
W G 7 970701 page 1

Historical perspectives on
the computing curriculum

Michael Goldweber (co-chair)
Beloit College, USA

mikeyg@beloit.edu

John Impagliazzo (co-chair)
Hofstra University, USA
cscjzi@hofstra.edu

Iouri A. Bogoiavlenski
University of Petrozavodsk, Russia

ybgv@mainpgu.karelia.ru

A. G. (Tony) Clear
Auckland Institute of Technology, New Zealand

tony.clear@ait.ac.nz

Gordon Davies
The Open University, UK
g.davies@open.ac.uk

Hans Flack
Uppsala University, Sweden

hansf@docs.uu.se

J. Paul Myers
Trinity University, USA

pmyers@cs.trinity.edu

Richard Rasala
Northeastern University, USA

rasala@ccs.neu.edu

Abstract
Computing has become a diverse and multi-faceted discipline.
It is imperative that computing curricula evolve so that they
will effectively convey this breadth. An awareness of the
societal implications of computing must also be at the core of
all computing curricula. Furthermore, we observe that new
computing curricula must be responsive to change, that
pedagogy must be informed by reasoned judgement, and that
educators function as reflective practitioners. This requires
educators to respond appropriately to market pressures and
technological innovations. This paper investigates some of
the components of the discipline’s evolving computing
curricula from a variety of historical perspectives.

1 Introduction
Rapid changes in computing often motivate educators to
introduce innovations in the curriculum and the classroom. The
haste to do something new or adopt some current fad can cause
teachers to overlook possible adverse effects of these
innovations on students and the profession. The deployment of
curricular or pedagogic innovations such as new languages and
technologies may seem appropriate, but mistakes are costly.
History is the best teacher to assess the worthiness of new
ideas or products. The working group investigated these issues
and developed guidelines for avoiding pitfalls when making
innovations in curriculum or pedagogy.

Many institutions, departments, and programs of study
introduce innovations into the computing curriculum on a trial-

and-error basis. In doing so, they learn which such innovations
are useful and which are not. However, in the haste to do
something new or adopt some current fad, educators sometimes
overlook adverse impacts of the innovations. Computing
breakthroughs, when applied without the proper balance of idea
versus application, can be costly. This paper reflects the
exchange of ideas among educators on how innovations affect
the computing curriculum and classroom. It focuses primarily
on the broad philosophical issues of a computing curriculum.

The working group members identified and evaluated the status
and trends of the computing curriculum. Historical facts and
research findings were used to delineate the negative and
positive aspects of an innovation. The members of the
working group engaged in a pedagogic dialog on the topics
researched. They focused their thinking toward the curricular
issues and arrived at a consensus toward each issue. The
working group achieved its goal to produce a document that
would serve as a starting point for a discussion or project that
includes innovations in the computing curriculum.

2 Historical background
Innovations continuously challenge computing educators.
Hardly a week goes by without some new breakthrough or idea
that fascinates the computing professional. Infatuated by these
new ideas, educators are sometimes zealous to see that such
novelties find their way into the classroom. Sometimes the
leap is successful; sometimes it is not. Reflection upon the
history of computing can be beneficial in evaluating which
steps to take and how to take them. Not being too hasty to do
something new or adopt some current fad is important.

2 . 1 Development of computing curricula
One of the first published reports dealing with computing
curricula was the ACM publication known as Curriculum ’68
[28]. This document provided recommendations for four-year
programs in computer science. Curriculum ’68 recommended a

W G 7 970701 page 2

set of courses that included computer programming, computer
systems, computer organization and architecture, algorithms,
data structures, operating systems, programming languages,
and numerical analysis. It also recommended the study of
discrete mathematics, calculus, linear algebra, and probability
and statistics.

In response to the rapidly changing field of computing, the
ACM published another report in 1978 entitled Curriculum ’78
[29]. Curriculum ’78 updated Curriculum ’68 and advocated a
stronger emphasis on programming. It, even more so than its
predecessor, became the model curriculum that many computing
programs in the United States and throughout the world
followed. In 1983 the IEEE Computer Society published its
own recommendations for a computing curriculum [2]. In 1984
and 1985 the ACM published two recommendations [57, 58]
that focused on the CS1 and CS2 courses.

By the mid-1980’s computing curriculum recommendations had
become more reactive than pro-active; describing what
institutions were already doing, instead of proposing future
directions [21]. In the late 1980s a special task force addressed
the issue of curriculum reform and published what became
known as the Denning Report [31]. This report established
nine topic areas that would become the definition of the
computing discipline. Furthermore sensitivity to the social
context of computing was defined as an accompanying thread
to the nine primary subject areas. The ACM and the IEEE
Computer Society embraced the elements of the Denning
Report and in 1991 jointly published a curriculum
recommendation known as Curricula ’91 [5]. Most recently, in
1996 the Liberal Arts Computing Consortium published a
proposed computing curriculum for liberal arts colleges [101],
and the ACM sponsored working groups to examine the
strategic directions in computer science and engineering
education [93] and the soon-to-be-published recommendations
on information systems (IS’97) [47].

2 . 2 Lessons learned from the past
Today, computing educators are faced with many new ideas and
technologies. The recent and rapid development of click-and-
see Web pages can be dazzling and impressive. Unfortunately
little is known whether the inclusion of such entities in a
computing course is beneficial to learning. Will Web browsing
increase the analytical skills of students? Will using this
development make a person a better computing professional?
Before this innovation is firmly placed in a computing
curriculum, its curricular or pedagogic value should be well
understood.

The literature shows many instances where caution should have
taken precedence to implementation. For example, in a recent
episode, an innovative programming design was used on a
satellite rocket launcher. Because the software was never fully
tested, the rocket exploded and crashed to the earth with its
multi-satellite payload, costing its sponsors hundreds of
millions of dollars [43]. Fortunately, it injured no one and the
incident occurred with little news coverage. This example
supports the idea that the testing of innovations requires the
same scrutiny and diligence as testing sophisticated software
found on missile systems. The pedagogical and fiscal damage
caused by an unproved innovation in a universal curriculum
may far outweigh the losses caused by malfunctioning software
on a rocket.

As another example, in the late 1980s there were great
advocations and movements to have closed laboratories for
computing classes. On the surface, the idea echoed the
laboratory settings of the natural sciences. Many computing
educators leaped at what seemed to be a good idea. They
championed the closed laboratory notion and convinced
administrators to spend untold resources for equipment and
staffing to support this innovative idea. Unfortunately, in the
haste to develop closed laboratories, few had taken the time to
really study the effectiveness of these laboratories before
carrying out the idea. Sadly, a recent study suggests that closed
laboratories are not more effective than the traditional open
computer laboratories [22]. This assumption was very costly to
many institutions. The result was a waste of already scarce
revenues and increased skepticism by administrators. Had
computing educators “thought before they leaped”, students and
administrators would not have had to endure the pains of this
idea.

New ideas and technologies may show great promise.
Nevertheless, as good as they may initially appear, experience
shows that their useful life-span is sometimes very limited.
History is one good yardstick to assess the worthiness of
products or innovations. Heeding the historical lessons of the
computing field is important. Computing educators owe their
institutions, society, and most of all their students the
professional responsibility of including only proven elements
rather than current fads in the curriculum. To err in this instance
is professionally deleterious, fiscally unsound, and ethically
unjust. Such actions harm the computing profession.

3 Foundations of the computing
discipline

The computing discipline has many faces. Every computing
curriculum is oriented, or prejudiced, by one or more of these
perspectives. We hope that what follows is an exhaustive
listing of such perspectives and their curricular implications.
Furthermore Section 4 enumerates some of the pedagogical
approaches suggested by these perspectives.

3 . 1 Computing as Mathematics
There are several ways in which mathematics can be viewed as a
model or paradigm for computing. The theory and concept of an
algorithm as a systematic computational process was invented
by mathematicians. In traditional mathematics, only the steps
of an algorithm are specified. It is assumed that the results
needed along the way will be computed and saved by a human
being. With the automation of computation, the question of
how to store data also became important. The structures of
linear algebra and combinatorial mathematics (vectors,
matrices, trees, and graphs) provided the fundamental models
for the computer storage. Thus, both algorithms and data
structures owe their origin to mathematics.

Similarly the use of abstraction to manage complexity derives
from mathematics. Abstraction is used, quite literally, in all
aspects of computing; from the lowest level of hardware design
to the highest levels of software systems. Currently,
abstraction so permeates the notion of computing that design
techniques have been developed to aid one from getting lost in
a sea of abstractions. In many respects, it is the use of
abstraction that permits one to create, manage, or perform ever
increasingly complex computations.

W G 7 970701 page 3

On another level, the method of proof in mathematics is quite
analogous to the design of a structured program. The
decomposition of a mathematical theory into a systematic
collection of lemmas, propositions, theorems, and corollaries
is similar to the decomposition of a program into functions
small and large. The invocation of a lemma in the proof of a
theorem is similar to the use of a simple function to assist in
the computation of a more complex function. With the
introduction of object-oriented methods, computing has moved
slightly beyond classical mathematical frameworks by
distributing data and functions into a collection of distinct
interacting objects.

Mathematical proof is of course the model for reasoning in
computing, even if the format is often simply a “convincing
argument that such-and-such is true”. We use logical reasoning
to assert that an algorithm or collection of algorithms work
correctly. We use estimation techniques from combinatorics,
probability, and calculus to determine the time and space
requirements of computational processes.

Logic and discrete mathematics are critical for computing.
Historically calculus was of immense importance to
computing, which was primarily concerned with scientific and
engineering problems. But presently such computing occupies
a much smaller percentage. Many of the mainstream fields such
as artificial intelligence, database, software engineering,
programming languages, and hardware rely extensively on
discrete mathematics: hard-core scientific computing, relying
on calculus and analysis, has become a small sub-specialty
within the computing community. A “thought experiment”
should prove persuasive: randomly select computing
publications, such as journals and tutorials, and count the
occurrences of discrete mathematics topics as opposed to the
occurrence of calculus topics. Unless a very specific source was
selected, there would be virtually no calculus evident, but
discrete mathematics would permeate the samples.

Indeed, the rising importance of discrete mathematics along
with the decreasing importance of calculus are starting to be
reflected in computing curricula [5, 72, 81, 101]. Given the
pressures of maintaining a current curriculum in computing,
adding additional discrete mathematics seems infeasible.
Reducing a calculus requirement would enable additional
coursework to be offered in discrete mathematics.

