WG14/N1124

Contents
Foreword

Introduction

1.

Scope

2. Normative references

3. Terms, definitions, and symbols
4,
5.

Conformance

Environment
5.1 Conceptual models oo
5.1.1 Translation environment
5.1.2 Execution environments
5.2 Environmental considerations
5.2.1 Character sets
5.2.2 Character display semantlcs
5.2.3 Signals and interrupts
5.2.4 Environmental limits

Language

6.1 Notation

6.2 Concepts Coe
6.2.1 Scopes of |dent|f|ers
6.2.2 Linkages of identifiers
6.2.3 Name spaces of identifiers
6.2.4 Storage durations of objects
6.2.5 Types
6.2.6 Representations of types

6.2.7 Compatible type and composite type

6.3 Conversions Co
6.3.1 Arithmetic operands
6.3.2 Other operands
6.4 Lexical elements
6.4.1 Keywords
6.4.2 ldentifiers . .
6.4.3 Universal character names
6.4.4 Constants .
6.4.5 String literals
6.4.6 Punctuators
6.4.7 Header names
6.4.8 Preprocessing numbers
6.4.9 Comments
6.5 Expressions

Contents

Committee Draft — May 6, 2005

ISO/IEC 9899:TC2

ISO/IEC 9899:TC2

6.6
6.7

6.8

6.9

6.10

6.5.1
6.5.2
6.5.3
6.5.4
6.5.5
6.5.6
6.5.7
6.5.8
6.5.9
6.5.10
6.5.11
6.5.12
6.5.13
6.5.14
6.5.15
6.5.16
6.5.17

Primary expressions

Postfix operators

Unary operators

Cast operators .
Multiplicative operators
Additive operators

Bitwise shift operators
Relational operators

Equality operators

Bitwise AND operator
Bitwise exclusive OR operator
Bitwise inclusive OR operator
Logical AND operator
Logical OR operator
Conditional operator
Assignment operators
Comma operator

Constant expressions
Declarations

6.7.1
6.7.2
6.7.3
6.7.4
6.7.5
6.7.6
6.7.7
6.7.8

Storage-class specifiers
Type specifiers

Type qualifiers
Function specifiers
Declarators

Type names

Type definitions
Initialization

Statements and blocks

6.8.1
6.8.2
6.8.3
6.8.4
6.8.5
6.8.6

Labeled statements

Compound statement
Expression and null statements
Selection statements

Iteration statements

Jump statements

External definitions

6.9.1
6.9.2

Function definitions
External object definitions

Preprocessing directives

6.10.1
6.10.2
6.10.3
6.10.4
6.10.5
6.10.6

Conditional inclusion
Source file inclusion
Macro replacement
Line control

Error directive
Pragma directive

Contents

Committee Draft — May 6, 2005

WG14/N1124

69
69
78
81
82
82
84
85
86
87
88
88
89
89
90
91
94
95
97
98
99
108
112
114
122
123
125
131
131
132
132
133
135
136
140
141
143
145
147
149
151
158
159
159

WG14/N1124 Committee Draft — May 6, 2005

6.11 Future language directions
6.11.1 Floating types
6.11.2 Linkages of identifiers
6.11.3 External names .
6.11.4 Character escape sequences
6.11.5 Storage-class specifiers
6.11.6 Function declarators
6.11.7 Function definitions
6.11.8 Pragma directives
6.11.9 Predefined macro names
7. Library
7.1 Introductlon
7.1.1 Definitions of terms
7.1.2 Standard headers
7.1.3 Reserved identifiers
7.1.4 Use of library functions
7.2 Diagnostics <assert.h>
7.2.1 Program diagnostics
7.3 Complex arithmetic <complex.h>
7.3.1 Introduction
7.3.2 Conventions
7.3.3 Branch cuts . .
7.34 ThecX LIMITED RANGE pragma
7.35 Trlgonometrlc functions
7.3.6 Hyperbolic functions .
7.3.7 Exponential and logarithmic functlons
7.3.8 Power and absolute-value functions
7.3.9 Manipulation functions
7.4 Character handling <ctype.h>
7.4.1 Character classification functlons
7.4.2 Character case mapping functions
7.5 Errors <errno.h> . .
7.6 Floating-point environment <fenv h>
7.6.1 The FENV_ACCESS pragma
7.6.2 Floating-point exceptions
7.6.3 Rounding
7.6.4 Environment .
7.7 Characteristics of floating types <float h> .
7.8 Format conversion of integer types <inttypes.h>

