signal from many sensors. The
models are designed taking into account cheap sensors and
microcircuits for digitizing readings, so noise appears in the
digitized signal, which must be reduced to determine the
useful signal. The signal quality affects the data processing
algorithms [3] and the amount of computation required for
the initial signal processing. Section II describes the sensor
data collection model. Section III describes the data processing
model. Section IV describes an experiment to implement data
acquisition and processing models.

II. SENSING MODEL

Vibration, current, temperature sensors, and tachometer are
used to monitor the state of the equipment unit. Sensors [4]
are installed on monitoring nodes and connected to data
acquisition devices (DAQ cards), which are located next to

the monitoring object. From 1 to 6 sensors are connected to
one DAQ card, then the signal from the sensors is digitized
and transmitted via the data transfer protocol to the local server
for processing. Signal processing from vibration, current, and
temperature sensors is handled by the RDRM, which will be
discussed in this article. Figure 1 shows the model of data
collection from sensors installed on the monitoring object. In
this model, a variant of the RDRM implementation is used
in which one instance of the module processes data from one
sensor. The data stream coming from the sensors depends on
the settings specified in the RDRM when connected to the
DAQ card.

Fig. 1. Multi-stream sensed data processing model

The signal received by RDRM looks like an array of values
from 0 to 2b, where b is a signal resolution (e.g., 12 or 16 bits
per sample). By changing the connection parameters, one can
change the sampling frequency of the signal, which affects
the amount of input data from one sensor as from 44 kB/s
(22 kHz) to 362 kB/s (181 kHz).

III. DATA PROCESSING MODELS

Each launched module knows what type of sensor it works
with. The type of sensor determines a processing model that
RDRM will use for the incoming signal. Figure 2 shows a
diagram of raw data processing from a temperature sensor.
The unit conversion section is responsible for converting sensor
readings into physical quantities, for this type of sensor these
are Celsius degrees. The readings are then filtered with a
lowpass filter to reduce noise from the sensors. Depending
on the settings, filtering is performed at specified frequencies
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Fig. 2. Processing the signal from the temperature sensor in the RDRM

Fig. 3. Processing the signal from the current sensor in the RDRM

(e.g., 0-26 kHz) by a specified type (e.g., Chebyshev). The
next section performs data thinning by the number of times
specified in the module settings. This operation allows you to
reduce the data flow and the load in the calculations. In the
last section, statistics are calculated that are significant for this
type of sensor. The maximum, average, and minimum values
are calculated for the temperature sensor.

Figure 3 shows a diagram of raw data processing from a
current sensor. As can be seen from the diagram, the processing
algorithm expands in comparison with the previous scheme.
The first three steps are repeated, except that now the raw data
is converted to amps. Then the main difference is the spectrum
plotting. To do this, the signal is multiplied by a window,
the type of which is specified in the settings (Hanning).
Then the spectrum of this signal is calculated using the fast
Fourier transform algorithm [5]. When a sufficient number of
spectrums (specified in the settings) have been collected, an
averaged spectrum is calculated from them. This operation
allows you to reduce the data flow, as well as eliminate
random fluctuations that spoil the spectrum. The root mean
square value and maximum deviation, linear integral, variance,
kurtosis, skewness are added to the calculation of the statistics
mentioned in the previous diagram.

Fig. 4. Signal processing from the accelerometer sensor in the RDRM

Figure 4 shows a diagram of raw data processing from a
vibration sensor. This scheme is an evolution of the previous
ones. It also converts readings into physical quantities, m/s2

for this case. The new section in this scheme is the envelope
plotting. Since a different type of filter is needed to calculate
the envelope, two data streams are generated with different
transformations. For the envelope, the signal is filtered by a
bandpass filter in a high-frequency range.

After thinning section, the next section calculates the
envelope based on the Hilbert transform [6]. Then the envelope
spectrum is calculated and it is averaging according to the
principle indicated in the previous scheme. In another stream,
the data is filtered by a lowpass filter and thinned. Based
on the thinned signal, the averaged spectrum and statistics
are calculated following the previous scheme. This signal
is also used for shock detection. This algorithm looks for
harmonic oscillations in a signal that are much higher than the
average value of the signal. For a clearer selection of harmonic
oscillations, the signal is additionally filtered by lowpass filters
up to 2 kHz.