A major emphasis within discrete mathematics is logic.
Mathematical logic and foundations are at the heart of
computing. The astonishing results from the discipline known
as the “foundations of mathematics”, while curiously ignored
by the mainstream mathematical community [30], now have
tremendous currency in computing. In fact, the person
sometimes named the “father of computing”, Alan Turing,
earned that distinction precisely through his forward-looking
work in the foundations of mathematics — work that
anticipated the computer, stored programs, universal machines,
and artificial intelligence.

In his influential text, The Science of Programming, David
Gries writes:

The research was fraught with lack of understanding and
frustration. One reason for this was that computer
scientists in the field, as a whole, did not know enough

formal logic. … We spent a good deal of time thrashing,
just treading water, instead of swimming, because of our
ignorance. With hindsight, I can say that the best thing
for me to have done 10 years ago would have been to take
a course in logic. I persuaded many students to do so, but
I never did so myself. [50]

But Gries’ plea has been largely unheeded; logic is not a true
part of the computing curriculum. Our students’ only standard
exposure to logic is in the already overworked course in
discrete mathematics. Unfortunately, coverage is often limited
to the trivial truth-table logic and rarely includes predicate
logic to any depth whatsoever.

While not an emphasized part of the computing curriculum, the
centrality of logic continues apace, as observed by Davis:

When I was a student, even the topologists regarded
mathematical logicians as living in outer space. Today
the connections between logic and computers are a matter
of engineering practice at every level of computer
organization. [30]

Current strides are being made in artificial intelligence,
programming languages, database systems, software
engineering, formal methods, and hardware with techniques
from deep areas of logic such as model theory, proof theory,
combinatory logic, and non-classical logics, using such
notions as completeness, consistency, axiomatics, natural
deduction, Skolem functions, lambda calculus, and
constructivity [72].

Regarding this last area, since computing professionals build
algorithms and systems to transform actual inputs into actual
outputs, the enterprise can be regarded as occurring with
constructive mathematics: the true “classical” mathematics
dating from the ancient times through Chronicler and prior to
modern analysis. Indeed, there has been a renewal of
constructivity since the advent of the field of computing. But
apart from this acknowledgment, the implication of this turn of
events to undergraduate curricula is unclear and should be
explored [49].

Another mathematical view of programming (as expressed by
Naur) is that programming is theory building.

The building of the program is the same as building the
theory of it by and in the team of programmers. During
the program life a programmer team possessing its
theory remains in active control of the program, and in
particular retains control over all modifications. [74]

3 . 2 Computing as Engineering and
Design

Computing professionals do not merely work with abstractions
and passively study the artifacts in which they deal. They also
create those artifacts — they build programs and systems.
Thus, computing professionals do engineering as a daily part
of their professional activities. The entire field of software
engineering has been developed precisely because such an
important facet of the discipline is engineering [5, 44, 96].

In traditional computing curricula, while students have
considerable experience in the programming or coding phase

W G 7 970701 page 4

of the classical software life cycle, this work is primarily for
very small “systems” [82]. Even for these small projects there
is virtually no experience in requirements analysis, design,
testing, and certainly not in maintenance. For example, the
instructor’s or textbook’s statement of the programming
assignment is the requirements analysis for that problem!

The vast differences between small and large systems are
obvious and oft-discussed as the primary motivation for
software engineering education. Brooks states:

Software entities are more complex for their size than
perhaps any other human construct … a scaling up of a
software entity is not merely a repetition of the same
elements in larger size. … In most cases, the elements
interact with each other in some nonlinear fashion, and
the complexity of the whole increases much more than
linearly. [18]

It would be advantageous to provide students with experience in
large (or at least larger) projects and in the other life cycle
phases. However, as Miles states, “… teaching a course in
software engineering is insufficient. Software engineering
techniques must be promoted across the curriculum.” [71]
Furthermore, Booch has stated that the era of the solo, asocial
programmer is over [17]. Good communications skills and
teamwork are now regarded as crucial requirements for the
computing professional and should be incorporated into
computing curricula.

Curricula ’91 [5] regards architecture as one of the foundations
of computing. The analogies between computing and
architecture include aspects of both the planning and building
processes.

Architectural planning is an iterative process. The person or
organization that desires a new structure will approach the
architect with a combination of ideas, hopes, and constraints.
The architect must develop plans, submit them for review by
the client, make explicit changes that are requested, and ponder
related changes that are implicit in the wishes of the client.
This cycle iterates until a definite plan for the project has been
agreed upon.

Once the overall features of a project are understood, the
architect must make detailed plans. At this stage, goals are no
longer the issue. The detailed plans address choices of
technique and implementation: what materials, technologies,
and construction methods will be used. The client is consulted
only if issues arise concerning (un)foreseen variations in the
financial, physical, or time constraints.

As an aid to understanding for both the client and the builder,
the architect may construct a mock up or prototype of the
structure as a whole or of a particular portion(s).

During the construction process, the contractor attempts to
execute the architectural plans as faithfully as possible. Often
changes will be made as the structure is being built. Some
changes will be caused by errors in the design plans or by
errors made by the contractor. Other changes will be requested
by the client either to incorporate newly requested features or to
restrict the project in light of financial or time constraints.

The process of software and hardware development parallels the
above description of the architectural process in many ways. In
the case of software, however, there is one critical difference.
Whereas the product of architecture is a physical structure that
more or less permanently occupies a specific location, the
product of software development is a collection of source files
and executables that can in principle be modified and enhanced
in the future. To realize this potential, additional design
considerations must be undertaken in the development process.
In addition, the temptation to add unplanned features during the
construction process (feature creep) is strong and this
temptation must be resisted to preserve design integrity.

The process of software design has some characteristics that are
not present to the same degree in engineering or architectural
design. One may view the software design process as having
three cyclic phases: inputs, planning, and outputs. While these
phases are typically set in a project context, perhaps they
should be more appropriately viewed as pertaining throughout
the full lifetime of the product. The input phase consists of
initial project scoping, identification of requirements,
ongoing design drafts, and evaluations as the design proceeds.
This phase can be difficult and amorphous since it may involve
obtaining inputs from many stakeholders: customers,
representative end users, managers, developers, societal
representatives (such as the media), and members of the design
team. A spirit of “participatory design” has much to
recommend for this phase [25, 99]. The planning phase
involves the aspects of actual design in which creativity,
problem solving, and use of methodologies must all play a
role. The outputs of design are plans that include overviews,
models, decompositions, interactions, promises, and
prototypes. As the three phases of the design process repeat,
both the user community and the designers learn new things
about the intended product, about what is possible (both to
request and to achieve), and about how to perform design. More
established engineering disciplines do not demand such intense
on-the-fly learning. In the case of software design, frequently
the product represents a wholly new way of supporting human
activity for which past patterns do not exist.

Many of these points are increasingly represented in
computing curricula, for example, the expanded treatment of
requirements analysis, management, and systems engineering
in new software engineering textbooks. But other implications
of the above conceptualization may include a de-emphasis of
such current “hot topics” as software reuse.

3 . 3 Computing as Art
To see how computing can be viewed as art, one might begin
with a definition [20]:

• The application of skill according to aesthetic principles,
esp. in the production of visible works of imagination,
imitation, or design. (i.e. painting, sculpture, architecture
etc.)

• Skill as a result of knowledge or practice, a technical or
professional skill.

Consider how each of these perspectives may bear on
computing.

W G 7 970701 page 5

3.3.1 Computing as Literature
The creation of software can be regarded as a literary process. In
most countries intellectual property law respects the rights of
ownership of computer programs, with copyright accruing to
the writer of source code. “Source code for software is a ‘literary
work’ and therefore protected by the copyright act …” [11].
Additionally there is Knuth’s notion of literate programming:
design that incorporates elegance and other aesthetic
characteristics [94].

There is an increasing use of research techniques drawn from the
field of literature by information system researchers seeking a
better understanding of information systems and their
implementations. Typically these approaches apply
interpretive methods, viewing the business organization as a
text analogue requiring interpretation. Techniques such as
critical hermeneutics and deconstruction offer new insights by
viewing computing systems in a broader social and historical
context. The folklore method is another analysis technique
used in systems development whereby the myths and stories of
an organization are investigated in order to understand the
practices that are to be embedded in the computer systems [56].

3.3.2 Computing as an Artistic Endeavor
The prevalence of graphical user interfaces has brought the
need for a new set of skills for software designers. Awareness of
color, consistency of look-and-feel, and the subtleties of
human computer interaction are all dimensions requiring a
broader skill set than character mode screens demanded.
Graphical design skills are becoming increasingly important,
particularly in multimedia and hypermedia applications. The
skills of the film producer and dramatic writer, the development
of scripts, use of story-boards, designing phase-in/phase-out
shots, use of photography, motion-video clips, sound, and
editing, combined with navigation techniques and transitions,
are all artistic undertakings.

Many initiatives in computing are attempts to minimize the
“art” and replace it with more “method”. This is a deliberately
stated goal of software engineering [82] and it is definitely one
of the goals of formal methods and associated initiatives
toward program and proof derivation.

Indeed, certain areas that have not yielded to method and
procedure, areas in which the practice is still regarded as art, are
considered failures in our understanding. The frustration is that
since methods cannot be routinely applied nor taught, the
activity must rely on human creativity, ingenuity, and insight.

Perhaps this is not so bad a state of affairs. Maybe there exists
a bona fide essential aspect of computing that partakes more of
art than of science. If so, this is an area in which very little
discussion has occurred in recent years; hence, the curricular
implications of such ideas are unclear. Whether this artistic
component will ultimately be seen as permanent and essential
or whether it will one day be replaced by method is unknown.
In any case, for the immediate future, one pedagogical activity
might be the use of professional software designers,
programmers, and software engineers to speak to classes
anecdotally about their experiences, insights, and creative
solutions.

As another view of computing as art, one can simply mention
that computing may be art in the same way that applying paint

to surfaces is art; computing becomes a tool of the artist. This
is rather obvious as computing has permeated the arts. Perhaps
more controversial would be the notion that an actual program
or system might itself be considered a work of art!

3 . 4 Computing as Science
To see how computing can be viewed as a science, one can
begin with this definition [20]:

• An activity or discipline concerned with theory rather than
method, or requiring the systematic application of
principles rather than relying on traditional rules,
intuition, and acquired skill.

• A branch of study that deals with either a connected body of
demonstrated truths or with observed facts systematically
classified and more or less comprehended by general laws
and which includes reliable methods for the discovery of
new truth in its own domain.

• … the intellectual and practical activity encompassing
those branches of study that apply objective scientific
method to the phenomena of the physical universe and the
knowledge so gained.