6.10.7 Null directive)
6.10.8 Predefined macro names
6.10.9 Pragma operator

7.8.1 Macros for format specifiers . .
7.8.2 Functions for greatest-width integer types

Contents

ISO/IEC 9899:TC2

160
160
161
163
163
163
163
163
163
163
163
163
163

164
164
164
165
166
166
169
169
170
170
170
171
171
172
174
176
177
178
181
181
184
186
187
189
190
193
194
197
198
198
199

ISO/IEC 9899:TC2 Committee Draft — May 6, 2005

Vi

7.9
7.10
7.11

7.12

7.13

7.14

7.15

7.16

7.17
7.18

7.19

Alternative spellings <iso646 .h>
Sizes of integer types <limits.h>
Localization <locale.h>

7.11.1
7.11.2

Locale control
Numeric formatting conventlon mquwy

Mathematics <math.h>

7.12.1
7.12.2
7.12.3
7.12.4
7.12.5
7.12.6
7.12.7
7.12.8
7.12.9
7.12.10
7.12.11
7.12.12
7.12.13
7.12.14

Treatment of error condltlons

The FP_CONTRACT pragma
Classification macros
Trigonometric functions
Hyperbolic functions .
Exponential and logarithmic functlons
Power and absolute-value functions
Error and gamma functions

Nearest integer functions
Remainder functions

Manipulation functions

Maximum, minimum, and posmve dlfference functlons

Floating multiply-add
Comparison macros

Nonlocal jJumps <setjmp.h>

7.13.1
7.13.2

Save calling environment
Restore calling environment

Signal handling <signal.h>

7.14.1
7.14.2

Specify signal handling
Send signal

Variable arguments <stdarg. h>

7.15.1

Variable argument list access macros

Boolean type and values <stdbool.h>
Common definitions <stddef.h>
Integer types <stdint.h>

7.18.1
7.18.2
7.18.3
7.18.4

Integer types .
Limits of specified- W|dth mteger types
Limits of other integer types

Macros for integer constants

Input/output <stdio.h>

7.19.1
7.19.2
7.19.3
7.19.4
7.19.5
7.19.6
7.19.7
7.19.8

Introduction

Streams

Files .

Operations on flles

File access functions

Formatted input/output functlons
Character input/output functions
Direct input/output functions

Contents

WG14/N1124

202
203
204
205
206
212
214
215
216
218
221
223
228
230
231
235
236
238
239
240
243
243
244
246
247
248
249
249
253
254
255
255
257
259
260
262
262
264
266
268
270
274
296
301

WG14/N1124 Committee Draft — May 6, 2005 ISO/IEC 9899:TC2

7.20

7.21

1.22
7.23

7.24

7.25

7.26

7.19.9 File positioning functions

7.19.10 Error-handling functions

General utilities <stdlib.h>

7.20.1 Numeric conversion functions .
7.20.2 Pseudo-random sequence generation functlons
7.20.3 Memory management functions

7.20.4 Communication with the environment

7.20.5 Searching and sorting utilities

7.20.6 Integer arithmetic functions .
7.20.7 Multibyte/wide character conversion functlons
7.20.8 Multibyte/wide string conversion functions

String handling <string.h>

7.21.1 String function conventions

7.21.2 Copying functions

7.21.3 Concatenation functions

7.21.4 Comparison functions

7.21.5 Search functions

7.21.6 Miscellaneous functions

Type-generic math <tgmath.h>

Date and time <time.h>

7.23.1 Components of time

7.23.2 Time manipulation functions

7.23.3 Time conversion functions .

Extended multibyte and wide character utllltles <wchar h>
7.24.1 Introduction

7.24.2 Formatted wide character mput/output functlons
7.24.3 Wide character input/output functions

7.24.4 General wide string utilities .

7.24.5 Wide character time conversion functlons .
7.24.6 Extended multibyte/wide character conversion ut|I|t|es
Wide character classification and mapping utilities <wctype .h>
7.25.1 Introduction

7.25.2 Wide character classmcatlon utllltles

7.25.3 Wide character case mapping utilities

Future library directions .

