
Random Backoff for Active Control of Information
Updates in Smart Spaces

Olga Bogoiavlenskaia, Dmitry Korzun, Kirill Kulakov

Petrozavodsk State University (PetrSU)

Petrozavodsk, Russia

{dkorzun, olbgvl, kulakov}@cs.karelia.ru

Abstract—Performance fluctuation on the semantic informa-
tion broker side due to critical growth of the request queue
length can cause its complete failure or substantial degradation
of its services.Since semantic broker is one of the key element of
the smart space architecture its performance is a vital issue for
the whole environment. We consider two possible sources of the
performance degradation.One of them is the growth of the request
arrival rate beyond the limits of its capacity. Another source
finds its origin in the request synchronization which happens
due to the presence of the regular patterns in the activities of
the smart space participants. Rather often implementation of
the relevant approaches at SIB size poses substantial difficulties.
We propose several algorithms that can be implemented on the
KPs side. The algorithms form an additional mechanism that
can reduce SIB fault rate and avoid performance degradation by
regulating the KPs activity and hence balancing the load of SIB.
The mechanism presumes additional timeout to the persistent
request. The timeout value is selected according to the current
system state and its history in the nearest past. The timeout
consists of two components. The first one is determined be the
active control with the adaptive strategy and the second one is
defined by the random backoff algorithm.

I. INTRODUCTION

Smart spaces are considered as service-oriented informa-
tion sharing environments [1], [2]. Such an environment can
be utilized for deploying Internet of Things (IoT) applications,
which need dynamic location detection and context-available
interaction of physical objects [3], [4]. We consider smart
spaces deployed in localized resource-restricted IoT environ-
ments. They provide services to a group of mobile clients. Such
an environment is typically associated with a physical spatial-
restricted place equipped with a variety of devices. In the smart
space everyday life objects, alongside traditional computers,
become data processors and service constructors to their users,
which use mobile devices for interactions.

Smart space deployment in a given IoT environment re-
quires a software platform to address interoperability across
heterogeneous devices and to support constructing multiple
services. Our reference study is the M3 architecture with its
implementation in the Smart-M3 platform [1], [5]. The latter
provides open source middleware for implementation of the
smart space concept in IoT environments. Semantic informa-
tion broker (SIB) is the key element of the M3 architecture [6],
[7], which manages a knowledge base shared with all the smart
space participants. Such a participant can produce data for this
information sharing, consume the shared information, reason
new knowledge over the collected information, and share the
new information in the knowledge base.

The knowledge base uses an RDF triplestore. The Smart
Spaces Access Protocol (SSAP) [1], [8] implements interac-
tion between a SIB and its smart space participants (called
knowledge processors—KPs). SSAP provides read/write op-
erations for inserting, removing, updating, querying, and pub-
lish/subscribe messaging. The operations can be extended with
SPARQL queries. In an IoT environment, the SIB can be
hosted by heterogeneous devices as ordinary computers or em-
bedded devices with low-capacity as single-board computers
or wireless routers [9].

The performance is subject to fluctuation on the SIB side
due to the critical growth of its requests pool. The fluctuation
can cause complete failure or substantial degradation of the
SIB operation with KPs. In this paper, we consider the SIB
performance problem and possible performance improvement
mechanisms. Our development of the proposed performance
improvement mechanisms uses technique of load balancing
and congestion control.

The following two reasons of the SIB performance degra-
dation are analyzed. The first reason is too high request arrival
rate compared with the available capacity of SIB host device.
The reason is crucial for the case of fog-based and edge-
centric IoT environments [10]. The second reason is burst-like
clustering of concurrent requests to the SIB from many KPs
during some short time period. In smart space applications
this clustering frequently occurs when many KPs subscribe on
updates of the same shared information [11], e.g., reacting on
the same events or advanced search queries from different KPs
provide the same result.