Computing, while certainly not a natural science, has been
termed a science of the artificial [95]. Design and engineering
are very important to the field. But computing is most
definitely an empirical science as well, where the subject being
observed is not a natural object, phenomenon, or relationship,
but is instead a human-made artifact and its behavior. As such,
the computing curriculum lends itself both to observational
laboratories and experiments. As is clear from these
definitions, science includes both the systematic classification
of knowledge using theory and a method for the discovery of
knowledge using observation and experiment.

In computing research, both observation and experimentation
are important. In studying the behavior of software, the
collection and analysis of detailed time and space statistics is
essential. Analysis will either confirm theoretical predictions
or uncover discrepancies that must then be explained as errors
in the theory or limitations of the model. When it is difficult
decide upon a model, systematic experimentation must be
undertaken to determine the important qualitative behavior and
the detailed parameters of possible models. Experimentation
may also be used to test whether a phenomenon is significant
enough to warrant further study.

In computing education, much more emphasis has been placed
on theory than on observation and experimentation. Students
need to perform experiments and analyze the results. This will
provide a hands-on acquaintance with computing phenomena
that theory alone cannot provide.

In addition to performing experiments to test time-space
performance, students should also experiment with user
interface choices, the design of individual classes, and the
structure of class hierarchies. This will help to foster an
experimental attitude to complement the student’s theoretical
foundations.

Holding a belief in the value of the scientific method is to take
simultaneously an epistemological and ontological position
that guides our views upon the nature of truth and the accepted
means for determining it in the discipline. As an assumption

W G 7 970701 page 6

set, a belief in the value of the scientific method has been
strongly held within the computer science and the American
information systems communities. The European information
systems community has held differing beliefs, which are
progressively spreading within the community. These differing
beliefs have acknowledged the value of more interpretive
research methods (e.g. case studies), which address the
qualitative aspects of computing systems and related
phenomena, to derive new understandings that are less
accessible via quantitative research methods. The particular
value of such research approaches lies in their ability to reveal
“the underlying connections among different parts of social
reality” and thus explore aspects of the wider context in which
computing systems are developed and implemented [78].

As a corollary, in a software engineering context the use of
techniques such as soft systems methodology [23] and the
interaction of social issues and software architecture [26] offer
examples where the current pedagogy could be extended.

3.4.1 The nature of cognition and action
Is cognition a process of detached, abstract reflection and
consideration, or rather a process of active engagement and
action? Is the concept of decision a necessary precursor to
action, or simply an after the event deduction?

Decision theoretical concepts developed from Simon’s
intelligence, design, and choice phases of decision making,
have tended to emphasize deliberate, rational processes by
developing normative models that separate cognition from
action. This starkly contrasts with Langley et al’s analysis of
the reality of managerial work, in which they observe the
intertwined, evolutionary, and event-driven nature of so-called
decision-making. They go so far as to suggest that:

… decision and decision process as decomposable
elements tend to become mere figments of the
researchers’ conceptions, or artifacts of their methods.
Or to use an even more graphic metaphor it is like a wave
breaking over the shore —that is perhaps identifiable at
some sort of a climax— then tracing a decision process
back into an organization becomes much like tracing the
origin of a wave back into the ocean. [62]

Likewise recent work by Maturana and Varela [68], initiating
within the biological sciences, contradicts some earlier views
about systems by observing the nature of autopoietic
organisms structurally coupled with their environments. These
kinds of organisms offered examples of systems which “were
mechanistic but not programmed” [103].

These insights have been combined with a strand of
philosophical thought through Heidegger, Merleau-Ponty, and
Wittgenstein, to conclude

… that perception could not be explained by the
application of rules to basic features. Human
understanding was a skill akin to knowing how to find
one’s way about in the world, rather than knowing a lot
of facts and rules for relating them. Our basic
understanding was thus a knowing how rather than a
knowing that. [34]

The combination of these perspectives coalesce into a view
that suggests that cognition represents a process of active
engagement and is inherently embodied. Our internal systems
are considered to be self-regulated and closed, but over time
become environmentally adapted to our particular context. This
in turn suggests that we have certain almost instinctual
reactions based upon our biological, social, and cultural
histories, with which we have become structurally coupled.

This model of cognition and action would suggest that:

… the primacy of human being is social. The whole is
conceived of as genuinely real and the part [i.e. the
individual], is regarded as originally a differentiation.
The model then is that human being is cultural, it is lived
socially, and is therefore psychological and may be
experienced as such. Culture is assumed to be a general
and complex biological disposition that requires
historically situated social constructional work to
become a specifically lived-culture. [100]

Some implications of this perspective are that abstraction first
and action next may not be wholly valid planning (or for that
matter programming) techniques. Perhaps models that give
primary emphasis to interaction may have more power —
witness the success of the prototyping approach in software
engineering. This notion also gives support to recent
initiatives to distinguish differing learning styles of our
students. A further implication is that we are inherently
prisoners of our history and cultural context. The idea that the
computer is an objective analytical engine, rather than an
historical and social construction, and that systems have any
detached, objective meaning may need to be reconsidered.
Consideration of the overall context in which systems are to be
developed may be more important than the abstraction
processes by which their internals are constructed.

3.4.2 R&D and computing
Under the Organisation for Economic Cooperation and
Development (OECD) definition:

Research and Development comprises creative work
undertaken on a systematic basis in order to increase the
stock of knowledge, including knowledge of man, culture
and society, and the use of this stock of knowledge to
devise new applications. [76]

In relation to the connection with computing and science we
can also note that:

Any activity classified as R&D is characterized by
originality; it should have investigation as a primary
objective, the outcome of which is new knowledge, with
or without a specific practical application, or new or
improved materials, products, devices, processes or
services. R&D ends when work is no longer primarily
investigative. The definition of R&D in accordance with
a change in OECD standards, now includes research into
and development (or substantial modification) of,
computer software, such as applications software, new
programming languages and new operating systems.
[91]

W G 7 970701 page 7

This heightened awareness of aspects of applied and practical
computing as a research activity in its own right should be used
by academics to advance the case that academic publishing is
not the only way in which to have research activity recognized.
Of course a corollary of this is that practitioners are actually
researchers! Much the same point has been made recently by
Glass noting that

Not only is practice OK … but there are some important
flaws in the theory and research of the field that may be
of more concern than the software crisis ever was. … In
any new discipline, it is often true people do things for
which theory has no explanation and provides no
foundation, and theory evolves only after practice has
demonstrated that something works. … The notion of
“best-of-practice” concepts emerges from the belief that
practice can lead theory. [45]

A way in which such recognition might also impact pedagogy
would be by enabling institutions to recruit practitioners as
educators. This would encourage valuable cross-fertilization
and closer ties with industry, while making it possible to
adequately reward such staff by acknowledging certain kinds of
professional experience as equivalent to research activity.

3 . 5 Computing as a Social Science
3.5.1 The Individual versus the Social
There are significant questions for computing that result from a
perspective which is social rather than individual.

Psychology has been a foundation for a number of aspects of
computing. The influence of Simon’s information-processing
model of cognition and the concept of bounded rationality
related to the cognitive weaknesses of humans in decision-
making contexts helped to develop a foundation for much work
in the area of decision support systems [75]. Concepts such as
the capacity, role, and mechanisms of short and long term
memory have contributed to the work of system designers
seeking to develop user interfaces that support rather than tire
users by making unnecessary cognitive demands, where the
processing power of the computer is able to effectively
complement the capabilities of the user.

But as Laroche, a critic of the information processing model,
comments,

Simon’s principle of bounded rationality implies
looking at every individual as a decision-maker, because
as the individual encounters major limits in his ability to
process information, the outcome of his cognitive
processes can neither be predicted nor relied upon. The
idea of the individual as an imperfect information-
processing machine was meant to destroy the illusion of
a well-oiled organizational machine that functions in a
predictable manner, as intended by its designers. Since
the individual information-processing machine was a
central assumption, it was very difficult for anything else
to come out of this theory except an individual decision-
maker. [63]

It is important for educators and researchers to be aware of the
inherent bias in our assumptions when psychology is used as a
reference discipline. The resulting tendency to regard
computing from an individualistic basis must be acknowledged.

3.5.2 Technology as Tool versus Product
In a review of group support systems (GSS) research directions,
De Sanctis has commented on the weaknesses of certain
prevalent views [33]. In her review, the dichotomy between
individualism and collectivism as normative views of
organizations is used to illuminate the mental models of GSS
researchers and illustrate implications for GSS development
and research.

Under the individualistic view typically fostered by economic
and psychological perspectives, the organization is an
assembly of individuals whose aggregated activities constitute
the whole. In this view [33], “technology is a tool to be
applied to enhance individual power and overcome human
limitations, such as limited strength or rationality”.

Under the collectivist view, a view commonly advanced by
sociologists and anthropologists, technologies such as GSS

… are viewed as products of the social evolution of the
organisation and the larger culture of which it is a part.
Because cultures vary the meaning of technology varies.
Thus any given GSS may mean different things within
different organisations or even within different groups.
Further, its roles and purposes may vary over time as the
culture evolves. [33]

This implies that computing educators cannot assume
technology can be developed in a deterministic fashion to meet
given ends. Rather, the process of development and
implementation must take into account social and human
dimensions as critical determinants of success.

3.5.3 Anthropology and Computing
The field of information systems, by its very nature, is a
pluralistic discipline. It has been argued that the science of
anthropology should be considered one of its source
disciplines [8]. Developments in anthropological thought on
the central question of culture, a concept frequently used in the
sense of organizational culture in the information systems
literature, have moved from an early static view of the term as
espoused by Benedict [13], to a more fluid one. The early
definitions, borrowing from techniques used in the natural
sciences, considered the

… human world as composed of separate distinguishable
entities. Each culture was thought to be a natural kind,
just as entities of the physical world — kinds of animals,
kinds of plants, kinds of minerals — are natural kinds.
[8]

Benedict’s imagery was

… something like that of exhibits in a museum, where
one finds an array of distinct, separate, integral objects,
each unique, and yet each sharing some essential attribute
with the others. [8]

Despite much disagreement over the concept of culture,
anthropology as a discipline has long since moved on from
this, perhaps unfairly criticized, “museum like view of culture”.

