1 Document Instances and Grammars

Fundamentals of hierarchical document
structures, or
Computer Scientist’s view of XML

1.1 XML and XML documents

1.2 Basics of document grammars
1.3 Basics of XML DTDs

1.4 XML Namespaces

XPT 2006 XML Instances and Grammars 1

2.1 XML and XML documents

m XML - Extensible Markup Language,
W3C Recommendation, February 1998
— not an official standard, but a stable industry standard
— 2nd Ed 10/2000, 3 Ed 2/2004
» editorial revisions, not new versions of XML 1.0
m a simplified subset of SGML, Standard
Generalized Markup Language, ISO 8879:1987

— what is said later about valid XML documents applies
to SGML documents, too

XPT 2006 XML Instances and Grammars

What is XML?

m Extensible Markup Language is not a markup
language!
— does not fix a tag set nor its semantics
(like markup languages like HTML do)
m XML documents have no inherent (processing or
presentation) semantics

— Implementing those semantics is the topic of this
course!

XPT 2006 XML Instances and Grammars 3

What is XML (2)?

m XML is
— a way to use markup to represent information

— a metalanguage

» supports definition of specific markup languages through XML
DTDs (Document Type Definitions) or Schemas

» E.g. XHTML a reformulation of HTML using XML
m Often “XML” ~ XML + XML technology

— that is, processing models and languages we're
studying (and many others ...)

XPT 2006 XML Instances and Grammars 4

How does it look?

<?xml version=’1.0’ encoding="iso-8859-1" 72>
<invoice num="1234">

client clNum="00-01">
|<name>Pekka Kilpel&dinen</name>

<email>kilpelai@cs.uku.fi</email>
</client>
<item price="60"” unit="EUR”>
XML Handbook</item>
<item(price="350"
XSLT Programmer’s Ref</item>

</invoice>

XPT 2006 XML Instances and Grammars 5

Essential Features of XML

m Overview of XML essentials
— many details skipped

— Learn to consult original sources
(specifications, documentation etc) for details!
» The XML specification is easy to browse

m First of all, XML is a textual or character-based
way to represent data

XPT 2006 XML Instances and Grammars 6

XML Document Characters

m XML documents are made of ISO-10646 (32-bit)
characters; in practice of their 16-bit Unicode
subset (used, e.g., in Java)

— Unicode 2.0 defines almost 39,000 distinct characters

m Characters have three different aspects:

— their identification as numeric code points
— their representation by bytes
— their visual presentation

XPT 2006 XML Instances and Grammars

External Aspects of Characters

m Documents are stored/transmitted as a sequence
of bytes (of 8 bits). An encoding determines how
characters are represented by bytes.

— UTF-8 (~7-bit ASCII) is the XML default encoding
- encoding="KOI8R" should be OK for Cyrillic texts
» (but | cannot comment on parser support)

m A font (collection of character images called
glyphs) determines the visual presentation of
characters

XPT 2006 XML Instances and Grammars 8

XML Encoding of Structure 1

m XML is, essentially, a textual encoding scheme of
labelled, ordered and attributed trees:
— internal nodes are elements labelled by type names

— leaves are text nodes labelled by string values, or
empty element nodes

— the left-to-right order of children of a node matters
— element nodes may carry attributes
(= name-string-value pairs)
m This view is shared by several XML techniques
(DOM, XPath, XSLT, XQuery, ...)

XPT 2006 XML Instances and Grammars 9

XML Encoding of Structure 2

m XML encoding of a tree
— corresponds to a pre-order walk
— start of an element node with type name A

denoted by a start tag <A>, and its end
denoted by end tag

— possible attributes written within the start tag:
<A attr,="value,” ... attr,="value">
» names must be unique: attr attr, when k = h

— text nodes written as their string value

XPT 2006 XML Instances and Grammars 10

XML Encoding of Structure: Example

)
world!

<8><W> Hello</W> <E A='1"></E> <W> world! </W>
</S>

XPT 2006 XML Instances and Grammars 11

XML.: Logical Document Structure

= Elements

— indicated by matching (case-sensitive!) tags
<ElementTypeName> ... </ElementTypeName>

— can contain text and/or subelements

—can be empty:
<elem-type></elem-type> OfF
<elem-type/> (€.g.
in XHTML)

— unique root element —> document a single tree

XPT 2006 XML Instances and Grammars 12

Logical document structure (2)

m Attributes
— name-value pairs attached to elements

— in start-tag after the element type name
<div class="preface" date='990126"'> ...