Only a part of the spectrum is necessary for the analysis
of moving equipment units. This part is saved in the database,
for example, the spectrum is calculated up to 20 kHz, and a
part of the spectrum up to 1 kHz is saved to the database, this
allows reducing the amount of stored data without harming the
algorithms for detecting defects.

IV. PERFORMANCE EVALUATION

Two local servers were used for the experiment. These
servers collect data from two equipment units according by a
multi-stream data processing model. A small set of sensors was
installed on the first machine. It has the following specification:

• CPU: Intel(R) Core(TM) i5-9400F CPU 2.90GHz,

• 32 GB RAM,

• 6 sensors: (4 vibration, 1 current, and 1 temperature
sensors),

• 3 data collection boards.
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Fig. 5. CPU average load for modules with different sensors for first node

The total load on the local server was no more than 20%.
The load of the RDRM on the processor at the first machine
is shown in Fig. 5. The average load of the RDRM on the
processor and the volume of output data with the input data
volume from one sensor 362 kB/s were:

• for vibration sensors: load 1.68 %, output stream
16 kB;

• for current sensors: load 1.28 %, output stream 8 kB;

• for temperature sensors: load 0.45 %, output stream
12 bytes.

A large set of sensors was installed on the second machine.
It has the following specification:

• CPU: Intel(R) Core(TM) i7-6820EQ CPU 2.80GHz,

• 32 GB RAM,

• 48 sensors: (31 vibration, 6 current, and 11 tempera-
ture sensors),

• 17 data acquisition boards.

The total load on the local server was about 100 %. The
results of the processor load for the second machine are shown
in Fig. 6. The average load of the RDRM on the processor and
the volume of output data with the input data volume from one
sensor 362 kB/s were:

• for vibration sensors: load 1.63 %, output stream
16 kB;

• for current sensors: load 1.02 %, output stream 8 kB;

• for temperature sensors: load 0.76 %, output stream
12 bytes.

According to the experimental results, we can say that the
average load of RDRM on the processor shows approximately
the same results for a weakly loaded and heavily loaded the
local server. The load of the RDRM also depends on the
volume of the input sensed data streams, for which it is
necessary to carry out additional experiments with different
settings of the RDRM.

Fig. 6. CPU average load for modules with different sensors for second node

V. CURRENT RESULTS AND DISCUSSION

The following results were obtained: the sensor data acqui-
sition model and data processing models for vibration, current,
and temperature sensors.

The RDRM has also been developed that implements these
models. Our experiments with RDRM showed estimations of
the CPU load for two computers processing the readings.
The first was heavily loaded with 46 sensors, the second was
loaded with only 6. The load of the RDRM on the processor
depends on the settings for collecting data from the sensors (the
size of the input stream changes). In this paper, experiments
were performed for the input stream from a single sensor of
362 kB/s.

On average, one RDRM loaded the processor by no more
than 1.7 % when processing data from vibration sensors, no
more than 1.3 % for current sensors, and no more than 0.8 %
for temperature sensors.

Based on the results obtained on the processor load, the
approximate number of sensors processed on a single computer
is calculated. With CPUs similar in performance to Intel(R)
Core(TM) i5-9400F CPU 2.90 GHz and Intel(R) Core(TM)
i7-6820EQ CPU 2.80 GHz with 48 sensors, the total CPU
load was about 90-100 % which includes the total module load
and overhead (readings and statistics database, event database,
message broker).

The models of raw data collection and processing described
in the paper assume that all calculations are done on a high-
performance device—a local server. However, one of the
options for the development of the models described in this
paper is the complete or partial transfer of calculations to the
DAQ card. By developing models in this direction, it will be
possible to reduce the load on the local server, while freeing up
valuable resources of the local server to increase the sensors
processed on a single computer.
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