Ironically Avison and Myers suggest:

W G 7 970701 page 8

The predominant orthodox view of the culture concept in
IS research, that culture is something which identifies
and differentiates one social group from another (as per
Schein’s original formulation), in essence is not
significantly different from Ruth Benedict’s. …
Although the concept of culture has been used rather
narrowly in the IS literature, … IS research in this area
would benefit if more attention was paid to the
contemporary anthropological view of culture, which
—as something which is contested, temporal and
emergent— has the potential to offer information
systems researchers rich insights into how new
information technologies affect or mediate
organizational and national cultures, and vice versa, i.e.
how culture affects the adoption and use of IT. [8]

As a further elaboration of this view:

Hirscheim and Newman (1991) argue that the symbolic
concepts of myth, metaphor and magic facilitate a much
richer understanding of information systems
development than the conventional economic rationality
model. [8]

The process of developing information systems, or for that
matter any technology, could be defined as a process of
designing tomorrow today. The designers (ideally in a
partnership with the users), conceive a future world within
which the users are to live. The system thus developed could be
seen to be a reified social construct, which freezes into a
software artifact a modified set of daily or periodic rituals, such
as organizational routines and practices. The system thus
becomes in effect a means for the transmission of culture in
society. However, since the users both shape the system by
their use and are in turn shaped by the system itself, the system
becomes part of a broader culture which is “an ever changing
emergent phenomenon through which people create and
recreate the worlds in which they live” [8, 79]. A broader
anthropological view, rather than a deterministic approach to
systems development, may enable more successful
implementation practices to be developed.

3.5.4 Computing as Politics
How does an application move from conception to
implementation without a certain amount of political skill on
the part of the computer professional? After all, is software
development not in the end an exercise of power? As Boguslaw
points out:

A designer of systems, who has the de facto prerogative
to specify the range of phenomena that his system will
distinguish, clearly is in possession of enormous degrees
of power. … To the extent that decisions made by …
participants in the design process serve to reduce, limit
or totally eliminate action alternatives, they are
applying force and wielding power in the precise
sociological meaning of these terms. [16]

Is it not then inevitable that opposition will be encountered?
How is this opposition to be surmounted without some degree
of dissembling, artfulness, or cunning? Is it time that the view
that politics is a managerial problem be abandoned? Is it time
to acknowledge that the “designer as expert” model is
inherently one that reinforces legitimacy and assigns

computing professionals extra power —whether warranted or
not— and is one of the “tricks of the trade” that helps one
achieve their goals [53, 102]? One must take care to apply this
art of cunning with conscious care, otherwise it becomes a
black art, a form of sanctioned modern witchcraft carried out by
the scientist. Perhaps in addition to ethics, organizational
politics or political science should also be part of the
computing curriculum.

3 . 6 Computing as Interdisciplinary
In a field so broad as computing, touching on so many aspects
of human activity, the major challenge is not so much to define
the discipline itself, but to maintain a degree of tolerance of
differing views and permit cross fertilization of ideas from
different strands.

This does not, however, offer much guidance to those who must
produce relevant curricula based upon a consensus among
academics and practitioners as to where the focus should lie. It
has been suggested that anthropology, applied psychology,
computer science, cultural studies, economics, ergonomics,
ethics, history, linguistics, management, mathematics,
philology, philosophy, semiology, sociology, and politics
are some of the disciplines relevant to computing. It is clear
that we cannot do justice to this diversity in our educational
programs by applying a single disciplinary perspective.

The computer science and information systems communities
have traditionally taken quite distinct approaches to the
discipline, with some areas of overlap. As computer science
curricula begin more actively to include social, ethical, and
cultural dimensions some rapprochement may occur. Students
may hasten these trends as they choose courses from both
curricula in a more multi-disciplinary approach to their study. A
side effect of this might be graduates better equipped for their
future roles as practitioners. Likewise students studying
computer science within a liberal arts program will no doubt
identify parallels and draw links between their different studies.

One model useful for understanding the discipline of computing
defines a broad continuum between the poles of engineering
and commerce [54]. In this model, engineering, computer
systems engineering, computer science, information systems,
and business are the respective disciplines across the spectrum.

The nine subject areas, three processes, and twelve recurring
concepts defined in Curricula ’91 [5] give the discipline a unity
based upon a consensus developed by the computer science and
engineering communities. This unity emphasizes agreed ways
of viewing a common body of knowledge and a commitment to
the scientific method as frames underpinning the discipline. By
contrast, the coverage of the social and professional context
appears a little “tacked-on”, seemingly as an afterthought
based upon a view that the course was intended to develop
practitioners as well as theoreticians.

Thus this model gives a tightly prescribed discipline, which
can be taught in considerable depth and rigor in relative
isolation from other disciplines. It does, however,
acknowledge the value of mathematics and the physical and life
sciences and suggests a half-year of study in each area to
complement the computing aspects of the curriculum. So to
this extent the curricular model could be seen to advocate at
least a multi-disciplinary if not interdisciplinary approach.

W G 7 970701 page 9

However, a more interdisciplinary trend is becoming apparent
in attempts to deal with the slightly ad hoc nature of the social
and professional context coverage.

A recent proposal to introduce a social and ethical component
into the computing curriculum has extended the definition of
this area to cover five main topics [67]:

• Responsibilities of the computer professional.
• Basic elements of ethical analysis.
• Basic skills of ethical analysis.
• Basic elements of social analysis.
• Basic skills of social analysis.

This broadening of perspective is a significant change for the
computer science community. It will require considerable effort
and a degree of interdisciplinary teaching to do justice to such a
broadened curriculum. There is an inherent danger with
interdisciplinary study involving educators with limited
knowledge in some of the constituent disciplines; flawed,
outdated, or only superficial content may be conveyed.

If one considers the development of the information systems
community during the 1980s, two distinct discourses were
prevalent, with the North American and the European schools
holding very different views. The European school criticized
the American school for its restriction to the orthodox science
model and its advocacy of “one universal scientific method”
[12]. The Europeans “advocated greater pluralism, more
diversity, greater use of methods that allow researchers scope
for interpretation, and the adoption of theoretical perspectives
that are not founded on a rational and mechanistic view of the
world” [12]. This has generated considerable debate within the
information systems community. However, over the
intervening decade a more diverse and pluralistic approach has
been accepted by both information systems communities.

The computer science community maintains some distance
from this position. For instance, the definition of
programming in the computing curriculum is based upon the
concept of “activities that surround the description,
development, and effective implementation of algorithmic
solutions to well-specified problems” [5]. A perspective based
upon social analysis would argue that there is no such thing as
a “well-specified problem”, let alone singular correct
“solutions”. How can these two value systems be reconciled?
Would an interdisciplinary approach create a valuable
opportunity to link the two disciplines, or would it simply
mark the beginning of a loss of the focus and rigor that has
helped bind the computer science community over the last four
decades?

It may prove instructive to more closely examine the content
of the information systems discipline. This discipline has also
suffered from discipline-defining debates. The field is
commonly held to encompass two broad areas [3]:

1 . Acquisition, deployment, and management of information
technology resources and services (the information systems
function).

2 . Development and evolution of infrastructure and systems
for information use in organization processes (systems
development).

The distinctions drawn among information systems, computer
science, and software engineering are suggested to lie in:

… the context of the work to be performed, the types of
problems to be solved, the types of systems to be
designed and managed, and the way the technology is
employed. The context of information systems is an
organization and its systems. The context of computer
science is algorithms and system software. In computer
science, the emphasis is on the “systematic study of the
algorithmic process — the theory, analysis, design,
efficiency, implementation and application — that
describes and transforms information. The context of
software engineering tends to be large-scale software
systems of the kind found in command and control
systems, military systems, communication systems and
large inter-organizational systems. Although the
methods can be applied in other smaller systems, the
context for the methods is generally tied to the problems
of large systems. [3]

Information systems as an interdisciplinary field has from its
inception, been held to draw from several reference disciplines,
including computer science, management science, cognitive
science, organizational science, and economics. The
recommended core curriculum for information systems include
[3]:

• Information systems foundation
• Information systems theory
• Foundation for business knowledge
• Information technology
• Information systems development
• Information systems deployment and management process

One can observe a clear interdisciplinary flavor within this
core curriculum. The curriculum also concentrates heavily on
graduates developing effective skills as practitioners. There is
a strong emphasis on students’ written and spoken
communication skills in addition to their qualitative and
quantitative abilities. Furthermore,

The IS student must also have the people skills and basic
understanding of an organization and its people to
effectively empower its knowledge workers. This requires
an introduction to the basic principles of mathematics
and the behavioral, social and natural sciences, as well as
a foundational knowledge in the disciplines within
business administration [where] the cross functional
nature of systems requires knowledge in the areas of
marketing, finance, accounting, production, distribution
and human resources. [3]

With the revised information systems curriculum one now sees
options offered for students to minor in the subject and an
acknowledgment that there is a base of information systems
knowledge that students from all disciplines might benefit
from. To this extent information systems is offering itself as
an interdisciplinary study option for students from other
backgrounds. Likewise with proposals from the computer
science community to offer computing as a major within a
liberal arts curriculum [101], similar initiatives are being taken
that acknowledge the value of interdisciplinary study.

W G 7 970701 page 10

Both these initiatives seem to be acknowledging the need to
broaden the scope of teaching for computing and information
systems, recognizing the ubiquity of information technology
in everyday society and the need for a growing range of
students to have exposure to what is becoming a set of
infrastructural skills necessary to simply survive in a modern
society. This brings further challenges to a definition of what
constitutes the disciplines and what should be the curricula.

The pressures thus appear to be building towards computing
becoming more interdisciplinary in nature. However, the nature
of the term interdisciplinary must be questioned. In multimedia
development projects, for instance, there are good commercial
models of interdisciplinary collaborations. The project
management, computing professional, marketing, graphic
artists, and film producers collectively produce a CD-ROM
product for sale. In the educational context, the term
interdisciplinary should be more accurately named multi-
disciplinary: namely the coverage of separate aspects of
individual disciplines in an unconnected manner.
Interdisciplinary programs involve the active collaboration of
multiple disciplinary experts in a context where joint activity
is necessary to produce a successful result. A truly
interdisciplinary curriculum in computing may be the next
challenge.

4 Pedagogy and methodology
Underlying the computing curriculum is the consideration that
the students might some day become computing professionals.
This has implications both for what is taught and how it is
imparted. Computing curricula recognize aspects of learning to
prepare for practice. They also recognize that techniques for
imparting skills and developing know-how have to be
embedded in the instructional methods that are used. Students
increase in proficiency as they are progressively exposed to
further concepts and practice their application. Graduating
students are expected, for instance, to have achieved a level of
mastery of programming concepts and practice. As
practitioners they will be expected to further develop this
expertise and demonstrate professional skills, including the
skillful execution of workmanship as an object in itself.

4 . 1 Problem-solving strategies
In many ways, a substantial fraction of the literature on
computing may be viewed as a discussion of problem solving.
The material on problem solving emphasizes an openness to
variation as a fundamental key to problem solving. Some of
the important references to this material are [4, 27, 38, 42, 60,
61, 64, 65, 80, 98].