—forms "..."m and '...' are interchangeable

m Also:
- <!-- comments outside other markup -->

- <?note this would be passed to the
application as a processing instruction
named ‘note’?>

XPT 2006 XML Instances and Grammars 13

CDATA Sections

m “CDATA Sections” to include XML markup
characters as textual content

<! [CDATA[
Here we can easily include markup
characters and, for example, code
fragments:
<example>if (Count < 5 && Count > 0)
</example>

11>

XPT 2006 XML Instances and Grammars 14

Two levels of correctness (1)

m Well-formed documents

— roughly: follows the syntax of XML,
markup correct (elements properly nested, tag
names match, attributes of an element have
unique names, ...)

— violation is a fatal error

m Valid documents

— (in addition to being well-formed)

obey an associated grammar (DTD/Schema)

XPT 2006 XML Instances and Grammars 15

XML docs and valid XML docs

DTD-valid documents Schema-valid documents

XML documents = well-formed XML documents

XPT 2006 XML Instances and Grammars 16

An XML Processor (Parser)

m Reads XML documents and reports their contents

to an application

— relieves the application from details of markup

— XML Recommendation specifies:

— recognition of characters as markup or data; what
information to pass to applications;
how to check the correctness of documents;

— validation based on comparing document against its
grammar

Next: Basics of document grammars

XPT 2006 XML Instances and Grammars 17

1.2 Basics of document grammars

m DTDs are variations of context-free grammars
(CFGs), which are widely used to syntax
specification (programming languages, XML, ...)
and to parser/compiler generation (e.g.
YACC/GNU Bison)

— No knowledge of them is necessary, but connections
with CFGs may be informative for those that know about
them

XPT 2006 XML Instances and Grammars 18

DTD/CFG Correspondence

DTD CFG

XML document parse/syntax tree
element type nonterminal
element type declaration production
#PCDATA terminal

XPT 2006 XML Instances and Grammars 19

Example: Three Authors of a Ref

Ref

) N T

Author Author Author Title PublData

N

Aho Hopcroft Ullman The Design and Analysis ...

Ref —> Author* Title PublData € P,
Author Author Author Title PublData € L(Author* Title PublData)

XPT 2006 XML Instances and Grammars 20

Extended Productions

m Notice the regular expressions in
productions
— to describe (potentially infinite) sequences
m That is, we are using extended CFGs

— content models (of a DTD) correspond to
regular expressions (in an ECFG production)

XPT 2006 XML Instances and Grammars 21

1.3 Basics of XML DTDs

m A Document Type Declaration provides a
grammar (document type definition, DTD) for a
class of documents [Defined in XML Rec]

m Syntax (in the prolog of a document instance):

<!DOCTYPE rootElemType SYSTEM "ex.dtd"
<!-- "external subset" in file ex.dtd -->
[<!-- "internal subset" may come here -->
1>
m DTD is the union of the external and internal
subset

XPT 2006 XML Instances and Grammars 22

Markup Declarations

m DTD consists of markup declarations
— element type declarations
» similar to productions of ECFGs
— attribute-list declarations
» for declared element types
— entity declarations (see later)
— notation declarations

» to pass information about external (binary) objects
to the application

XPT 2006 XML Instances and Grammars 23

How do Declarations Look Like?

<!ELEMENT invoice (client, item+)>
<!ATTLIST invoice num NMTOKEN #REQUIRED>
<!ELEMENT client (name, email?)>
<!ATTLIST client num NMTOKEN #REQUIRED>
<!ELEMENT name (#PCDATA)>
<!ELEMENT email (#PCDATA)>
<!ELEMENT item (#PCDATA)>
<!ATTLIST item

price NMTOKEN #REQUIRED

unit (FIM | EUR) ”“EUR” >
XPT 2006 XML Instances and Grammars 24

Element Type Declarations

General form:
<!ELEMENT elementTypeName (E) >
where E is a content model

regular expression of element names

Q

m Content model operators:
E | F : choice E, F: concatenation
E? : optional E* : zero or more
E+ : one or more (E) : grouping

m Must group: (A,B)|C or A,(B|C), but A,B|C forbidden

XPT 2006 XML Instances and Grammars 25

Attribute-List Declarations

m Can declare attributes for elements:
— Name, data type and possible default value
m Example:
<I!ATTLIST FIG
id ID #IMPLIED
descr CDATA #REQUIRED
class (a | b | ¢) "ar>
m Semantics mainly up to the application
— processor checks that 1D attributes are unique and that
targets of IDREF attributes exist