There are mechanisms that a SIB can use for performance
management [6]. When such a mechanism fully implemented
on the SIB side, then some SIB capacity is consumed, and
the performance is decreased. We expect that load balancing
between the SIB and its KPs is a reasonable solution. Our
proposed algorithms form an additional mechanism, which is
implemented on the KP side, and the processing workload is
delegated (partially) to the appropriate smart space participants
themselves. The mechanism introduces timeout between sub-
sequent requests of the same KP. The timeout value is selected
according to the observable system state and the collected
short-term history of faults and losses.

The timeout consists of the two components. The first one
is determined by the active control with adaptive strategy,
which we studied previously in [11], [12]. The timeout value
tends to decreasing when much loss is observed. The second
timeout component is determined by a random backoff algo-

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

rithm [13]. The introduction of the backoff follows the idea of
randomization to reduce clustering of concurrent requests from
many KPs. Timeout values differ for different KPs, leading to
more uniform distribution of the SIB workload in time. Note
that the adaptive strategy in its pure from can lead to very
short timeouts for many KPs, so making the SIB workload
extremely high. The high load results in more losses, and the
backoff algorithm prevents this decrease of the timeout.

The rest of the work is organized as follows. Section II
describes SIB management mechanisms for request pools.
Section III introduces our method of active control by many
smart spaces participants using the adaptive strategy with
random backoff. Section IV analyzes the required properties
of the proposed active control. Section V discusses the step-
wise character of the proposed active control, which aims at
delegating some processing from the SIB to its KPs. Section VI
summarizes our current results.

II. REQUESTS POOL PROBLEM

Let us consider the overall SIB performance and its relation
to indiviual KPs behavior. Initially this performance problem
was introduced in [13] in respect to mobile clients for services
created in the smart space.

The SIB operation is RDF triple-based [1]. Each KPs
access the information using the following operations, which
can be resource-consuming for the SIB.

• Request–Response operation. KP sends a triple-based
mask or even a complicated SPARQL request. The
SIB responses with several found triplets. Such a KP
request can be computationally time-consuming and
the result can be large (many triples).

• Subscription–Notification operation. KP sends sub-
scription request. The SIB sends a notification if the
specified triples are updated, deleted or new triples are
published. Subscription requests are sent from many
KPs, and matching the information updates with the
subscribed KP is a computationally difficult task.

• Update operation. KP sends a request to update triples.
The SIB transfers this requests to the RDF triplestore.
The operation itself is not resource-consuming. Never-
theless, an Update operation request frequently leads
to Subscription–Notification operation.

The SIB performance can degrade due to the burst-like
synchronization of requests coming from a large set of au-
tonomous KPs. Each sends own requests sequence to SIB
concurrently and possibly with high rate. The simultaneous
occurrence of requests forms a burst (i.e., many requests
during the same short time interval). Typically a requests
burst is caused by detection of the same events (information
update) that are detected by the KPs. The high individual
rate is determined by too short delays between subsequent
requests from the same KP. In this case, SIB can apply
the following techniques for the processing of the incoming
request flow [14].

1) The SIB implements one or more requests queues in
the order of receiving the requests [15] and processes
each queue using the FIFO discipline. Each queue

TABLE I. BASIC TECHNIQUES FOR WORKLOAD CONTROL

Host Method Description

SIB
FIFO
processing

Requests pool operates as several parallel FIFO queues.

Queries
caching

Caching the same queries without duplicative access to the
RDF triplestore

Dropping
requests

Requests queue has the length in dependency on the SIB
host device capacity. To preserve the queue size within the
bounds some incoming requests are dropped

KPs Active
control

Persistence query includes requests activated individually
by the KP, which selects timeout between subsequent
requests. The timeout value calculation is based on the
current system situation the KP observes.

is assigned for certain type of requests, e.g., for
advanced search queries when a query requires much
resources for resolving.

2) To optimize processing of repeating requests, the SIB
combines several queries into a single query. The
operation with information store is performed once
while the result is delivered to several requesters [16].
This technique needs caching incoming requests at
the SIB side.