The implications for computing pedagogy is that one must
emphasize how both problems and solutions may vary and not
simply focus on “here is one problem and here is its solution”.
It may be important to set up some laboratory exercises so that
more than one solution to the given problem is required. One
should consider multiple ways in which a single class can be
implemented or an abstract class can be constructed using one
of several possible concrete classes. One might choose to
spend more time on the variety of solutions to a single
problem than on attempting to “cover” the maximum number
of problems within a course.

The prominence of variation as a central theme in problem
solving may also have implications for the holy grail of

software engineering: “reusable software”. Perhaps, like the
perpetual motion machine, reusable software is impossible.
The essence of adapting software to new situations is to
confront the variations in requirements, constraints, options,
and outcomes from what currently exists. Doesn’t the
experience of 50 years of software development suggest that no
piece of software can be designed to be infinitely adaptable to
all situations? A recent book on design patterns [42] attempts
to classify patterns that are adaptable to some degree and
inflexible to some degree, but no pattern in the book is
infinitely adaptable. Perhaps an awareness of the problem-
solving process will also permit us to wish for less “malleable
software” and for ideas that are “reusable”.

While problem-solving strategies are useful, there is always
the danger that a student may become confused with the
multiplicity of ways in which problems are posed and how they
are solved. However, using care and judicious selection of
presentations, multiple strategies can stimulate students and
generate effective results.

4 . 2 Apprentice approaches
The (so-called) apprentice-based approach to teaching
computing has been developed at a number of institutions. A
group of researchers working at Stanford have created a
substantial quantity of C-based laboratories and support tools
[35, 40, 87, 88, 89]. Another project, at Duke University, has
led to a suite of laboratories that specifically attempt to use
apprenticeship as the bridge from computer science to
applications [7]. Finally, researchers at Northeastern
University have developed laboratories and tool kits to support
apprentice learning through both visualization techniques and
the use of applications [19,36,85,86].

The theme common to all versions of the apprentice approach
is that students will learn best if they develop significant
examples with the help of code created by the faculty, as
opposed to building smaller “toy” examples from scratch. Of
course, from time to time students do build programs entirely
from scratch but this is not the usual mode.

In the apprentice mode, the student is presented a problem, a
framework, and a substantial set of tools. Although the tools
differ from place to place, they commonly include operations
to simplify input/output and calls to create graphics on the
screen. They may also include file tools, array tools, and
simple base classes.

The framework provided for a particular problem consists of
routine segments of code that are not the main focus of the
exercise plus special purpose code that may be beyond the
student at that particular stage of the course. By giving students
framework code, the problem can be larger and more interesting
than would be possible if the program needed to be built from
scratch. In solving the problem, students focus on the difficult
algorithmic and design issues that are at the heart of the
problem rather than reinventing for the i -th time simple
input/output statements and other routine code.

The ability to focus on critical issues in the context of large
problems is the key advantage of the apprentice approach. In
addition, the use of tools and frameworks teaches students how
to deal with abstractions that they have not themselves
designed.

W G 7 970701 page 11

A key drawback to this approach is that the apprentice
sometimes does not see the “big picture”. The apprentice’s
view is always tightly focused and constrained. There is much
to be gained from examining large systems and their design
from the perspective of the whole.

4 . 3 Collaborative learning
Collaborative learning may be thought of as the instructional
use of small groups, through which students work together to
maximize their own and each other’s learning [104]. This mode
of learning is a generalization of the computer-mediated
communication that uses computer technology to transmit,
store, annotate, or present information. Examples of computer-
mediated communication include email, chatrooms, and video
conferencing. Collaborative learning is found in a variety of
settings. Sponsoring institutions often derive different
benefits by engaging in such experiences [24, 77, 92].

Consistent with the desire to better equip students for
professional careers in computing, there is a need to link
theory and practice in the educational process. This is
accomplished through partnerships between educational,
commercial, and community enterprises.

Models of collaboration such as live student projects, in which
students work individually or in small teams to develop a
commercial software application, have been part of the
curriculum in some programs [24]. These projects, conducted
on behalf of commercial or community clients, typically
expose students to all aspects of the learning life cycle and
develop a range of practitioner-relevant skills.

Caution should be heeded when using collaborative learning.
Institutions should ensure that students are actually learning
while they are collaborating and not assume that collaborative
experiences automatically transform into educational ones.
However, proper balance of collaborative experience and
monitored learning can prove to be an effective way to elevate
the student’s insight into computing and to foster continued
cooperation between educational institutions and industry.

4 . 4 Distance learning
Distance learning is not a recent phenomenon. However, with
the proliferation of computers and computer networks, distance
learning has become a significant component of education
delivery, especially at the college and university levels. The
International Centre for Distance Learning is an extensive
resource in this area. It can be accessed through the URL
http://www-icdl.open.ac.uk/icdl.

4 . 5 Multimedia and computing
Multimedia has come to mean a combination of still images,
video, sound, music, and virtual reality. The purpose of
multimedia is to provide a user with multiple pathways to
information or just to provide enjoyment. In the domain of
computing curricula, the full range of multimedia has yet to be
realized. The bulk of the effort to date has focused on tools or
programs to enable visualization or animation of algorithms,
structures, and processes.

One of the earliest efforts in algorithm animation was the film
“Sorting Out Sorting” [10]. As graphics workstations and
personal computers became common, work shifted to creating

visualizations and animations interactively rather than as
canned films. The advantages of immediate display and
interactive control were overwhelming. For a listing of some
of the important visualization projects, see the reports by the
working groups on visualization from ITiCSE’96 [14] and
ITiCSE’97 [73] , including the “Visualization Repository” and
a discussion of the potential benefits and drawbacks of using
visualization tools.

There has been much less work done with sound and music. It
has been suggested that one can use sound to enhance
perception of detail. One can associate each level of gray with a
tone and then, as the mouse passes over the image, sounds are
produced. It is possible by this technique to detect variations in
gray level that are not visible to the naked eye [36]. In a
different direction, Rubenstein has guided interesting student
projects on the generation and modification of MIDI sound
[90].

Although substantial and important work has been done on the
visualization and animation components of multimedia in
computing curricula, it is fair to say that the full potential of
multimedia has yet to be reached. One obstacle to further
development in these directions is the cost of development
systems and the associated software. Another obstacle is the
time required to develop full multimedia educational software.
Research needs to be done on what is possible in educational
multimedia for computer science. If this research is fruitful then
perhaps funds can be obtained to cover the development costs.

4 . 6 Networked computing as a resource
It is now relatively easy to access a computer network, either
through a university system or an Internet service provider,
thus enabling students to use the network to enhance their
educational experience. There are a variety of ways in which
this might happen.

1 . Access to a computer network can provide access to a wealth
of digital information, for example, in libraries or an
organization’s Web pages that hitherto would never have
been possible.

2 . Submission of assignments with on-screen marking can
provide faster feedback to students.

3 . Communication between students at a distance and between
students and staff is enabled. For geographically dispersed
students the advent of conferencing systems and cheap
communications is possibly the most important
technological development of recent years. Although the
use of the network as a pedagogical device is still doubtful,
as a medium for social interaction its importance is
unquestionable.

A reference source discussing the Internet as a pedagogic
resource is the report of the working group at ITiCSE’96 [51],
but as this area changes rapidly, its value will diminish.

4 . 7 Introductory course considerations
The design of a computing curriculum is a highly complicated
problem [31]. Educators need to prepare students with a
common computing culture and a lifelong self-education
ability. It may be useful to have two starting points to
approach the problem.

W G 7 970701 page 12

First, there is a variety of topic areas that may be effectively
used to achieve the goals of curriculum design, especially in the
introductory sequence. These topic areas are fundamental and
vary in depth and complexity.

Second, as students gain psychological insight, their self-
estimation as a professional changes rapidly during their study.
The changing process has specific features that should be taken
into consideration during the introductory sequence and in the
curricula design. This evolution may be considered a process of
development into a computing professional.

The thinking of a new university student goes through a
process of transformation. Starting as a novice, the student
possesses few skills and does not have any insight into the
profession. After a university experience, the student
transforms into a beginning professional. The process is like
the transformation from a grub to a graceful, fluttering
butterfly. As such, the curriculum may be divided into two 2-
year stages: core and advanced.

4.7.1 The core stage
A student’s mind may be treated as gradually filling up a “tabula
rasa” during the core stage. Students execute tasks very
willingly and tend to trust teachers. They have no favorite
approach or technique for problem solving. This stage is most
favorable for forming a general understanding of computing
and the development of self-education abilities. Knowledge and
skills attained at this stage fundamentally influence the
students’ professional characteristics. The observation is
implicitly confirmed in [5], where introductory courses are
essentially different. This depends on the curricula orientation,
such as computer engineering, computer science, or software
engineering. At the same time, the core stage is the right place
for equipping students with tools or “cultures and languages”
(mathematical, algorithmical, architectural, programming
skills). This core stage assists them to adapt and to increase
rapidly their competence during the next stage.

Generally, at the core stage a student’s motivation is high and
directed to the foundations of computing. Students are intrigued
by their new experiences. This means that the core should
include in the introductory sequence some elements of the
depth-first principle. This core should not be changed quickly.
Students should be encouraged to evaluate the effects of the
rapid changes in computing and to adjust to those changes.

4.7.2 The advanced stage
Increasing professionalism starts to influence students’
attitudes toward study and the selection of courses during the
advanced stage. Student group leaders start to emerge and their
“professional” opinion is considered, in some cases, more
significant than that of their teachers. The motivation at the
advanced stage becomes more narrow and is directed to their
work or to their attempts to get a steady job. This phenomenon
is highly common [32]. Due to leadership and motivation
factors, it becomes more difficult to fill omissions in the
curriculum, and hence in students’ competence, that occured
during the core stage. For example, in the third and fourth
years, students who acquired programming skills but lack a
knowledge of architecture acquire a knack of resolving
programming tasks without taking into account the
architectural considerations. This leads to the formation of an
incomplete notion about programming.

4.7.3 A possible modification of the introductory
sequence

The introductory topic sequence [31] presents a well-founded
core curriculum model. It formulates the principle that:

Different kinds of institutions should exercise flexibility
in determining the amount of coverage for each of the
nine subject areas and three processes.

Following this principle, a reduction of some breadth topics in
the core sequence can increase the depth of other topics in the
core coverage.

