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2.1 XML and XML documents

m XML - Extensible Markup Language,
W3C Recommendation, February 1998
— not an official standard, but a stable industry standard
— 2nd Ed 10/2000, 3 Ed 2/2004
» editorial revisions, not new versions of XML 1.0
m a simplified subset of SGML, Standard
Generalized Markup Language, ISO 8879:1987

— what is said later about valid XML documents applies
to SGML documents, too
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What is XML?

m Extensible Markup Language is not a markup
language!
— does not fix a tag set nor its semantics
(like markup languages like HTML do)
m XML documents have no inherent (processing or
presentation) semantics

— Implementing those semantics is the topic of this
course!
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What is XML (2)?

m XML is
— a way to use markup to represent information

— a metalanguage

» supports definition of specific markup languages through XML
DTDs (Document Type Definitions) or Schemas

» E.g. XHTML a reformulation of HTML using XML
m Often “XML” ~ XML + XML technology

— that is, processing models and languages we're
studying (and many others ...)
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How does it look?

<?xml version=’1.0’ encoding="iso-8859-1" 72>
<invoice num="1234">

client clNum="00-01">
|<name>Pekka Kilpel&dinen</name>

<email>kilpelai@cs.uku.fi</email>
</client>
<item price="60"” unit="EUR”>
XML Handbook</item>
<item(price="350"
XSLT Programmer’s Ref</item>

</invoice>
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Essential Features of XML

m Overview of XML essentials
— many details skipped

— Learn to consult original sources
(specifications, documentation etc) for details!
» The XML specification is easy to browse

m First of all, XML is a textual or character-based
way to represent data
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XML Document Characters

m XML documents are made of ISO-10646 (32-bit)
characters; in practice of their 16-bit Unicode
subset (used, e.g., in Java)

— Unicode 2.0 defines almost 39,000 distinct characters

m Characters have three different aspects:

— their identification as numeric code points
— their representation by bytes
— their visual presentation
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External Aspects of Characters

m Documents are stored/transmitted as a sequence
of bytes (of 8 bits). An encoding determines how
characters are represented by bytes.

— UTF-8 (~7-bit ASCII) is the XML default encoding
- encoding="KOI8R" should be OK for Cyrillic texts
» (but | cannot comment on parser support)

m A font (collection of character images called
glyphs) determines the visual presentation of
characters
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XML Encoding of Structure 1

m XML is, essentially, a textual encoding scheme of
labelled, ordered and attributed trees:
— internal nodes are elements labelled by type names

— leaves are text nodes labelled by string values, or
empty element nodes

— the left-to-right order of children of a node matters
— element nodes may carry attributes
(= name-string-value pairs)
m This view is shared by several XML techniques
(DOM, XPath, XSLT, XQuery, ...)
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XML Encoding of Structure 2

m XML encoding of a tree
— corresponds to a pre-order walk
— start of an element node with type name A

denoted by a start tag <A>, and its end
denoted by end tag </A>

— possible attributes written within the start tag:
<A attr,="value,” ... attr,="value">
» names must be unique: attr attr, when k = h

— text nodes written as their string value

XPT 2006 XML Instances and Grammars 10

XML Encoding of Structure: Example

)
world!

<8><W> Hello</W> <E A='1"></E> <W> world! </W>
</S>
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XML.: Logical Document Structure

= Elements

— indicated by matching (case-sensitive!) tags
<ElementTypeName> ... </ElementTypeName>

— can contain text and/or subelements

—can be empty:
<elem-type></elem-type> OfF
<elem-type/> (€.g. <br/>in XHTML)

— unique root element —> document a single tree
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Logical document structure (2)

m Attributes
— name-value pairs attached to elements

— in start-tag after the element type name
<div class="preface" date='990126"'> ...

—forms "..."m and '...' are interchangeable

m Also:
- <!-- comments outside other markup -->

- <?note this would be passed to the
application as a processing instruction
named ‘note’?>
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CDATA Sections

m “CDATA Sections” to include XML markup
characters as textual content

<! [CDATA[
Here we can easily include markup
characters and, for example, code
fragments:
<example>if (Count < 5 && Count > 0)
</example>

11>
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Two levels of correctness (1)

m Well-formed documents

— roughly: follows the syntax of XML,
markup correct (elements properly nested, tag
names match, attributes of an element have
unique names, ...)

— violation is a fatal error

m Valid documents

— (in addition to being well-formed)

obey an associated grammar (DTD/Schema)
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XML docs and valid XML docs

DTD-valid documents Schema-valid documents

XML documents = well-formed XML documents
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An XML Processor (Parser)

m Reads XML documents and reports their contents

to an application

— relieves the application from details of markup

— XML Recommendation specifies:

— recognition of characters as markup or data; what
information to pass to applications;
how to check the correctness of documents;

— validation based on comparing document against its
grammar

Next: Basics of document grammars
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1.2 Basics of document grammars

m DTDs are variations of context-free grammars
(CFGs), which are widely used to syntax
specification (programming languages, XML, ...)
and to parser/compiler generation (e.g.
YACC/GNU Bison)

— No knowledge of them is necessary, but connections
with CFGs may be informative for those that know about
them
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DTD/CFG Correspondence

DTD CFG

XML document parse/syntax tree
element type nonterminal
element type declaration production
#PCDATA terminal
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Example: Three Authors of a Ref

Ref

) N T

Author Author  Author Title  PublData

N

Aho  Hopcroft Ullman The Design and Analysis ...