3) Under the high rate of incoming requests, the SIB
can drop some requests or deny some queries. For
instance, a resource-demanding search query can be
postponed or resolved with an incomplete result.
Similarly, a query for out-of-date information can be
rejected [17].

Using the FIFO queue leads to increasing the SIB response
time, caching capacity is limited. The cache size management
and the requests denial policy reduce the service quality level
for individual KPs. On the application level, some KPs and
their requests can be prioritized. Processing is performed at
the SIB side, so consuming its limited resources. Table I is
inherited from [13] (see also [18]). The table summarizes basic
techniques to solve the performance problem.

We expect that delegation of some part of processing from
the SIB to its KP can essentially reduce the SIB workload. That
is, KPs become more responsible for own information sharing
activity control. The similar approach to the congestion control
is widely applied in distributed systems [19], [20].Individual
sources of the workload follow congestion control mechanisms
to balance the load of the infrastructure elements. Proper
balancing prevent and/or avoid the congestion. In particular,
this approach showed its efficiency in the TCP protocol and
some LAN MAC protocols. In our case, the individual KPs
perform congestion control algorithms by using information
update timeout.

Figure 1 shows the concept model of the SIB requests
pool. The formal symbols are summarized in Table II. The SIB
serves m concurrent KPs. Each KP can apply individual con-
trol of its activity determined by rate λk for k = 1, 2, . . . ,m.
For simplicity we assume that KPs are identical and they
requests similar persistent queries. Each KP k consequently
sends requests Ri to the SIB, i = 1, 2, The activity
control is implemented by timeout value ti elapsed between
sending the subsequent requests Ri−1 and Ri. The generic
mathematical representation for the timeout calculation by an
individual KP is as follows.

ti = f
(
ti−1, ki, T

br, T br
i−1
, h

)
. (1)

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 48 --

Fig. 1. SIB requests pool model

TABLE II. SYMBOL NOTATION

Symbol Description
ti Active control timeout, i.e., the time elapsed between requests Ri−1

and Ri
ki Number of update losses during ti
α, δ Parameters of the adaptive strategy

h Parameters of the random backoff algorithm

tasti , t
bck
i Adaptive Strategy Timeout value (AST) and Random Backoff Timeout

value (RBT)

T br The metric for burst-like requests synchronization detection

T̃ br Smoothed average of the SIB response time

Rnbr The nth instance of the SIB response time visible by the individual
KP

β RBT multiplier

SIB accepts requests by forming the queues. Processing is
with the sum rate λpr. This rate can be lower than the incoming
requests rate λin. The difference is due to the discard/deny
policy of the SIB. Each KP individually can influence λin by
selecting own timeout value ti for the next request Ri.

Based on the requests pool model, we study the following
directions for improving the performance. The key idea is that
each KP can take some workload while the KP activity is
subject to adaptation and desynchronization with the activity
from the other KPs.

1) The problem of SIB load balancing when each KP
may individually make active control actions (active
control for information updates). For the problem we
formulate the timeout model for the active control
and present the algorithm for applying the timeout
model in the smart spaces. The timeout consists of
two components: Adaptive Strategy Timeout (AST)
and Random Backoff Timeout (RBT).

2) For AST we design AIMD-like evaluation scheme
basing on its properties presented in our previous
work we discuss its influence on SIB workload and
its role in the high-quality information updates.

3) For RBT we formulate the model of its evaluation
provide method for tuning its parameters in under
numerous different conditions.

III. ACTIVE TIMEOUT CONTROL FOR INFORMATION

UPDATES

Our approach is two-fold. First we use adaptive strategy
from our previous work, see, e.g. [12]. In the strategy the
choice of the timeout value depends on the current stage of
the system. The timeout increases if the information updates
are successfully delivered to the KP and decreases if updates
losses were identified. Detection of losses means that the KP
should increase the active request rate to avoid the losses of
the important information.