Consider the following anecdote:

Once a biologist, a physicist, and a mathematician saw a
black sheep on a meadow in Australia. Oh, said the
biologist, black sheep are to be found in Australia. No,
said the physicist, we see one black sheep in Australia.
No, said the mathematician, there is at least one sheep in
Australia, and at least one side of it is black.

The anecdote illustrates the care and precision of the
mathematician in observation and analysis. In the context of
counting sheep, this seems amusing. In the context of
designing and writing software to control complex hardware,
such care and precision is absolutely essential. An important
purpose of the core curriculum is to develop such attitudes.

The importance of algorithms and architecture subject areas
force us to start teaching this combination of core cultures as
soon as possible. One should observe that many elements of
the introductory sequence [31] may be shown to students not
only with a high-level programming language, but also with a
low-level language using simple techniques [15], as well.

4 . 8 Curricular integration
There are a number of models for curricular integration that may
be considered. Some of the interesting scenarios for the
computing curriculum with respect to these models are the
shared, threaded, and integrated models.

In the shared model, “Shared planning and teaching take place
in two disciplines in which overlapping concepts or ideas
emerge as organizing elements” [37]. For instance, a computer
science and an information systems program could collaborate,
possibly over software development and implementation, the
social aspects of computing, and professional development as
organizing elements.

The threaded model provides a “… metacurricular approach
[that] threads thinking skills, social skills, multiple
intelligences, technology, and study skills through the various
disciplines” [37]. This model would require collaboration
among different disciplines to investigate some broader
transdisciplinary concept which would then weave its way
through the instructional process, dipping from time to time
into specific disciplines to explore the concept in more detail.

The integrated model is an “… interdisciplinary approach [that]
matches subjects for overlaps in topics and concepts with some
team teaching in an authentic integrated model” [37].
Integrated semester students are taught by a team of discipline
experts who collaborate over the course of the program and

W G 7 970701 page 13

jointly negotiate issues of curriculum, methods of delivery, and
assessment.

4 . 9 Design, algorithms and assessment
In addition to the recent attempts to enumerate the foundations
of computing [5, 31, 52, 93] there has also been an attempt to
enumerate the foundations of computer science education [83,
84]. In this model, there are three central components in
computing education: design, algorithms, and assessment.

The design component deals with the overall approach to
problem solving in various domains and with the management
of complexity and interactions. A primary concern of design is
the intellectual framework in which the problems of a domain
can be viewed and the possible software frameworks in which
these problems may be resolved. At the next level of detail,
abstraction is concerned with the subdivision of the framework
into coherent intellectual and physical components (data,
functions, objects) that can capture the essential features of a
system while encapsulating concrete details. The
communication among these components is also an important
design consideration.

The algorithms component is concerned with the efficient
execution of the specific tasks that have been identified in the
design of a system. Classical algorithms are used to build,
traverse, reorganize, and destroy data structures. Domain-
specific algorithms deal with numerical computation,
operating systems, language processing, user interfaces,
graphics, voice, video, speech, compression, cryptography,
and artificial intelligence. These specialized algorithm families
draw upon the classical algorithms, but are tuned to the needs of
the particular domain.

The assessment component is concerned with the quality of the
design and algorithms used to create a system as well as the
overall quality of the system as a whole. The fundamental tools
of assessment are theory, experiment, and observation. Theory
provides analytic tools to assess new algorithms and a large
catalog of existing algorithms with known performance
characteristics. Theory also organizes knowledge about
specific computational domains and appropriate design
patterns for particular situations. Experiment is used to test
theoretical predictions via simulation or to test actual
implementation of full-scale systems. Observation adds the
human element to the assessment process through design
reviews, code reviews, and the use of debuggers. In addition,
aspects of a system that are hard to quantify (such as the user
interface) must be assessed by observation.

The three-component framework is simple enough for students
to understand and motivates the major activities that occur
throughout typical computing curricula. Additionally this
framework helps to answer the perennial student question: Why
are we doing this?

4 . 1 0 Classroom effectiveness
The classroom and laboratory is the traditional setting where
the computing curriculum is instantiated. We observe that the
physical environment can exert tremendous influence on how a
particular curriculum is implemented. The physical
environment can dictate the degree of collaborative learning
and which classes, if any, can be supported with a closed
laboratory.

The physical classroom and laboratory environments are
changing. New technologies are supplementing the
chalkboard, whiteboard, and overhead projector methods of
content delivery. In addition to simply being “better
boards/overhead projectors”, these technologies have the
potential to radically alter the nature of current pedagogy.

4.10.1 Physical environments
The introduction of the inexpensive chalkboard altered
education pedagogy in a deeply significant manner. Some of
the currently available (and soon to be available) technologies
have the potential to effect a similar dramatic change.

It is no longer unusual for a classroom to be equipped with a
computer and projection facility. The presence of the computer
and projector allows one to develop a sophisticated delivery of
the lecture material. The use of presentation software,
authoring tools, and other multimedia creation packages is a
vast improvement over the board/overhead projector method of
conveying content. Some of the advantages include
asynchronous access of “presented” material by the student and
the inclusion of audio and visual enhancements, such as sound,
color, and replay. While much has been written on this
innovation, for the most part it is not significantly different
than the introduction of colored chalk; pedagogy is not
significantly affected.

The computer’s presence in the classroom (and a network’s
presence on a campus) does have the potential to dramatically
affect pedagogy. Due to the ubiquitous presence of computers in
a computing curriculum, perhaps these changes will first be
apparent in the computing disciplines. An instructor can
conduct an experiment in real-time in front of the class, posing
questions, formulating hypotheses, and actually running the
computation to see what happens. Answers to questions can be
more concretely visualized. Seeing results unfold on a screen
can have far more impact on a student than hearing an
instructor describe the result verbally or on the board/overhead
projector. Without the computer, the class would have to “take
the instructor's word” for what the outcome would be.

Computers have the potential to alter pedagogy in even more
significant ways. Traditional classrooms reinforce the dualistic
nature of the student-instructor relationship. The instructor, at
the front of the room, controls access to the broadcast media:
air (speech), the board, the overhead projector, and the
presentation computer. Students have controlled access to the
broadcast media (receive-all, arbitrated transmission) and
uncontrolled access to their own notes. It is interesting to
reflect how computing technology can alter this equation, in
particular variations that improve on the traditional model.
Some experiments with respect to these variations might
include course-based newsgroups, etc.

Some of this redefinition of roles and the exploration of
different learning styles is occurring in the collaborative
learning movement. Proponents of such have learned that even
simple things such as whether or not chairs are bolted to the
floor can affect the degree to which roles can be redefined.

4.10.2 Assessment and evaluation
The debate between open and closed laboratories is old (by the
metric of the age of the discipline). Articles abound declaring
the advantages of one method over the other (see, for example,

W G 7 970701 page 14

any of the Proceedings of the SIGCSE Technical Symposium on
Computer Science Education from the past ten years). Some
recent research suggests that a closed laboratory does not
increase student comprehension [22].

This is not to suggest that there is no valuable reason for
conducting closed laboratories. On the contrary, this result
shows that innovation in the computing curriculum needs to be
scientifically evaluated. Anecdotal evidence is worthwhile to
suggest avenues for experimentation, but strong curricular
directions should only be set on the basis of such strong
evaluative research.

Unfortunately the literature is sparse on formal assessments of
curricular and pedagogical directions. There has been, on the
other hand, an increase of activity in this area [46,66].

5 Professionalism and ethics
The growing emphasis upon ethical issues in computing delves
into the realm of philosophy and the social human realm. For
example, one recent proposal explicitly notes

… from the perspective of computer science, every
ethical concern is encountered at a particular level of
social analysis. Only an analysis that takes account of at
least three dimensions — the technical, the social and
the ethical — can adequately represent the issues as they
concern computer science. [67]

Professionalism is a relatively new component in the
computing curriculum. The Denning Report [31] was the first
ACM curriculum recommendation that discussed ethics.
Furthermore, almost 10 years after its publication, a large
number of “current” CS1 texts make no mention of
professionalism/ethics nor even include the ACM Code of
Ethics [1].

Professionalism in the context of a computing curriculum can
mean a number of different things. These include responsibility
for the quality of work, regard for the needs of a computer
system’s human users, societal impact, and a readiness to face
the ethical dilemmas that computing technology can present
on the job and in security.

5 . 1 Professional responsibility
In a broad sense, the entire literature of software engineering is
concerned with the issue of quality of work. Recent books by
McConnell [70] and McCarthy [69] do an excellent job of
discussing software development as it is practiced in actual
software companies. McConnell provides an in-depth analysis
of various software methodologies that have been proposed and
assesses their strengths and pitfalls. Both McConnell and
McCarthy present case studies that expose “classic mistakes”
and which highlight “best practices”. One of the most basic
mistakes is to accept unrealistic expectations concerning a
project schedule and then to depend on individual heroics to
attempt to bail out the project down the road. A basic aspect of
professional responsibility is to resist unrealistic schedules at
the start and to build in many checkpoints (zero defect
milestones) that guarantee that some subset of the final product
functionality actually works.

Both McConnell and McCarthy emphasize that the interaction
of people in teams is critical to a software development

project. Indeed, building the team and ensuring that each
person can work effectively toward the team goals is as
important as the schedule milestones or the details of software
design and coding. When a team is working well, people are
supportive and not competitive, communication is frequent and
packed with information, and everyone takes responsibility for
the quality of the product. In this atmosphere, they see
discovering potential problems as a contribution to the team
and not as a criticism of any individual developer. This permits
the team to focus on strategies for solving the problems and
moving on.

Of course, no project is without mistakes. If each individual has
a commitment to learning, then we can use mistakes as the
basis for what needs further study in the future. Companies can
add value to this individual learning by conducting systematic
postmortem studies on projects and making the results
available to other teams.

5 . 2 Social and ethical issues
Beyond the individual project, computer professionals must
consider why they write the software they do, the customers for
whom they write, the larger impact of this software on society
and, sometimes, the deeper legal and ethical issues. While the
literature regarding these concerns is comparatively Spartan
compared to that of software development, some recent texts
[9, 39] make excellent contributions. At ITiCSE’97, the report
of the working group on integrating societal and ethical issues
into the computer science/information systems curriculum,
more fully addressed these issues [48].

6 Fads: Choices, issues, and debates
6 . 1 Computing environments
An important influence on computing curricula, in addition to
the recommendations of the ACM and the IEEE Computer
Society, is the nature of the computing environment available.
An environment may be categorized by the physical hardware
(a factor of ever decreasing importance), the operating
system(s), and the programming language(s)/development
environment.

Arguably the most influential operating systems in academia in
the last 20 years have been UNIX, DOS/Windows, and the
Macintosh OS. Additionally, the integrated OS/language
environments provided by Lisp, Scheme, and Smalltalk have
had significant intellectual impact.

