

Петрозаводский государственный университет Институт математики и информационных технологий Кафедра информатики и математического обеспечения

Андрей Сергеевич Вдовенко

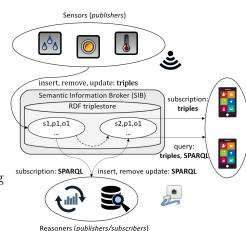
Изучение производительности при масштабировании для платформы Smart-M3 в реализации CuteSIB

Научный руководитель: к.ф.-м.н., доцент Д. Ж. Корзун

69-я Всероссийская (с международным участием) научная конференция обучающихся и молодых ученых секция «Информатика и математическое обеспечение»

12 апреля 2017 г., Петрозаводск

1 / 13


IoT Concept

- Wide range of application domains
- High process dynamicity
- Large amounts of capacity-heterogeneous devices
- No wide-spread effective approach for solving large multi-party interaction

Smart-M3 Platform

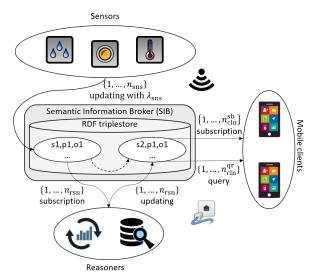
- Platform for Smart Spaces deploying
- SIB: Semantic Information Broker for maintenance of shared content
- RDF data representation model: semantic interoperability and ontology-driven programming
- Subscription mechanism is expensive for broker

Mobile clients (subscribers

CuteSIB Implementation

- Qt framework:
 - ▶ Embedded devices
 - ▶ Wi-Fi routers
 - ► Smartphones
 - ► Laptops and desktops
 - ► TV and etc
- Dynamic libraries: configuration to specific tasks and devices
- Outperformance of CuteSIB compared with existing Smart-M3 SIB implementations
- Other Smart-M3 implementation: RedSIB,
 PySIB, The Piglet-based SIB,
 The OSGi SIB

12.04.2017 4 / 13


CuteSIB usage in IoT scenarios

Big amount of low-capacity and heterogeneous devices are interacting

- Typical agent roles:
 - ► Sensor collects user context and periodically provides data
 - ▶ Reasoner data processing to deduce new knowledge and facts
 - ► Client receives the result of processing
- Real system examples:
 - SmartRoom: sensors collects data about Wi-Fi activity of participants, presence service processes this data and provide activity charts to clients
 - e-Tourism: POI equipped with sensors to provide information about it and current environment (e.g. visitor density)
 - ▶ m-Health: Users wear medical devices (e.g. cardio sensor), data from devices provides to processing service and to doctor on the other end

12.04.2017 5 / 13

Simulation Model: I

- Every agent on its own thread
- Reasoners subscribed on data from subgroup of sensors

- Clients of different types aren't mixed
- Moderate-capacity computer to host SIB

12.04.2017 6 / 13

Simulation Model: II

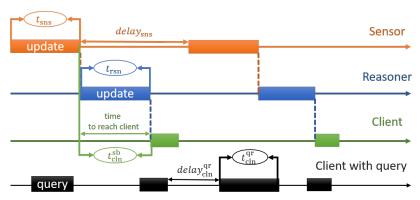
■ Agents proportion:

$$n_{\rm rsn}: n_{\rm cln}^{\rm sb} + n_{\rm cln}^{\rm qr}: n_{\rm sns} = 1:10:100.$$

- Evaluated values:
 - 1 Sensor: processing time $t_{\rm sns}$ to update data
 - 2 Reasoner: processing time t_{rsn} from receiving data and update it
 - 3 Client (subscription): time $t_{\rm cln}^{\rm sb}$ for delivery notification from sensor to client
 - 4 Client (query): processing time t_{cln}^{qr} to retrieve updates
- Delay between updates $delay_{sns}$ by sensors selected uniformly from $(0,2n_{sns}/\lambda)$
- Delay between queries $delay_{cln}^{qr}$ by clients selected uniformly from $(0, 2n_{cln}^{qr}/\lambda)$

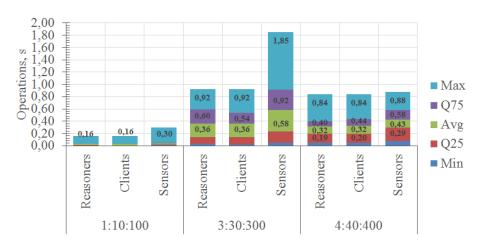
12.04.2017 7 / 13

Simulation Testbed


- Agents implemented in Python 2.7 with Smart-M3 PythonKPI library
- All agents work in local network
- One agent is equal to one thread

Functional role	Capacity	Device specification
SIB host machine	3 000	CPU Intel Core i3, CPU 1.90 GHz, RAM
	subscription	4Gb, wired connection with 100 Mbps,
		Ubuntu 15.10
Sensors KP	2 machine	CPU Intel Dual Core, CPU 2.60 GHz,
	10 000 agents	RAM 2Gb, wired connection with 100
		Mbps, XUbuntu 16.04
Reasoner KP	1 machine	CPU Intel Core i5, CPU 1.70 GHz, RAM
	100 agents	6Gb, wireless connection with 21 Mbps,
		Ubuntu 15.10
Mobile Client KP	1 machine	CPU Intel Core i5, CPU 2.50 GHz, RAM
	10 000 agents	3Gb, wireless connection with 21 Mbps,
		XUbuntu 16.04
Test agent	1 machine	CPU Intel Core i5, CPU 2.50 GHz, RAM
	4 agents	3Gb, wireless connection with 21 Mbps,
		XUbuntu 16.04

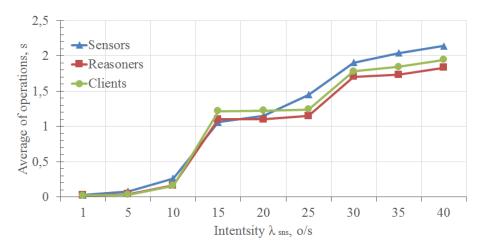
12.04.2017 8 / 13


Evaluation Approaches

- I Determining of the upper bound for the sum operation rate with variation of agents number
- II Analyzing the influence of device group size in conjunction with increasing the sum operation rate to the SIB
- III Scalability evaluation with replacing subscription on clients by query

Experiment I

Variation of devices group size with fixed delay



80 operation per second in average for 444 agents

12.04.2017 10 / 13

Experiment II

Influence of device group size (10:100:1000) in conjunction with increasing the sum operation rate to the SIB

Performance degrade with rate higher than 15 operation per second

12.04.2017 11 / 13

Experiment III

Sensors simulated as 5 agents on one thread with low rate (5 operation per second)

Conclusion

- CuteSIB implementation is basically suitable for localized IoT environments
- Most expensive operations are persistent queries such as subscription
- Optimization of subscription processing on SIB is needed for large agents numbers
- Clients with queries make smaller load on SIB

Thank you for attention

E-mail: vdovenko@cs.karelia.ru