7.26.1 Complex arithmetic <comp1ex h>

7.26.2 Character handling <ctype.h>

7.26.3 Errors <errno.h> -

7.26.4 Format conversion of integer types <1nttypes h>
7.26.5 Localization <locale.h>

7.26.6 Signal handling <signal.h> .

7.26.7 Boolean type and values <stdbool.h>

7.26.8 Integer types <stdint.h>

7.26.9 Input/output <stdio.h>

Contents

302
304
306
307
312
313
315
318
320
321
323
325
325
325
327
328
330
333
335
338
338
339
341
348
348
349
367
371
385
386
393
393
394
399
401
401
401
401
401
401
401
401
401
402

vii

ISO/IEC 9899:TC2 Committee Draft — May 6, 2005

7.26.10 General utilities <stdlib.h>

7.26.11 String handling <string.h> .

7.26.12 Extended multibyte and wide character utllltles
<wchar.h> .

7.26.13 Wide character classmcatlon and mapplng ut|I|t|es
<wctype.h>

Annex A (informative) Language syntax summary

Al
A2
A3

Lexical grammar
Phrase structure grammar
Preprocessing directives

Annex B (informative) Library summary

B.1
B.2
B.3
B.4
B.5
B.6
B.7
B.8
B.9
B.10
B.11
B.12
B.13
B.14
B.15
B.16
B.17
B.18
B.19
B.20
B.21
B.22
B.23
B.24

Diagnostics <assert.h>

Complex <complex.h>

Character handling <ctype.h>

Errors <errno.h> . .
Floating-point environment <fenv h>
Characteristics of floating types <float.h>
Format conversion of integer types <inttypes.h>
Alternative spellings <iso646 .h>

Sizes of integer types <limits.h>
Localization <locale.h>

Mathematics <math.h>

Nonlocal jumps <setjmp.h>

Signal handling <signal.h>

Variable arguments <stdarg.h>

Boolean type and values <stdbool.h>
Common definitions <stddef.h>

Integer types <stdint.h>

Input/output <stdio.h>

General utilities <stdlib.h>

String handling <string.h>

Type-generic math <tgmath.h>

Date and time <time.h> .

Extended multibyte/wide character utllltles <wchar h>

Wide character classification and mapping utilities <wctype.h>

Annex C (informative) Sequence points

Annex D (normative) Universal character names for identifiers

Annex E (informative) Implementation limits

Annex F (normative) 1EC 60559 floating-point arithmetic

F.1
F.2
F.3

viii

Introduction
Types
Operators and functlons

Contents

WG14/N1124

402
402

402

402

403
403
409
416

418
418
418
420
420
420
421
421
422
422
422
422
427
427
427
427
428
428
428
430
432
433
433
434
436

438
439
441

443
443
443
444

WG14/N1124 Committee Draft — May 6, 2005 ISO/IEC 9899:TC2

F.4 Floating to integer conversion 446
F.5 Binary-decimal conversion e v216)
F.6 Contracted expressions 447
F.7 Floating-point environment 447
F.8 Optimization 450
F.9 Mathematics <math.h> 453
Annex G (informative) IEC 60559-compatible complex arithmetic 466
G.1 Introduction 466
G2 Types 466
G.3 Conventions 466
G.4 Conversionso oo e b6
G.5 Binary operators . e 1Y
G.6 Complex arithmetic <comp1ex h> e A
G.7 Type-generic math <tgmath.h> Y Y A°)
Annex H (informative) Language independent arithmetic 480
H.1 Introduction 480
H2 Types 480
H.3 Notification e o7
Annex | (informative) Common warnings 486
Annex J (informative) Portabilityissues 488
J.1 Unspecified behavior 488
J.2 Undefined behavior Co < (X
J.3 Implementation-defined behawor e 0
J.4 Locale-specific behavior A
J5 Commonextensions 512
Bibliography bl5
Index - Y

Contents iX

ISO/IEC 9899:TC2 Committee Draft — May 6, 2005 WG14/N1124

X Contents

WG14/N1124 Committee Draft — May 6, 2005 ISO/IEC 9899:TC2

Foreword

ISO (the International Organization for Standardization) and IEC (the International
Electrotechnical Commission) form the specialized system for worldwide
standardization. National bodies that are member of ISO or IEC participate in the
development of International Standards through technical committees established by the
respective organization to deal with particular fields of technical activity. 1SO and IEC
technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with I1ISO and IEC, also
take part in the work.