The significant role that UNIX has, and should continue to
play, in computing curricula is due to many factors. Some of
these include the technical merits of the system, its favorable
price for academic institutions, and its widespread availability
across many different popular hardware platforms.
Unfortunately, the relative importance of UNIX has also
blinded some to important innovations. In an interview,
Hertzfeld recalls:

I tried to make personal computers the topic of my
graduate-school research, because to me they were the
most exciting machines in the world. I was amazed that
almost every professor in the department thought
personal computers were the worst thing that ever
happened to computer science … because personal
computers were less powerful and had less memory than

W G 7 970701 page 15

the big computers they were programming. … They just
hadn’t caught on to the thrills that ordinary people can
have on these machines. … I guess a lot of academics
couldn’t have cared less. [59]

In hindsight, it is easy to recognize that the personal computer
was one of the most important new technologies of the 1980s
and that many innovations in the field of computing owe their
existence to the personal computer. The breadth of application
software and the advancement of user interface design could not
have taken place without the impetus of a mass market of
demanding end users.

6 . 2 Language fashions
There has been an even greater variety in programming
language choices in academia over the past 20 years than in
operating systems. Languages with recent substantial academic
usage have been Pascal, C, C++, and Ada. Proponents of
simplicity have favored Pascal or Scheme and those advocating
structured design have favored Ada. The proponents of
interactive design and the use of large tool kits have favored
Lisp or Smalltalk. Bjarne Stroustrup remarks:

One conclusion I drew … is that there is no agreement on
what a programming language really is. Is a
programming language a tool for instructing machines?
A means of communicating between programmers? A
vehicle for expressing high-level designs? A notation
for algorithms? A way of expressing relationships
between concepts? A tool for experimentation? A means
of controlling computerized devices? My view is that a
general-purpose programming language must be all of
those to serve its diverse set of users. The only thing that
a language cannot be —and survive— is a mere
collection of ‘neat’ features. [97]

Stroustrup continues:

The difference in opinions reflects the differing views of
what computer science is and how languages ought to be
designed. Ought computer science be a branch of
mathematics? Of engineering? Of architecture? Of art? Of
biology? Of sociology? Of philosophy? Alternately,
does it borrow techniques and approaches from all of
these disciplines? I think so. [97]

Despite this breadth of vision, Stroustrup’s own creation, C++,
is both widely admired and widely disdained. Pleasing everyone
is not easy.

Currently, Java is the most recently developed language that
has “great future potential”. Java promises to enable true multi-
platform interactive programming with just-in-time delivery
over the World Wide Web. Will Java achieve its potential? Will
its use one day be labeled a fad? Will Java be seen as a valuable
addition to the mix of languages, but one destined to be no
more dominant than many others?

These questions are hard to answer. One theory on the success
of programming languages is that their acceptance is a social
and evolutionary process, not a technological one.
Furthermore, successful languages must require only minimal
computer resources and not place any burden of mathematical
sophistication on their users [41].

One then concludes that C is successful because the simplicity
and directness of its programming model make it easy to learn
and port to a variety of systems. This gives rise to the
following opinion:

Right now the history of programming languages is at an
end, and the last programming language is C. [41]

Perhaps. Then again, perhaps not.

6 . 3 Computing for power users
A consistent theme in the development of programming
languages has been the quest for greater productivity. While
often more marketing hype than reality, programming
languages that can easily be used by power users to develop
their own systems have been touted for at least twenty years.
Fourth-generation languages and rapid application
development tools and techniques have made it possible to
more quickly develop commercial applications of a moderate
size. While most of these products, such as Visual Basic,
Delphi, ORACLE, Progress, Paradox, MS-Access, Lotus Notes,
and Power Builder, are really better suited for use by the
professional application developer, intelligent and resourceful
power users can develop their own applications. Microsoft is
encouraging this trend with its integrated desktop software
suite in which desktop applications inter-communicate via
such mechanisms as OLE. The proliferation of Internet
technology is supported by desktop products with facilities to
publish reports to the Web or to relatively easily produce a
Web page.

The developments on the commercial sector raise important
curriculum issues:

1 . Should computing educators be responsible for teaching
about these tools and techniques?

2 . What exactly should be taught and what should be left to the
student?

In this context, is it not time for us to revisit the concept of
programming and programming languages? Where does the
boundary between the power user and professional programmer
lie? Capers Jones refers to power-user-developed applications
of 1000 function points [55]. Wasn’t this once the mid-point
on Albrecht’s scale of commercial application software
projects?

7 Conclusions
In this report a broad analysis of the status of modern
computing has been conducted in the context of curriculum
planning. Computing areas were observed not only from an
implementation point of view (such as computer science and
computer engineering), but from an applications point of view
(information systems).

As demonstrated above, computing can be viewed from many
perspectives. The paper has articulated several of these. This
demonstrated breadth of the subject should be considered in new
curricula accommodating these interdisciplinary dimensions.
As the range of professions in computing proliferates and
society broadens the nature of technology-related endeavors,
graduates require a broader range of skills and insights in order
to operate effectively as computing professionals in diverse

W G 7 970701 page 16

roles. Effective pedagogy demands serious consideration of
professional and ethical conduct. An awareness of social and
societal implications must be a core element of computing
education.

When instructing students, educators should take advantage of
students’ natural process of maturing by introducing problem
solving in stages ranging from smaller to larger exercises and
projects. In that way teachers also encourage students to
experience both the fruitfulness and the disappointments of
working in groups of increasing size and to develop their
capabilities in communication and interpersonal aspects of
working in teams.

The working group strongly advocates more discrete
mathematics and less calculus for any revised curricula, as the
theory as well as the practice of computing is profoundly
dependent on the former. In a crowded curriculum, calculus may
be the aspect to be given less emphasis in less scientifically
focused programs.

While educators must acknowledge market pressures and the
impact of innovations in technology, they need to respond in
appropriate ways. Pedagogy and programs must remain credible
to students and to the wider community. The pressure of
innovations in computing often leads to curricula overload and
fragmentation. This demands that computing educators assess
the impact of trends and changing paradigms and continue to
evaluate the effectiveness of changes that are introduced.
Computing is a field with a long history of rapidly emptying
baths as a new model comes along, only to hurriedly gather up
missing babies a year or two further on. Forthcoming curricula
cannot exist in a vacuum and change can be considered
constant. Pedagogy must be informed by reasoned judgment of
educators, taking risks where necessary, but evaluating success
continually. The best educators in any field operate as
reflective practitioners [6]. As computing educators, that is no
less our responsibility.

References
1 The ACM code of ethics and professional conduct.

http://www.acm.org/constitution/bylaw17.txt.
2 The 1983 model program in computer science and

engineering. Technical Report 932, Computer Society of the
IEEE, 1983.

3 IS’95: Guideline for undergraduate IS curriculum. MISQ,
(1995), 341–359.

4 Abelson, H., Sussman, G., and Sussman J. Structure and
Intrepretation of Computer Programs. MIT Press, 1985.

5 ACM/IEEE-CS Joint Curriculum Task Force. Computing
Curricula 1991. ACM Press, 1991.

6 Argyris, C, and Schon, D. Theory and Practice. Jossey Bass,
1974.

7 Astrachan O. and Reed, D. The applied apprenticeship
approach to CS1. SIGCSE Bulletin, (March 1995), 1–5.

8 Avison, D. and Myers, D. Information systems and
anthropology: An anthropological perspective on IT and
organisational culture. Information Technology And People
8, 3 (1995), 43–65.

9 Baase, S. A Gift of Fire: Social, Legal, and Ethical Issues in
Computing. Prentice-Hall, 1997.

10 Baecker, R. and Sherman, D. Sorting out sorting. 1981.
16mm color sound film.

11 Bell, S. Legal debate defines copyright. Computerworld,
(April 1989).

12 Benbasat, I. and Weber, R. Rethinking "diversity" in
information systems research. Information Systems
Research 7, 4 (1991), 389–399.

13 Benedict, R. Patterns of Culture. Houghton Mifflin, 1934.
14 Bergin, J., Brodlie, K., Goldweber, M., Jiménez-Peris, R.,

Khuri, S., Patiño-Martínez, M., McNally, M., Naps, T.,
Rodger, S., and Wilson, J. An overview of visualization: its
use and design. SIGCSE Bulletin 28, special issue (1996),
192–200.

15 Bogoiavlenski, I. A. and Pechnikov, A. A. Five years
experience of architecture and assembly language
introduction course for first year students. In Proceedings of
the Interdisciplinary Workshop on Complex Learning in
Computer Environment (CLCE ‘94), 1994. URL:
http://cs.joensuu.fi/~mtuki/www_clce.270296/Iouri.html.

16 Boguslaw, R. The New Utopians. Prentice Hall, 1965.
17 Booch, G. The future of software. Opening Address, Fifth

Annual CCSC Rocky Mountain Conference, (October 17–18,
1996).

18 Brooks, F. No Silver Bullet — Essence and Accident in
Software Engineering. Addison-Wesley Publishing Co.,
anniversary edition, 1995.

19 Brown, C., Fell, H., Proulx, V. and Rasala, R. Instructional
frameworks: Toolkits and abstractions in introductory
computter science. Proceedings of the 1993 Computer
Science Conference. ACM Press, 1993.

20 Brown, L. (Ed.). The New Shorter Oxford English Dictionary.
Clarendon Oxford, 1993.

21 Bruce, K. Thoughts on computer science education. URL:
http://www.acm.org/pubs/citations/journals/surveys/199
6-28-4es/a93-bruce/.

22 Burton, D. The effect of closed laboratory activities on the
comprehension of five concepts and the perception of
effectiveness of the course in a second semester computer
science course. PhD thesis, University of Texas at Austin,
1992.

23 Checkland, P. Systems Thinking, Systems Practice. Wiley,
1981.

24 Clear, A. Quality control expert system: A project review.
New Zealand Journal of Applied Computing and Information
Technology 1, 1 (1997), 49–62.

25 Clement, A. and Van den Besselaar, P. A retrospective look
at PD projects. Communications of the ACM, (June 1993).

26 Cockburn, A. The interaction of social issues and software
architecture. Communications of the ACM, (October 1996),
40–46.

27 Corman, T., Leiserson, C., and Rivest, R. Introduction to
Algorithms. MIT Press, 1990.

28 Curriculum Committee on Computer Science. Curriculum 68:
Recommendations for the undergraduate program in computer
science. Communications of the ACM, (March 1968), 151–
197.