Meanwhile in the case of multiple losses the strategy sub-
stantially decreases the timeout value which in turn increases
the SIB workload and may cause its failure and/or performance
degradation. At the same time KPs often fulfill their requests
in parallel with similar parameters for determining the value
of the timeout. In this case the requests may arrive in batches
in SIB queue or in the tight groups similar to the batches. The
synchronization appear due to the nature of some high-level
applications. For instance if smart-room provides a presenter’s
slides to the listener’s devices the slide updates happen syn-
chronously and create a batch of requests (burst-like behavior).
The batches may essentially increase SIB response time and
hence decrease its performance.

We denote the inappropriate growth of the SIB response
time as a collision despite of its nature. To avoid the collision
the KPs use the random backoff algorithm. The idea of
the algorithm is successive growth of the timeout starting
from randomly selected value if a collision of requests was
identified. Significant increase of SIB response time for a
request is considered as an identifier of the collision.

The total value of timeout for the request to send is equal
to the sum of the adaptive strategy timeout (AST) tacti for i’s
request and the random backoff timeout (RBT) tbcki ,

ti = t
ast
i + t

bck
i . (2)

Each timeout is a complicated function, where value for i is
calculated based on the current system state and the previous
history, see (1).

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 49 --

Algorithm 1 Active Timeout Control

Require: initialization of active control on client side
1: for i = 0 to End of the session do
2: {start thread for Ri}
3: loop
4: doQuery(Ri);
5: tasti = activeControl(ti−1, ki−1, α);
6: tbcki = backoffTimeout(Tbr, β, h);
7: sleep(tacti + tbcki);
8: end loop
9: end for

Algorithm 2 Adaptive Strategy

function activeControlTimeout(Ri):
1: kj = getQueryLosses(Ri); {receive losses number}
2: calculateEstimates(); {recalculate estimates}
3: if kj = 0 then
4: tactij = t

act
i(j−1)

+N ∗ δ;
5: if T − tactij ≤ 0 then
6: {use previous timeout value to avoid losses}
7: tactij = t

act
i,j−1

;
8: end if
9: else
10: tactij = t

act
i,j−1

/α;
11: end if
12: return tactij ;

Algorithm 3 Random Backoff

Require: j = 0 {j is own for each thread}
function backoffTimeout(Ri):
1: j++;
2: {if backoff was reset on previous round}
3: if tbckj = 0 then
4: tbckj = tmin;
5: end if
6: {determine performance level}
7: duration = getLastQueryDuration(Ri);
8: if duration ≤ getAverageQueryDuration(Ri) then
9: tbckj = 0;

10: return tbckj ;
11: end if
12: {calculate backoff timeout}
13: tbckj = min(tbckj−1

β, tmax);
14: tbckj = tbckj + variation(tbckj * seed);

15: return tbckj ;

Algorithm 1 is an adapted version from [13]. The algorithm
shows the use of the timeouts AST and RBT in (2) to reduce
the SIB workload by spreading requests across the timeline.
Algorithm 2 and Algorithm 3 are used for calculating the
AST and the RBT, correspondingly. The explanation of the
algorithms computational logic is as follows.

Adaptive Strategy Timeout: Following our previous
work [11], we consider the adaptive strategy of active control.
It implements “adaptation to losses” when a KP reduces its
active request timeout if updates losses are observed and
increases the timeout, otherwise. In fact, the adaptive strategy

could be considered as a generalization of TCP conges-
tion avoidance algorithm of additive–increase/multiplicative–
decrease (AIMD).