International Standards are drafted in accordance with the rules given in the ISO/IEC
Directives, Part 3.

In the field of information technology, ISO and IEC have established a joint technical
committee, ISO/IEC JTC 1. Draft International Standards adopted by the joint technical
committee are circulated to national bodies for voting. Publication as an International
Standard requires approval by at least 75% of the national bodies casting a vote.

International Standard ISO/IEC 9899 was prepared by Joint Technical Committee
ISO/IEC JTC 1, Information technology, Subcommittee SC 22, Programming languages,
their environments and system software interfaces. The Working Group responsible for
this standard (WG 14) maintains a site on the World Wide Web at
http://www.open-std.org/JTC1/SC22/WG14/ containing additional
information relevant to this standard such as a Rationale for many of the decisions made
during its preparation and a log of Defect Reports and Responses.

This second edition cancels and replaces the first edition, ISO/IEC 9899:1990, as
amended and corrected by ISO/IEC 9899/COR1:1994, ISO/IEC 9899/AMD1:1995, and
ISO/IEC 9899/COR2:1996. Major changes from the previous edition include:

— restricted character set support via digraphs and <iso646 .h> (originally specified
in AMD1)

— wide character library support in <wchar.h> and <wctype.h> (originally
specified in AMD1)

— more precise aliasing rules via effective type

— restricted pointers

— variable length arrays

— flexible array members

— static and type qualifiers in parameter array declarators
— complex (and imaginary) support in <complex.h>

— type-generic math macros in <tgmath.h>

— the long long int type and library functions

Foreword Xi

ISO/IEC 9899:TC2 Committee Draft — May 6, 2005 WG14/N1124

— increased minimum translation limits

— additional floating-point characteristics in <float.h>
— remove implicit int

— reliable integer division

— universal character names (\u and \U)

— extended identifiers

— hexadecimal floating-point constants and %a and %A printf/scanf conversion
specifiers

— compound literals

— designated initializers

— // comments

— extended integer types and library functions in <inttypes.h> and <stdint.h>
— remove implicit function declaration

— preprocessor arithmetic done in intmax_t/uintmax t

— mixed declarations and code

— new block scopes for selection and iteration statements

— integer constant type rules

— integer promotion rules

— macros with a variable number of arguments

— the vscanf family of functions in <stdio.h> and <wchar.h>
— additional math library functions in <math.h>

— treatment of error conditions by math library functions (math errhandling)
— floating-point environment access in <fenv.h>

— |EC 60559 (also known as IEC 559 or IEEE arithmetic) support

— trailing comma allowed in enum declaration

— %1 £ conversion specifier allowed in print £

— inline functions

— the snprint£ family of functions in <stdio.h>

— boolean type in <stdbool.h>

— idempotent type qualifiers

— empty macro arguments

Xii Foreword

WG14/N1124 Committee Draft — May 6, 2005 ISO/IEC 9899:TC2

— new structure type compatibility rules (tag compatibility)
— additional predefined macro names

— _Pragma preprocessing operator

— standard pragmas

— func__ predefined identifier

— Vva_copy macro

— additional strftime conversion specifiers

— LIA compatibility annex

— deprecate ungetc at the beginning of a binary file

— remove deprecation of aliased array parameters

— conversion of array to pointer not limited to lvalues

— relaxed constraints on aggregate and union initialization
— relaxed restrictions on portable header names

— return without expression not permitted in function that returns a value (and vice
Versa)

Annexes D and F form a normative part of this standard; annexes A, B, C, E, G, H, I, J,
the bibliography, and the index are for information only. In accordance with Part 3 of the
ISO/IEC Directives, this foreword, the introduction, notes, footnotes, and examples are
also for information only.

Foreword Xiii

ISO/IEC 9899:TC2 Committee Draft — May 6, 2005 WG14/N1124

Introduction

With the introduction of new devices and extended character sets, new features may be
added to this International Standard. Subclauses in the language and library clauses warn
implementors and programmers of usages which, though valid in themselves, may
conflict with future additions.

Certain features are obsolescent, which means that they may be considered for
withdrawal in future revisions of this International Standard. They are retained because
of their widespread use, but their use in new implementations (for implementation
features) or new programs (for language [6.11] or library features [7.26]) is discouraged.