29 Curriculum Committee on Computer Science. Curriculum 78:
Recommendations for the undergraduate program in computer
science. Communications of the ACM, (March 1978), 147–
166.

W G 7 970701 page 17

30 Davis, M. Influences of Mathematical Logic on Computer
Science. Oxford University Press, anniversary edition,
1988.

31 Denning, P., Comer, D., Gries, D., Mulder, M., Tucker, A.,
Turner, A., and Young, P. Computing as a discipline.
Communications of the ACM, (January 1989).

32 Denning, P. Educating a new engineer. Communications of
the ACM 35, 12 (1992), 83–97.

33 DeSanctis, G. Group Support Systems: New Perspectives,
chapter Shifting Foundations in Group Support System
Research. MacMillan, 1993.

34 Dreyfus, H. and Dreyfus, S. Mind Over Machine. The Free
Press, 1986.

35 Feldman, T. and Zelenski, J. The quest for excellence in
designing CS1/CS2 assignments. SIGCSE Bulletin,
(February 1996), 319–323.

36 Fell, H. and Proulx, V. Exploring Martian planetary images:
C++ exercises for CS1. SIGCSE Bulletin, (February 1997),
30–34.

37 Fogarty, R. Ten ways to integrate curriculum. Educational
Leadership 49, 2 (1991), 61–65.

38 Foley, J., Van Dam, A., Feiner, S., and Hughes, J.
Computer Graphics: Principles and Practice (2nd). Addison–
Wesley, 1990.

39 Forester, T. and Morrison, P. Computer Ethics: Cautionary
Tales and Ethical Dilemmas in Computing. MIT Press, 1990.

40 Freund, S. and Roberts, E. THETIS: An ANSI C programming
environment for introductory use. SIGCSE Bulletin,
(February 1996), 300–304.

41 Gabriel, R. P. Patterns of Software. Oxford University Press,
1996.

42 Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

43 Gates, B. The Road Ahead. Penguin Books, 1996.
44 Gibbs, N. The SEI education program: The challenge of

teaching future software engineers. Communications of the
ACM, (May 1989).

45 Glass, R. The relationship between theory and practice in
software engineering. Communications of the ACM,
(November 1996), 11–13.

46 Goldberg, M. WebCT and first year: Student reaction to and
use of a Web-based resource in first year computer science.
SIGCSE/SIGCUE Conference on Integrating Technology
into Computer Science Education, (Uppsala, Sweden, June
1997).

47 Gorgonne, J., IS ’97, ACM, 1997.
48 Granger, M. J., Little, J. C., Adams, E. S., Björkman, C.,

Gotterbarn, D., Juettner, D. D., Martin, C. D., and Young, F.
H. Using information technology to integrate social and
ethical issues into the computer science and information
science curriculum. SIGCSE/SIGCUE Conference on
Integrating Technology into Computer Science Education,
(Uppsala, Sweden, June 1997).

49 Greenleaf, N. Algorithms and Proofs: Mathematics in the
Computing Curriculum. Proceedings of a Summer
Symposium, (San Antonio, Texas, June 1991). Springer-
Verlag, 1992.

50 Gries, D. The Science of Programming. Springer-Verlag,
1981.

51 Hartley, S., Gerhardt-Powals, J., Jones, D., McCormack, C.,
Medley, M. D., Price, B., Reek, M., Summers, M. K.
Enhancing teaching using the Internet. SIGCSE Bulletin 28,
special issue (1996), 218–228.

52 Hartmanis, J. and Lin, H. Computing The Future: A Broader
Agenda for Computer Science and Engineering. National
Academy Press, 1992.

53 Hirscheim, R. and Klein, H. Four paradigms of informations
systems development. Communications of the ACM,
October 1989.

54 Hudson, H. Report of the Discipline Review of Computing
Studies and Information Sciences Education. Australian
Government Publishing Service, 1992.

55 Jones, C. Software productivity research: What are function
points. URL: http://www.spr.com/library /funcmet.htm.

56 Kendall, R. and Losee, R. Information system folklore: A
new technique for system documentation. Information
Management, (February 1986), 103–111.

57 Koffman, E., Miller, P., and Wardle, C. Recommended
curriculum for CS1: 1984. Communications of the ACM,
(October 1984), 998–1001.

58 Koffman, E., Stemple, D. and Wardle, C. Recommended
curriculum for CS2: 1984. Communications of the ACM,
(August 1984), 815–818.

59 Lammers, S. Programmers at Work. Microsoft Press, 1986.
60 Langer, E. Mindfulness. Addison-Wesley, 1989.
61 Langer, E. The Power of Mindful Learning. Addison-Wesley,

1997.
62 Langley, A., Mintzberg, E., Pitcher, P., Posada, E., and

Saint-Macary, J. Opening up decision making: The view
from the black stool. Organization Science, (May 1995),
260–279.

63 Laroche, H. From decision to action in organizations:
Decision-making as social representation. Organization
Science 6, 1 (1995), 63–75.

64 Levine, M. Effective Problem Solving. Prentice-Hall, 1994.
65 Liskov, B. and Guttag, J. Abstraction and Specification in

Program Development. MIT Press, 1986.
66 Makkonen, P. Does collaborative hypertext support better

engagement in learning of the basics in informatics.
SIGCSE/SIGCUE Conference on Integrating Technology
into Computer Science Education, (Uppsala, Sweden, June
1997).

67 Martin, C. D., Huff, C., Gotterbarn, D., and Miller, K.
Implementing a tenth strand in the CS curriculum.
Communications of the AC, (December 1996), 75–84.

68 Maturana, H. and Varela, F. Autopioesis and Cognition.
Reidel Pub., 1980.

69 McCarthy, J. Dynamics of Software Development. Microsoft
Press, 1995.

70 McConnell, S. Rapid Development: Taming Wild Software
Schedules. Microsoft Press, 1996.

71 Miles, G. One approach for teaching software engineering
across the undergraduate computer science curriculum.
Computer Science Education, (January 1988).

72 Myers, J. P. Jr. The central role of mathematical logic in
computer science. SIGCSE Bulletin, (February 1990).

73 Naps, T., Bergin, J., Jiménez-Peris, R., McNally, M. F.,
Patiño-Martínez, M., Proulx, V. K., and Tarhio, J. Using the
WWW as the delivery mechanism for interactive,

W G 7 970701 page 18

visualization-based instructional modules. Conference on
Integrating Technology into Computer Science Education,
(Uppsala, Sweden, June 1997).

74 Naur, P. Programming as theory building. Microprocessing
and Microprogramming 15, (1985), 253–261.

75 Newell, A. and Simon, H. Human Problem Solving. Prentice-
Hall, 1972.

76 OECD. The Measurement of Scientific and Technical
Activities. OECD, 1993. Frascati Manual.

77 Olesen, K. The use of synchronous and asynchronous
methods of computer mediated communication in
collaborative learning.

78 Orlikowsi, W. and Baroudi, J. Studying information
technology in organizations: Research approaches and
assumptions. Information Systems Research, (March 1991),
1–28.

79 Orlikowski, W. The duality of technology: Rethinking the
concept of technology in organizations. Organizat ion
Science 3, 3 (1992), 398–427.

80 Polya, G. How To Solve It (2nd). Princeton University Press,
1957.

81 Prather, R. E. A Freshman-Sophomore Curriculum
Integrating Discrete and Continuous Mathematics. MAA,
1989.

82 Pressman, R. Software Engineering: A Practitioner’s
Approach (3rd). McGraw-Hill, 1992.

83 Proulx, V. and Rasala, R. Outline for the SDCR position
statement on the future of computer science education. URL:
http://www.ccs.neu.edu/home/rasala/ProulxRasalaOutlin
e.html.

84 Proulx, V. and Rasala, R. SDCR position statement on the
future of computer science education. URL: http://www
.ccs.neu.edu/home/rasala/ProulxRasala.html.

85 Proulx, V., Rasala, R., and Fell, H. Foundations of computer
science: What are they and how do we teach them. SIGCSE
Bulletin, (June 1996), 42–48.

86 Rasala, R., Proulx, V., and Fell, H. From animation to
analysis in introductory computer science. SIGCSE Bulletin,
(March 1994), 61–65.

87 Roberts, E. Using C in CS1: Evaluating the Stanford
experience. SIGCSE Bulletin, (March 1993), 117–121.

88 Roberts, E. The Art and Science of C: An Introduction to
Computer Science. Addison-Wesley, 1995.

89 Roberts, E. A C-based graphics library for CS1. SIGCSE
Bulletin, (March 1995), 163–671.

90 Rubenstein, R. Computer science projects with music.
SIGCSE Bulletin, (March 1995), 278–282.

91 Science Ministry of Research and Technology. New Zealand
Research and Experimental Development Statistics; All
Sectors. Publication no. 15, 1993.

92 Schlimmer, J. C. Practicum/powerpen: Four year student
software teams. Forum for Advancing Software Engineering
Education 6, 11 (1996).

93 SDCR Working Group on Computer Science Education.
Strategic directions in computer science education. ACM
Computing Surveys, (December 1996), 836–845.

94 Sewell, W. A Weaving a Program: Literate Programming in
WEB . Van Nostrand Reinhold, 1989.

95 Simon, H. A. The Sciences of the Artificial (3rd). MIT Press,
1996.

96 Sommerville, I. Software Engineering (5th). Addison-
Wesley Publishing Co., 1995.

97 Stroustrup, B. The Design and Evolution of C++. Addison-
Wesley, 1994.

98 Tarjan, R. Data Structures and Network Algorithms. SIAM,
1983.

99 Trigg, R. and Anderson, S. Introduction to this special issue
on current perspectives on participatory design. Human-
Computer Interaction 11, (1996), 181–185.

100 Varela, C. R. Harre and Merleau-Ponty: beyond the absent
moving body in embodied social theory. Journal for the
Theory of Social Behavior 24, 2 (1994), 167–185.

101 Walker, H. and Schneider, G. M. A revised model curriculum
for a liberal arts degree in computer science.
Communications of the ACM, (December 1996), 85–95.

102 White, L. and Taket, A. The death of the expert. Journal of
the Operational Research Society 45, 7 (1994), 733–748.

103 Winograd, T. and Flores, F. Understanding Computers and
Cognition. Ablex, 1986.

104 Wolz, U., Palme, J., Anderson, P., Chen, Z., Dunne, J.,
Karlsson, G., Laribi, A., Männikkö, S., Spielvogel, R., and
Walker, H. Computer-mediated communication in
collaborative educational settings. SIGCSE/SIGCUE
Conference on Integrating Technology into Computer
Science Education, (Uppsala, Sweden, June 1997).