Generalized AIMD-like adaptive strategy has the following
form. Let i = 1, 2 . . . be a sequence of the checks done by
the client, tasti be the time period between consecutive checks
i − 1 and i, and ki be the number of losses during tasti . At
the end of tasti−1

the client makes the decision about the next
tasti period using tasti = g(tasti−1

, ki−1). In the simplest case, we
straightforwardly apply the AIMD algorithm as follows.

tasti =

{
tj−1/α, kj−1 > 0
tasti−1

+ δ ki−1 = 0,
(3)

where α > 1 stands for decrease and δ > 0 for increase
values of check timeout length. More complete variant of this
equation is described in our work [11].

In our previous work [12], we obtain analytical estimates
for parameters in (3) that can be used to tune the strategy. In
particular, T is the expected length of check timeout before
a multiplicative decrease, N is the number of consecutive
growths, and K is a metric for different loss types.

Any KP can implement the adaptive strategy. Let m
identical KPs send requests to the SIB. Each KP computes
its own value of the AST tacti using (3).

Random Backoff Timeout: Randomized backoff algo-
rithms are widely used in distributed systems to coordinate ac-
cess to a shared resource (e.g., to desynchronize the concurrent
access). Different versions of the algorithm are implemented in
the broad range of applications, e.g., Ethernet LAN, wireless
networks, memory transactions, e-mail transmission, multi-
process locks, TCP timeout control and others. One could
classify these methods onto two groups. Those are detected
collision control and collision avoidance.

The first one assumes that collisions can be detected. If
so the participants chose random delay and repeat an attempt
to grab a resource. If collision repeats they increase the
value using a multiplier or any other monotonously growing
function. Most well-known implementation of the randomized
exponential backoff is [21] where after each resolution failure
the delay doubles. Collision avoidance in turn assumes that
participants use random delay even before their first attempt
to grab a resource. If collision happens anyway they chose
new value of the delay from the wider range of values. The
approach is used for the environments where collisions are
hardly to detect, e.g. in the IEEE 802.11x standards family.

Since randomized backoff is widely used for the several
decades it has many variants and it is studied extensively. One
can found vast bibliography in [22]. This work presents impor-
tant properties that randomized backoff is expected to provide.
These are stable high throughput, few failed access attempts
and efficient robustness. All these features are expected by the
individual KPs from SIB performance.

As it was mentioned above the adaptive strategy has
limitations when a large set of individual KPs operate in
parallel. Supplementing the adaptive strategy by the random-
ized backoff is to adjust the drawback. The random backoff
algorithm could spread the batch of the requests across the
timeline and decrease total arrival rate visible by the SIB.

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 50 --

IV. REQUIREMENTS ANALYSIS

The proposed incorporation of the backoff algorithm into
the smart spaces environment assumes using of the implicit
collision detection which immediately invokes random backoff.
The simplest way of the detection bases on a measurement
of the average response time on the KPs side. Thus the KP
calculates duration of the request processing. In the most
of cases and if the processing takes substantially more time
then queuing delay is significant and the KPs should use the
backoff algorithm to improve the performance by reducing
simultaneous request number. If first attempt doesn’t bring
success, then the KP follows random backoff algorithm until
the response time returns to the value desired.

The random exponential backoff algorithm with collision
detection could be described by following equation:

tbcki = min(tbcki−1
β, tmax), (4)

where β ≥ 2 and tmax ≤ 5 ∗ average query duration, that
stands for stopping increase backoff value after 5 rounds. This
algorithm is currently in use in all 802.11 standards.

For additional randomization of the backoff delay selection
one can use variation described as follows.

tbckj = tbckj + Var(tbckj ∗ seed), (5)

where variation is the random function that returns a value,
which follows normal distribution and its seed is for random
initialization.

To indicate a congestion episode at SIB side the individual
KP estimates SIB response time T br. Several levels of the
requirements to the value could be considered as follows:

1) Rigorous requirements. The client demands queuing
delay to be as small as possible. Therefore

T br = T proc + T net + β ∗ T proc (6)

Here T proc is the query processing time itself, T net

is network Round Trip Time (RTT) and β ∗ Tproc is
queuing delay demand where β < 1.

