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Agenda

• Continuous health monitoring
• Study of arrhythmia detection algorithms
within a CardiaCare project

• Arrhythmia detection algorithms are heavily
rely on features extracted from
electrocardiogram recordings

• Teager energy operator is an easy-to-compute
tool for peak emphasizing

• Level-crossing resampling allows to detect
peak areas

• Joint application of Teager energy operator
and level crossing sampling resulted in high
QRS detection performance
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Motivation

• 31% of all global deaths in 20121

• Contribution of CVDs to mortality
in CIS (percents)

Georgia 67
Ukraine 64

Azerbaijan 60
Russia 57

Moldova 56
Belorussia 53
Kazakhstan 50
Armenia 50

Kyrgyzstan 49
Tajikistan 39

• Can be prevented by addressing
behavioural risk factors (tobacco
use, unhealthy diet, obesity,
physical inactivity, etc.)

• Need early detection and
management

• Can be done based on ECG
analysis
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Arrhythmia detection based on continuous monitoring
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ECG Morphology

We are interested in R peaks and QRS complexes.

5 / 21



Significance of confident R peak detection

• Normal sinus rhythm

• Sinus tachycardia

• Sinus bradycardia

• Sinoatrial block

• Atrial flutter

• Wolff-Parkinson-White syndrome

Source: Medical Training and Simulation LLC
http://www.practicalclinicalskills.com
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Teager-Kaiser energy operator based approach

From Hooke’s law the second order differential equation can be deduced by means of
Newton’s second law to describe the simple harmonic motion as

F =
d2x

dt2
+
k

m
x = 0 (1)

The solution to equation is given by

x(t) = A cos(ωt+ φ) (2)

where x(t) is the position of the object at time t, A is the amplitude, ω is the
frequency, and φ is the initial phase. The total energy of the object is given as the
sum of kinetic energy of the object and the potential energy of the spring, given by

E =
1

2
kx2 +

1

2
mẋ2 (3)

By substituting x(t) = A cos(ωt+ φ), we get the following expression for the energy:

E =
1

2
mA2ω2 (4)
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Teager-Kaiser energy operator based approach (cont.)

Now we consider the continuous-time form of Teager energy operator defined to be

Ψc[x(t)] = (ẋ(t))2 − x(t)ẍ(t) (5)

Substituting x(t) = A cos(ωt+ φ), we obtain

Ψc[x(t)] = A2ω2 (6)

Thus, the operator defined by 5 is the amplitude and frequency product squared. But
from 4 the total energy is proportional to the amplitude and frequency product
squared. The discrete-time form of the Teager energy operator is defined by

Ψd[xn] = x2n − xn−1xn+1 (7)
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Level-crossing sampling

Non-uniform sampling

a) uniform sampling b) level-crossing sampling

Can be applied to digital signals as well!
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Notation

Let x(t)bethesignal. Select the levels {L1, . . . , Lm} (∆L = q).
Applying the method, we obtain the sequence {x1, . . . , xn} and time moments
{t1, . . . , tn}. Denote the intervals [ti−1, ti] as dti.

10 / 21



Level-crossing for peak areas detection
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Level-crossing with denoising

• Assume, we haveM bits for a sample, then there are 2M − 1 levels.
• The input signal is between N less significant bit value q.
q = 2A/2M .

а) N = 1 б) N = 2
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Crossings detection

1 Input: ecg — digital ecg recording as the collection of pairs:
2 t — sample time
3 v — voltage
4 procedure getCrossings(ecg)
5 voltage← ecg[0].v
6 level← b(A+ voltage)/(2×A)× (2M ))c
7 lower = q × level−A
8 upper = q × (level+ 1)−A
9 for i ∈ 1 . . . ecg.size()− 1 do
10 voltage← ecg[i].v
11 level← b(A+ voltage)/(2×A)× (2M ))c
12 if voltage > upper then
13 lower ← q × (level−N + 1)−A
14 upper = q × (level+ 1)−A
15 yield ecg[i].t
16 else if voltage < lower then
17 lower = LSB × level−A
18 upper = LSB × (level+N)−A
19 yield ecg[i].t
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Level crossings detection with no noise suppression

time, s
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Crossings
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Level crossings detection with noise suppression

time, s

Crossings

15 / 21



Interval lengths calculation

We search R-peaks among crossings tk . Define the sliding window ofW consecutive
crossings

D(tk) =

tk+dW2 e−N∑
i=tk−bW2 c

dti.

If D(tk) is lesser than T , then consider tk as a peak.
We adopt the heuristics: the QRS width-to-height ratio should be less than one tenth.
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Interval lengths example

time, s

Crossings

Intervals
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QRS detection algorithm

1 Input: seqs — sequences as the collection of triples:
2 d — sequence duration
3 t — time moment of base crossing
4 v — voltage at the base crossing
5 Thresholding values:
6 TQRS — maximum QRS
7 TV — the most allowed distance between crossings
8 TR — the threshold of width-to-height ratio
9 procedure getQRS(seqs)
10 for i ∈ 1 . . . seqs.size()− 2 do
11 if seqs[i].d < TQRS and seqs[i− 1].d ≥ TQRS then
12 l = i− 1
13 while l ≥ 0 and seqs[l + 1].t− seqs[l + 1].t < TV do
14 l← l− 1
15 r = i+ 1
16 while r < seqs.size()− 1 and seqs[r].t− seqs[r − 1].t < TV do
17 r ← r + 1
18 mx = max(seqs[i].v ∀i ∈ [l . . . r])
19 mn = max(seqs[i].v ∀i ∈ [l . . . r])
20 if (mx−mn)/(seqs[r].t− seqs[l].t) > TR then
21 yield (l, r)
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QRS detection example

time, s

Crossin
Crossings

QRS-complexes

19 / 21



QRS detection performance

With the heuristics:

Precision = 94, 6 %
Recall = 90, 6 %

F −measure = 92, 3 %

With the Teager energy operator support:

Precision = 97, 4 %
Recall = 94, 8 %

F −measure = 96, 1 %
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Conclusion

The proposed method has the following advantages:
• extremely low computational complexity;
• high performance have been proven on MIT-BIH database.

Disadvantages:
• considerable performance decrease on very noisy signals.
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