This International Standard is divided into four major subdivisions:

— preliminary elements (clauses 1-4);

— the characteristics of environments that translate and execute C programs (clause 5);
— the language syntax, constraints, and semantics (clause 6);

— the library facilities (clause 7).

Examples are provided to illustrate possible forms of the constructions described.
Footnotes are provided to emphasize consequences of the rules described in that
subclause or elsewhere in this International Standard. References are used to refer to
other related subclauses. Recommendations are provided to give advice or guidance to
implementors. Annexes provide additional information and summarize the information
contained in this International Standard. A bibliography lists documents that were
referred to during the preparation of the standard.

The language clause (clause 6) is derived from *“The C Reference Manual”’.
The library clause (clause 7) is based on the 1984 /usr/group Standard.

Xiv Introduction

INTERNATIONAL STANDARD ©ISO/IEC ISO/IEC 9899:TC2

Programming languages — C

1. Scope

This International Standard specifies the form and establishes the interpretation of
programs written in the C programming language.?) It specifies

— the representation of C programs;

— the syntax and constraints of the C language;

— the semantic rules for interpreting C programs;

— the representation of input data to be processed by C programs;

— the representation of output data produced by C programs;

— the restrictions and limits imposed by a conforming implementation of C.
This International Standard does not specify

— the mechanism by which C programs are transformed for use by a data-processing
system;

— the mechanism by which C programs are invoked for use by a data-processing
system;

— the mechanism by which input data are transformed for use by a C program;

— the mechanism by which output data are transformed after being produced by a C
program;

— the size or complexity of a program and its data that will exceed the capacity of any
specific data-processing system or the capacity of a particular processor;

1) This International Standard is designed to promote the portability of C programs among a variety of
data-processing systems. It is intended for use by implementors and programmers.

81 General 1

ISO/IEC 9899:TC2 Committee Draft — May 6, 2005 WG14/N1124

— all minimal requirements of a data-processing system that is capable of supporting a
conforming implementation.

2. Normative references

The following normative documents contain provisions which, through reference in this
text, constitute provisions of this International Standard. For dated references,
subsequent amendments to, or revisions of, any of these publications do not apply.
However, parties to agreements based on this International Standard are encouraged to
investigate the possibility of applying the most recent editions of the normative
documents indicated below. For undated references, the latest edition of the normative
document referred to applies. Members of 1SO and IEC maintain registers of currently
valid International Standards.

ISO 31-11:1992, Quantities and units — Part 11: Mathematical signs and symbols for
use in the physical sciences and technology.

ISO/IEC 646, Information technology — I1SO 7-bit coded character set for information
interchange.

ISO/IEC 2382-1:1993, Information technology — Vocabulary — Part 1: Fundamental
terms.

ISO 4217, Codes for the representation of currencies and funds.

ISO 8601, Data elements and interchange formats — Information interchange —
Representation of dates and times.

ISO/IEC 10646 (all parts), Information technology — Universal Multiple-Octet Coded
Character Set (UCS).

IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems (previously
designated IEC 559:1989).

2 General 82

WG14/N1124 Committee Draft — May 6, 2005 ISO/IEC 9899:TC2

3. Terms, definitions, and symbols

For the purposes of this International Standard, the following definitions apply. Other
terms are defined where they appear in italic type or on the left side of a syntax rule.
Terms explicitly defined in this International Standard are not to be presumed to refer
implicitly to similar terms defined elsewhere. Terms not defined in this International
Standard are to be interpreted according to ISO/IEC 2382-1. Mathematical symbols not
defined in this International Standard are to be interpreted according to 1SO 31-11.

3.1
access
(execution-time action) to read or modify the value of an object

NOTE 1 Where only one of these two actions is meant, “read” or “modify” is used.
NOTE 2 "Modify” includes the case where the new value being stored is the same as the previous value.

NOTE 3 Expressions that are not evaluated do not access objects.

3.2

alignment

requirement that objects of a particular type be located on storage boundaries with
addresses that are particular multiples of a byte address

3.3

argument

actual argument

actual parameter (deprecated)

expression in the comma-separated list bounded by the parentheses in a function call
expression, or a sequence of preprocessing tokens in the comma-separated list bounded
by the parentheses in a function-like macro invocation

3.4
behavior
external appearance or action

3.4.1
implementation-defined behavior
unspecified behavior where each implementation documents how the choice is made

EXAMPLE An example of implementation-defined behavior is the propagation of the high-order bit
when a signed integer is shifted right.