2) Mediate requirements. The KP relays on SIB estima-
tion of the queuing delay. Here SIB defines the limit
of the queue size that allows stable processing. The
SIB informs all KPs about the value

Dbr = T proc + T queu.

The individual KP either assumes or if possible
evaluates the network delay Tnet and uses the value

T br = Dbr + T net

as a collision indication.
3) Light requirements. Here the client applies technique

which is widely used in many data communication
environments. It maintains geometric moving average
of the response time it observes and indicates con-
gestion when next response time or response waiting
period substantially exceeds the value of the average.
The average value is calculated as

T̃ br
n = γT̃

br
n−1

+ (1− γ)T br
n (7)

Here T br
n is next value of the response time observed

by the KP.

Rigorous requirement demand high performance from SIB
or if SIB capacity is pure the KPs population should essentially
reduce the SIB load to stay within the requirement. The
mediate requirement need further communication between SIB
and the clients since SIB implicitly informs clients about
its capacity and the congestion level. The light requirement
propose the simplest evaluation method but it is most error
prone.

The minimum, average and maximum values of RBT are
essential as well, since the initial value of the RBT plays key
role in the congestion control for the considered environment.
If the value is too small then the algorithm would not resolve
a collision for fairly small number of attempts. If the value
is too big then the overall performance of the system will
degrade dramatically. We consider three possible approaches
to the problem.

1) The client keeps short history of the check intervals
and corresponding response times, pick from the
history check interval before the last response time
instance which was within the limits according to
the chosen level of requirements tackhist, computes
b = tackpast − tackcur and uses b > 0 as an expectation

of the distribution function which generates first tbcki .
So in this approach the KP relies on the value from
the past when congestion did not happen yet.

2) The client keeps history of the backoff values. When
congestion is successfully eliminated it stores the
values of the timeout which brought success. During
next congestion event it uses this value as an expec-
tation of the distribution which generates first tbcki .
This method relies on the history of success in the
congestion control.

3) The SIB informs the KP about desirable arrival rate.
The KP starts the backoff from this value. This
method proposes using the best information on the
congestion level available but it will create overhead
due to the additional signaling between SIB and the
clients.

V. DISCUSSION

Let us summarize and discuss the intuition behind the
proposed algorithms in respect to the studied SIB performance
problem. The basic idea is the following step-wise enhancing
of the active control from the KPs side.

1) No active control. All information updates are pro-
cessed by SIB, which sends appropriate notifications
to all interested KPs. The case is subject to much loss
when the SIB workload is high.

2) Basic active control. Any KP can occasionally request
the SIB to check for updates. In a deterministic strat-
egy, timeouts ti are fixed. In a randomized strategy,
ti are random values according with some probability
distribution, and leading to average timeout tavg.
The KP improves the SIB performance by taking a
certain fixed share of processing, while the share is
independent on the current system state.

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 51 --

3) Adaptive strategy. Any KP increases or decreases
the timeout ti in dependence on decreasing or de-
creasing the loss of information update notifications.
When the SIB is under high workload then the SIB
can reduce its control of information updates, and
KPs become responsible for receiving notification on
updates. Nevertheless, when many KPs make their
timeouts small then the SIB receives more requests,
increasing the SIB workload.

4) Active timeout control: Adaptive strategy + Random
backoff. RBT makes the timeout larger when ATS
is too small. Also, the random timeout component
makes smoother a batch of incoming requests to
the SIB (in the case of some information update
interested to many KPs). As a result, the KP is
prevented from generating high workload to the SIB.

The expected performance improvement provided by RBT
implementation could be described as follows. Let us denote τ
as average AST provided by the adaptive strategy. The value
could be derived using our previous work [11]. Therefore a
single client generates the flows of update request with the
average rate 1/τ and m clients generate total flow with the
intensity m/τ. Applying the central limit theorem for flows
we assume the the total flow of the requests is Poisson flow.
Let Nt define the limit of SIB capacity, i.e., the maximum
number of the requests arrived during the interval t which SIB
can process without unacceptable delay and/or failure. Then
the probability that the Nt limit is achieved in the system is

Pr{Nt} =
[mτ t]

Nt

Nt!
e−[

m
τ t].

