Comparison of Stepwise and Piecewise Linear Models of Congestion Avoidance Algorithm

O. I. Bogoiavlenskaia Petrozavodsk State University olbgvl@cs.karelia.ru

Motivation and Problem Statement

- Internet needs a tool to control its performance and resource sharing
- This service is provided at the end-to-end level by Transmission Control Protocol (TCP)
- TCP performs distributed flow control. It controls **performance** of the network to prevents it from **congestion** collapse.

What are **qualitative metrics** of congestion control performance?

- Estimations of average TCP throughput
- Estimations of congestion window size

Distributed Flow Control

- Data delivery control is done by **sliding window** and explicit **acknowledgments**
- Sliding window is amount of data which sender is allowed to inject in the network without acknowledgment
- Flow control means control on sliding window size. TCP uses set of algorithms to control its window size W

Additive Increase Multiplicative Decrease Algorithm (AIMD)

$$\begin{array}{l} W & \xrightarrow{\text{delivery}} W + 1 \\ \downarrow \text{loss} \\ W/2 \end{array}$$

Details on Sliding Window Size

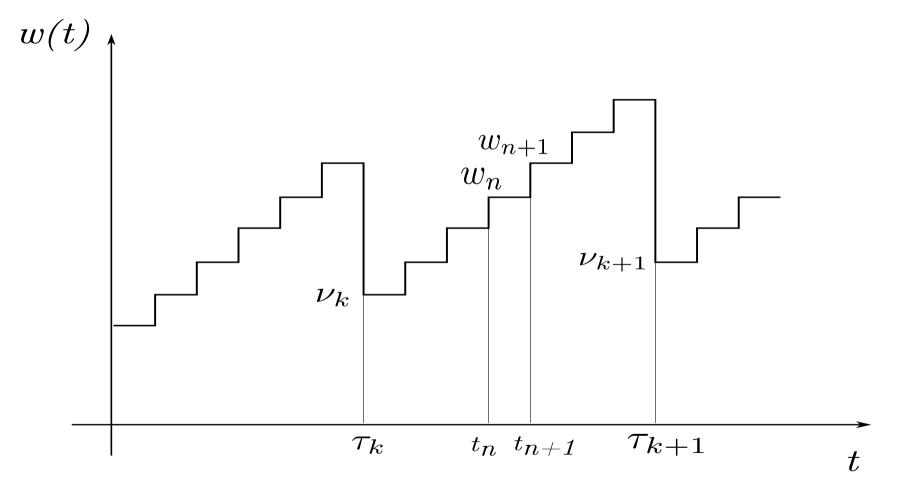


Figure 1: Evolution of TCP congestion window size

Ergodic properties

Let w(t) be cwnd size, t_n are AIMD-rounds end-points, and RTT durations $\xi_n = t_n - t_{n-1}$ are i.i.d. with distribution R(x) and $\mathsf{E}[\xi_n] < \infty$. Data segment losses form Poisson flow $\lambda > 0$ and $\{w_n = w(t_n)\}$. Denote

$$q = \int_{0}^{\infty} e^{-\lambda\tau} dR(\tau) \tag{1}$$

the probability that there were no segment losses on the interval $[t_{n-1}, t_n]$.

Theorem 1 Markov chain $\{w_n\}$ has steady state distribution. **Theorem 2** If $\exists \epsilon > 0$: $R(\epsilon) \leq 1 - \epsilon$ then the random process $\{w(t)\}_{t>0}$ is ergodic.

Ergodic properties

Let τ_k be equal to the first moment t_n , arrived after kth data loss event,

$$\tau_k = t_n$$
: $w(t_n + 0) = \left\lfloor \frac{w(t_n)}{2} \right\rfloor$, $k = 1, 2...$

and $\tau_{k_1} < \tau_{k_2}$, if $k_1 < k_2$. The sequence $\{\nu_k = w(\tau_k + 0)\}_{k \ge 0}$ is the Markov chain embedded in the Markov chain $\{w_n\}$. Lets denote

$$f_j = \mathbf{P}\left\{\nu_{k+1} = \left\lfloor \frac{1}{2}\left(\left\lfloor \frac{\nu_k}{2} \right\rfloor + j\right) \right\rfloor\right\}, \ j = 0, 1 \dots$$
(2)

Let's define the expectation determined by f_j as $B = \sum_{j=1} j f_j$.