Ref —> Author* Title PublData € P,
Author Author Author Title PublData € L(Author* Title PublData)
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Extended Productions

m Notice the regular expressions in
productions
— to describe (potentially infinite) sequences
m That is, we are using extended CFGs

— content models (of a DTD) correspond to
regular expressions (in an ECFG production)
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1.3 Basics of XML DTDs

m A Document Type Declaration provides a
grammar (document type definition, DTD) for a
class of documents [Defined in XML Rec]

m Syntax (in the prolog of a document instance):

<!DOCTYPE rootElemType SYSTEM "ex.dtd"
<!-- "external subset" in file ex.dtd -->
[ <!-- "internal subset" may come here -->
1>
m DTD is the union of the external and internal
subset
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Markup Declarations

m DTD consists of markup declarations
— element type declarations
» similar to productions of ECFGs
— attribute-list declarations
» for declared element types
— entity declarations (see later)
— notation declarations

» to pass information about external (binary) objects
to the application
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How do Declarations Look Like?

<!ELEMENT invoice (client, item+)>
<!ATTLIST invoice num NMTOKEN #REQUIRED>
<!ELEMENT client (name, email?)>
<!ATTLIST client num NMTOKEN #REQUIRED>
<!ELEMENT name (#PCDATA)>
<!ELEMENT email (#PCDATA)>
<!ELEMENT item (#PCDATA)>
<!ATTLIST item

price NMTOKEN #REQUIRED

unit (FIM | EUR) ”“EUR” >
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Element Type Declarations

General form:
<!ELEMENT elementTypeName (E) >
where E is a content model

regular expression of element names

Q

m Content model operators:
E | F : choice E, F: concatenation
E? : optional E* : zero or more
E+ : one or more (E) : grouping

m Must group: (A,B)|C or A,(B|C), but A,B|C forbidden
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Attribute-List Declarations

m Can declare attributes for elements:
— Name, data type and possible default value
m Example:
<I!ATTLIST FIG
id ID  #IMPLIED
descr CDATA #REQUIRED
class (a | b | ¢) "ar>
m Semantics mainly up to the application
— processor checks that 1D attributes are unique and that
targets of IDREF attributes exist
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Mixed, Empty and Arbitrary Content

m Mixed content:
<IELEMENT P (#PCDATA | I | IMG)*>

— may contain text (# PCDATA) and elements

m Empty content:
<!ELEMENT IMG EMPTY>
m Unrestricted content: <!ELEMENT HTML ANY>
(= <!ELEMENT HTML (#PCDATA |
choice-of-all-declared-element-types) *>)
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Entities (1)

m Named storage units or fragments of XML
documents (~ macros in some languages)

m Multiple uses:
- character entities:
»&lt; &#60; and &#x3C; all expand to ‘<
(treated as data, not as start-of-markup)

» other predefined entities:
&amp; &gt; &apos; &quote;
expandto &, >, ' and"

— general entities are shorthand notations:
<!ENTITY UKU "University of Kuopio">
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Entities (2)

m physical storage units comprising a document

— parsed entities
<!ENTITY chapl SYSTEM "http://myweb/chl">

— document entity is the starting point of processing
— entities and elements must nest properly:

<!DOCTYPE doc [ <sec num="1">
<!ENTITY chapl
(...as above ..)> ] </sec>
<doc> / <sec num="2">
&chapl; \
</doc> </sec>
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Unparsed Entities and Parameter Entities

m Unparsed entities allow XML documents refer to
external binary objects like graphics files
— XML processor handles only text
— I've rarely used these
m Parameter entities are used in DTDs
— useful for modularizing declarations
m We skip these
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1.4 XML Namespaces

m Documents often comprise parts processed by
different applications (and/or defined by different
grammars)

— for example, in XSLT scripts:

< :template match="doc/title">
HTML xsl:appl emplates />
elements \XST
< 1: 1 >
/xsl:template><— T elements/
instructions

— How to manage multiple sets of names?
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XML Namespaces (2/5)

m Solution: XML Namespaces, W3C Rec. 14/1/1999
for separating possibly overlapping “vocabularies”
(sets of element type and attribute names) within a
single document

m by introducing (arbitrary) local name prefixes, and
binding them to (fixed) globally unique URlIs
— For example, the local prefix “xs1:”

conventionally used in XSLT scripts
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XML Namespaces briefly (3/5)

m Namespace identified by a URI (through the
associated local prexif)

e.g. http://www.w3.0rg/1999/XSL/Transform for XSLT
— conventional but not required to use URLs

— the identifying URI has to be unique, but it does not
have to be an existing address

m Association inherited to sub-elements
— see the next example (of an XSLT script)
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XML Namespaces (4/5)

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns="http://www.w3.0rg/TR/xhtmll/strict">

<!-- XHTML is the ’‘default namespace’ -->
<xsl:template match="doc/title">
<H1>
<xsl:apply-templates />
</H1>
</xsl:template>

</xsl:stylesheet>
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XML Namespaces briefly (5/5)

m Mechanism built on top of basic XML
— overloads attribute syntax (xm1lns:) to introduce
namespaces
— does not affect validation
» namespace attributes have to be declared for DTD-
validity
» all element type names have to be declared (with their
initial prefixes!)
— > Other schema languages (XML Schema, Relax NG)
better for validating documents with Namespaces
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