Hence, the RBT implementation supports avoiding completely
or reducing significantly the probability of achieving or ex-
ceeding Nt.

In our further research we plan to experimentally evaluate
the improvement degree that each step above provides for the
system performance.

VI. CONCLUSION

The paper described a novel active control mechanism
based on enhancing the known adaptive strategy with a random
backoff. The mechanism reduces the problem of high request
pool from many mobile clients to their SIB in a smart
space. We use the active control for persistent queries (e.g.,
subscription on information updates). The adaptive strategy
decreases timeouts when high loss is experienced, while the
backoff algorithm avoids many simultaneous requests from
many clients and frequent requests from an individual client.
Improvements are achieved by reducing the number of requests
to SIB, as well as in the event of a decrease in the intensity
of broker processing, clients begin to be distributed on a time
line to allow SIB to stabilize its work. The direction of our
future work is evaluation of the proposed solution with the use
of an experimental system consisted of services and clients.

ACKNOWLEDGMENT

The research was financially supported by the Min-
istry of Education and Science of Russia within project

2.5124.2017/8.9 of the basic part of state research as-
signment for 2017–2019. The reported study was funded
from Russian Fund for Basic Research according to research
project # 19-07-01027. The results were implemented by the
Government Program of Flagship University Development for
Petrozavodsk State University in 2017–2021.

REFERENCES

[1] J. Honkola, H. Laine, R. Brown, and O. Tyrkkö, “Smart-M3 information
sharing platform,” in Proc. IEEE Symp. Computers and Communica-
tions (ISCC’10). IEEE Computer Society, Jun. 2010, pp. 1041–1046.

[2] S. Balandin and H. Waris, “Key properties in the development of smart
spaces,” in Proc. 5th Int’l Conf. Universal Access in Human-Computer
Interaction (UAHCI ’09). Part II: Intelligent and Ubiquitous Interaction
Environments, LNCS 5615, C. Stephanidis, Ed. Springer-Verlag, Jul.
2009, pp. 3–12.

[3] D. Korzun, S. Balandin, and A. Gurtov, “Deployment of Smart Spaces
in Internet of Things: Overview of the design challenges,” in Internet
of Things, Smart Spaces, and Next Generation Networking, ser. Lecture
Notes in Computer Science, S. Balandin, S. Andreev, and Y. Kouch-
eryavy, Eds., vol. 8121. Springer, Aug. 2013, pp. 48–59.

[4] L. Roffia, F. Morandi, J. Kiljander, A. D. Elia, F. Vergari, F. Viola,
L. Bononi, and T. Cinotti, “A semantic publish-subscribe architecture
for the Internet of Things,” IEEE Internet of Things Journal, vol. PP,
no. 99, 2016.

[5] D. G. Korzun, S. I. Balandin, A. M. Kashevnik, A. V. Smirnov, and A. V.
Gurtov, “Smart spaces-based application development: M3 architecture,
design principles, use cases, and evaluation,” International Journal of
Embedded and Real-Time Communication Systems (IJERTCS), vol. 8,
no. 2, pp. 66–100, 2017.

[6] I. Galov, A. Lomov, and D. Korzun, “Design of semantic information
broker for localized computing environments in the Internet of Things,”
in Proc. 17th Conf. of Open Innovations Association FRUCT. IEEE,
Apr. 2015, pp. 36–43.

[7] F. Viola, A. D’Elia, D. Korzun, I. Galov, A. Kashevnik, and S. Ba-
landin, “The M3 architecture for smart spaces: Overview of semantic
information broker implementations,” in Proc. of the 19th Conference
of Open Innovations Association FRUCT, S. Balandin and T. Tyutina,
Eds. IEEE, Nov. 2016, pp. 264–272.