Theorem 3 If B is finite then the Markov chain $\{\nu_k\}$ has steady state distribution.

Kolmogorov Equations

For $\{w(t)\}_{t>0}$ loss events form the sequence of Bernoulli tries with parameter q,

$$f_{j} = (1 - q)q^{j}$$

$$p_{0} = (1 - q)p_{0} + (1 - q)p_{1}$$

$$p_{m} = qp_{m-1} + (1 - q)p_{2m} + (1 - q)p_{2m+1} \qquad m > 1$$
(3)

for the Markov chain $\{w_n\}$ and

$$\pi_0 = \pi_0 (f_0 + f_1) + \pi_1 f_0 \tag{4}$$
$$\pi_r = \sum_{j=0}^{2r} \pi_j f_{2r-j} + \sum_{j=0}^{2r+1} \pi_j f_{2r+1-j}$$

for the Markov chain $\{\nu_k\}$.

Kolmogorov Equations

Theorem 4 Let the sequence $\{\pi_r\}$ is the solution of the equations (4), then

$$p_m = \sum_{j=0}^m \pi_j q^{m-j}.$$
 (5)

Let
$$W = \lim_{t \to \infty} \mathsf{E}[w(t)].$$

Corollary 1
 $W = \lim_{k \to \infty} \mathsf{E}[\nu_k] + B.$ (6)

Main Result

$$\pi_{r} = \sum_{j=0}^{2r} \pi_{j} (f_{2r-j-1} + f_{2r-j}), \ f_{-1} = 0$$

$$\sum_{i=0}^{\infty} \pi_{i} z^{2i} = \left(\sum_{j=0}^{\infty} \pi_{2j} z^{2j}\right) \left(\sum_{k=0}^{\infty} (f_{2k} + f_{2k+1}) z^{2k}\right) +$$

$$+ \left(\sum_{j=0}^{\infty} \pi_{2j+1} z^{2j+1}\right) \left(\sum_{k=0}^{\infty} (f_{2k-1} + f_{2k}) z^{2k-1}\right)$$

$$(8)$$

or

$$P(z^2) = \frac{1+z}{2z} F(z)P(z) + \frac{z-1}{2z} F(-z)P(-z)$$
(9)

Main Result

Since $|P(-1)| \leq 1$, then using the corollary of the theorem 4 one obtains

$$2F'(1) - \frac{1}{2}(|F(-1)| + 1) \le W \le 2F'(1) + \frac{1}{2}(|F(-1)| - 1)$$
 (10)

The Example

Lets $\xi_n = d$ deterministic variable and $\lambda d < 1$. Then $q = e^{-\lambda d}$ and

$$F(z) = \frac{1 - e^{-\lambda d}}{1 - ze^{-\lambda d}}$$

Compare with

Altman E., Avrachenkov K., Barakat C. A Stochastic model of TCP/IP with Stationary Random Losses, Proceedings of ACM SIGCOMM'00. Stockholm, 2000. pp. 231-242.

$$\mathsf{E}[X_n] = \frac{\alpha}{\lambda(1-\nu)} \tag{11}$$

 α is a rate of the window growth in the absence of random losses, ν is multiplicative decrease factor and λ is the loss intensity.

The example

Following stepwise model described above one sets $\alpha = 1/d$ and $\nu = 1/2$.

$$2F'(1) \approx \frac{2}{\lambda d} \tag{12}$$

and $-0, 5 < \frac{1}{2}(|F(-1)| - 1) < 0.$

Thus if RTT variability is low and segment losses form Poisson flow, then piecewise linear model is **first order approximation** of the stepwise model.

Conclusion

- The stepwise model of AIMD New Reno congestion avoidance is analyzed.
- The semi-Markovian random process is formulated, theorems on its ergodic properties are proved.
- The functional equation which defines generating function of Markov chain embedded in the semi-Markovian process is obtained.
- The estimations of upper and lower bounds of the steady state expectation of the congestion window size is formulated.
- The interval estimation obtained treats RTT as i.i.d. random variables.