3.4.2

locale-specific behavior

behavior that depends on local conventions of nationality, culture, and language that each
implementation documents

83.4.2 General 3

ISO/IEC 9899:TC2 Committee Draft — May 6, 2005 WG14/N1124

EXAMPLE An example of locale-specific behavior is whether the islower function returns true for
characters other than the 26 lowercase Latin letters.

3.4.3

undefined behavior

behavior, upon use of a nonportable or erroneous program construct or of erroneous data,
for which this International Standard imposes no requirements

NOTE Possible undefined behavior ranges from ignoring the situation completely with unpredictable
results, to behaving during translation or program execution in a documented manner characteristic of the

environment (with or without the issuance of a diagnostic message), to terminating a translation or
execution (with the issuance of a diagnostic message).

EXAMPLE An example of undefined behavior is the behavior on integer overflow.

3.4.4

unspecified behavior

use of an unspecified value, or other behavior where this International Standard provides
two or more possibilities and imposes no further requirements on which is chosen in any
instance

EXAMPLE An example of unspecified behavior is the order in which the arguments to a function are
evaluated.

3.5

bit

unit of data storage in the execution environment large enough to hold an object that may
have one of two values

NOTE It need not be possible to express the address of each individual bit of an object.

3.6

byte

addressable unit of data storage large enough to hold any member of the basic character
set of the execution environment

NOTE 1 Itis possible to express the address of each individual byte of an object uniquely.

NOTE 2 A byte is composed of a contiguous sequence of bits, the number of which is implementation-
defined. The least significant bit is called the low-order bit; the most significant bit is called the high-order
bit.

3.7

character

(abstracty member of a set of elements used for the organization, control, or
representation of data

3.7.1

character

single-byte character

(C) bit representation that fits in a byte

4 General 8§3.7.1

WG14/N1124 Committee Draft — May 6, 2005 ISO/IEC 9899:TC2

3.7.2

multibyte character

sequence of one or more bytes representing a member of the extended character set of
either the source or the execution environment

NOTE The extended character set is a superset of the basic character set.

3.7.3

wide character

bit representation that fits in an object of type wchar t, capable of representing any
character in the current locale

3.8

constraint

restriction, either syntactic or semantic, by which the exposition of language elements is
to be interpreted

3.9

correctly rounded result

representation in the result format that is nearest in value, subject to the effective
rounding mode, to what the result would be given unlimited range and precision

3.10

diagnostic message

message belonging to an implementation-defined subset of the implementation’s message
output

3.11

forward reference

reference to a later subclause of this International Standard that contains additional
information relevant to this subclause

3.12

implementation

particular set of software, running in a particular translation environment under particular
control options, that performs translation of programs for, and supports execution of
functions in, a particular execution environment

3.13
implementation limit
restriction imposed upon programs by the implementation

3.14

object

region of data storage in the execution environment, the contents of which can represent
values

§3.14 General 5

ISO/IEC 9899:TC2 Committee Draft — May 6, 2005 WG14/N1124

NOTE When referenced, an object may be interpreted as having a particular type; see 6.3.2.1.

3.15

parameter

formal parameter

formal argument (deprecated)

object declared as part of a function declaration or definition that acquires a value on
entry to the function, or an identifier from the comma-separated list bounded by the
parentheses immediately following the macro name in a function-like macro definition

3.16

recommended practice

specification that is strongly recommended as being in keeping with the intent of the
standard, but that may be impractical for some implementations

3.17
value
precise meaning of the contents of an object when interpreted as having a specific type

3.17.1
implementation-defined value
unspecified value where each implementation documents how the choice is made

3.17.2
indeterminate value
either an unspecified value or a trap representation

3.17.3

unspecified value

valid value of the relevant type where this International Standard imposes no
requirements on which value is chosen in any instance

NOTE An unspecified value cannot be a trap representation.

3.18
[x]

ceiling of x: the least integer greater than or equal to x
EXAMPLE [2.4]is 3,[-2.4]is -2.

3.19
Lx]

floor of x: the greatest integer less than or equal to x
EXAMPLE |2.4]is2,|-2.4]is-3.