[8] J. Kiljander, F. Morandi, and J.-P. Soininen, “Knowledge sharing
protocol for smart spaces,” International Journal of Advanced Computer
Science and Applications (IJACSA), vol. 3, pp. 100–110, 2012.

[9] S. Marchenkov, D. Korzun, A. Shabaev, and A. Voronin, “On appli-
cability of wireless routers to deployment of smart spaces in Internet
of Things environments,” in Intelligent Data Acquisition and Advanced
Computing Systems: Technology and Applications (IDAACS), vol. 2.
IEEE, Sep 2017, pp. 1000–1005.

[10] D. Korzun, A. Varfolomeyev, A. Shabaev, and V. Kuznetsov, “On de-
pendability of smart applications within edge-centric and fog computing
paradigms,” in 2018 IEEE 9th International Conference on Dependable
Systems, Services and Technologies (DESSERT), May 2018, pp. 502–
507.

[11] D. Korzun, M. Pagano, and A. Vdovenko, “Control strategies of sub-
scription notification delivery in smart spaces,” in Distributed computer
and communication networks, ser. Communications in Computer and
Information Science (CCIS), V. Vishnevsky and D. Kozyrev, Eds.
Springer International Publishing, 2016, vol. 601, pp. 40–51.

[12] A. S. Vdovenko, O. I. Bogoiavlenskaia, and D. G. Korzun, “Study of
active subscription control parameters in large-scale smart spaces,” pp.
344–350, Nov 2017.

[13] A. Vdovenko, “Active control with backoff algorithm for reducing
broker load in smart spaces,” in Proc. 22nd Conf. Open Innovations
Association FRUCT, May 2018, pp. 397–400.

[14] L. Ferdouse, A. Anpalagan, and S. Misra, “Congestion and overload
control techniques in massive M2M systems: a survey,” Transactions
on Emerging Telecommunications Technologies, vol. 28, no. 2, 2017.

[15] L. De Cicco, G. Cofano, and S. Mascolo, “Local SIP overload con-
trol: Controller design and optimization by extremum seeking,” IEEE

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 52 --

Transactions on Control of Network Systems, vol. 2, no. 3, pp. 267–277,
2015.

[16] M. Knuth, O. Hartig, and H. Sack, “Scheduling refresh queries for
keeping results from a sparql endpoint up-to-date,” in OTM Confeder-
ated International Conferences ”On the Move to Meaningful Internet
Systems”. Springer, 2016, pp. 780–791.

[17] M. Ohta, “Overload control in a SIP signaling network,” in Proceeding
of World Academy of Science, engineering and technology, 2006, pp.
205–210.

[18] D. Kuptsov, B. Nechaev, A. Lukyanenko, and A. Gurtov, “How penalty
leads to improvement: A measurement study of wireless backoff in ieee
802.11 networks,” Computer Networks, vol. 75, pp. 37–57, 2014.

[19] A. S. Tanenbaum and M. Van Steen, Distributed systems: principles

and paradigms. Prentice-Hall, 2007.

[20] A. Lukyanenko, A. Gurtov, and E. Morozov, “An adaptive backoff
protocol with markovian contention window control,” Communications
in Statistics-Simulation and Computation, vol. 41, no. 7, pp. 1093–1106,
2012.

[21] R. M. Metcalfe and D. R. Boggs, “Ethernet: Distributed packet switch-
ing for local computer networks,” Communications of the ACM, vol. 19,
no. 7, pp. 395–404, Jul. 1976.

[22] M. A. Bender, J. T. Fineman, S. Gilbert, and M. Young, “Scaling
exponential backoff: Constant throughput, polylogarithmic channel-
access attempts, and robustness,” Journal of ACM, vol. 66, no. 1, pp.

 6:1–6:33, Dec. 2018.

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 53 --