XPT 2006 XML Instances and Grammars 26

Mixed, Empty and Arbitrary Content

m Mixed content:
<IELEMENT P (#PCDATA | I | IMG)*>

— may contain text (# PCDATA) and elements

m Empty content:
<!ELEMENT IMG EMPTY>
m Unrestricted content: <!ELEMENT HTML ANY>
(= <!ELEMENT HTML (#PCDATA |
choice-of-all-declared-element-types) *>)

XPT 2006 XML Instances and Grammars 27

Entities (1)

m Named storage units or fragments of XML
documents (~ macros in some languages)

m Multiple uses:
- character entities:
»< < and < all expand to ‘<
(treated as data, not as start-of-markup)

» other predefined entities:
& > ' "e;
expandto &, >, ' and"

— general entities are shorthand notations:
<!ENTITY UKU "University of Kuopio">
XPT 2006 XML Instances and Grammars 28

Entities (2)

m physical storage units comprising a document

— parsed entities
<!ENTITY chapl SYSTEM "http://myweb/chl">

— document entity is the starting point of processing
— entities and elements must nest properly:

<!DOCTYPE doc [<sec num="1">
<!ENTITY chapl
(...as above ..)>] </sec>
<doc> / <sec num="2">
&chapl; \
</doc> </sec>

XPT 2006 XML Instances and Grammars 29

Unparsed Entities and Parameter Entities

m Unparsed entities allow XML documents refer to
external binary objects like graphics files
— XML processor handles only text
— I've rarely used these
m Parameter entities are used in DTDs
— useful for modularizing declarations
m We skip these

XPT 2006 XML Instances and Grammars 30

1.4 XML Namespaces

m Documents often comprise parts processed by
different applications (and/or defined by different
grammars)

— for example, in XSLT scripts:

< :template match="doc/title">
HTML xsl:appl emplates />
elements \XST
< 1: 1 >
/xsl:template><— T elements/
instructions

— How to manage multiple sets of names?

XPT 2006 XML Instances and Grammars 31

XML Namespaces (2/5)

m Solution: XML Namespaces, W3C Rec. 14/1/1999
for separating possibly overlapping “vocabularies”
(sets of element type and attribute names) within a
single document

m by introducing (arbitrary) local name prefixes, and
binding them to (fixed) globally unique URlIs
— For example, the local prefix “xs1:”

conventionally used in XSLT scripts

XPT 2006 XML Instances and Grammars

XML Namespaces briefly (3/5)

m Namespace identified by a URI (through the
associated local prexif)

e.g. http://www.w3.0rg/1999/XSL/Transform for XSLT
— conventional but not required to use URLs

— the identifying URI has to be unique, but it does not
have to be an existing address

m Association inherited to sub-elements
— see the next example (of an XSLT script)

XPT 2006 XML Instances and Grammars 33

XML Namespaces (4/5)

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns="http://www.w3.0rg/TR/xhtmll/strict">

<!-- XHTML is the ’‘default namespace’ -->
<xsl:template match="doc/title">
<H1>
<xsl:apply-templates />
</H1>
</xsl:template>

</xsl:stylesheet>

XPT 2006 XML Instances and Grammars 34

XML Namespaces briefly (5/5)

m Mechanism built on top of basic XML
— overloads attribute syntax (xm1lns:) to introduce
namespaces
— does not affect validation
» namespace attributes have to be declared for DTD-
validity
» all element type names have to be declared (with their
initial prefixes!)
— > Other schema languages (XML Schema, Relax NG)
better for validating documents with Namespaces

XPT 2006 XML Instances and Grammars 35