6 General §3.19

WG14/N1124 Committee Draft — May 6, 2005 ISO/IEC 9899:TC2

4. Conformance

In this International Standard, “shall” is to be interpreted as a requirement on an
implementation or on a program; conversely, “shall not” is to be interpreted as a
prohibition.

If a “shall” or ““shall not™ requirement that appears outside of a constraint is violated, the
behavior is undefined. Undefined behavior is otherwise indicated in this International
Standard by the words “undefined behavior’ or by the omission of any explicit definition
of behavior. There is no difference in emphasis among these three; they all describe
“behavior that is undefined”.

A program that is correct in all other aspects, operating on correct data, containing
unspecified behavior shall be a correct program and act in accordance with 5.1.2.3.

The implementation shall not successfully translate a preprocessing translation unit
containing a #error preprocessing directive unless it is part of a group skipped by
conditional inclusion.

A strictly conforming program shall use only those features of the language and library
specified in this International Standard.?) It shall not produce output dependent on any
unspecified, undefined, or implementation-defined behavior, and shall not exceed any
minimum implementation limit.

The two forms of conforming implementation are hosted and freestanding. A conforming
hosted implementation shall accept any strictly conforming program. A conforming
freestanding implementation shall accept any strictly conforming program that does not
use complex types and in which the use of the features specified in the library clause
(clause 7) is confined to the contents of the standard headers <float.h>,
<is0646.h>, <limits.h>, <stdarg.h>, <stdbool.h>, <stddef.h>, and
<stdint.h>. A conforming implementation may have extensions (including additional
library functions), provided they do not alter the behavior of any strictly conforming
program.®)

2) A strictly conforming program can use conditional features (such as those in annex F) provided the
use is guarded by a #ifdef£ directive with the appropriate macro. For example:

#ifdef STDC IEC 559 _ /* FE UPWARD defined */

/* ..o*/
fesetround (FE_UPWARD) ;
/* ..o*/

#endif

3) This implies that a conforming implementation reserves no identifiers other than those explicitly
reserved in this International Standard.

84 General 7

ISO/IEC 9899:TC2 Committee Draft — May 6, 2005 WG14/N1124

A conforming program is one that is acceptable to a conforming implementation.4)

An implementation shall be accompanied by a document that defines all implementation-
defined and locale-specific characteristics and all extensions.

Forward references: conditional inclusion (6.10.1), error directive (6.10.5),
characteristics of floating types <£loat.h> (7.7), alternative spellings <iso646.h>
(7.9), sizes of integer types <limits.h> (7.10), variable arguments <stdarg.h>
(7.15), boolean type and values <stdbool.h> (7.16), common definitions
<stddef.h> (7.17), integer types <stdint.h> (7.18).

4) Strictly conforming programs are intended to be maximally portable among conforming
implementations. Conforming programs may depend upon nonportable features of a conforming
implementation.

8 General 84

WG14/N1124 Committee Draft — May 6, 2005 ISO/IEC 9899:TC2

5. Environment

An implementation translates C source files and executes C programs in two data-
processing-system environments, which will be called the translation environment and
the execution environment in this International Standard. Their characteristics define and
constrain the results of executing conforming C programs constructed according to the
syntactic and semantic rules for conforming implementations.

Forward references: In this clause, only a few of many possible forward references
have been noted.

5.1 Conceptual models
5.1.1 Translation environment
5.1.1.1 Program structure

A C program need not all be translated at the same time. The text of the program is kept
in units called source files, (or preprocessing files) in this International Standard. A
source file together with all the headers and source files included via the preprocessing
directive #include is known as a preprocessing translation unit. After preprocessing, a
preprocessing translation unit is called a translation unit. Previously translated translation
units may be preserved individually or in libraries. The separate translation units of a
program communicate by (for example) calls to functions whose identifiers have external
linkage, manipulation of objects whose identifiers have external linkage, or manipulation
of data files. Translation units may be separately translated and then later linked to
produce an executable program.

Forward references: linkages of identifiers (6.2.2), external definitions (6.9),
preprocessing directives (6.10).

5.1.1.2 Translation phases

The precedence among the syntax rules of translation is specified by the following
phases.”)

1. Physical source file multibyte characters are mapped, in an implementation-
defined manner, to the source character set (introducing new-line characters for
end-of-line indicators) if necessary. Trigraph sequences are replaced by
corresponding singl