John Impagliazzo

### **Modern Computing Curricula**

## Overview Report on Computing Curricula 2004

#### **Covering Undergraduate Degree Programs in:**

- Computer Engineering
- Computer Science
- Information Systems
- Information Technology
- Software Engineering

#### CC2004 Task Force

#### Representatives of:

- ACM
- IEEE-CS
- AIS
- SITE → SIGITE
- BCS
- IFIP
- ABET / CAC / CSAB

#### Active participants from Curricula Task Forces:

- CE2004
- CS2001 (also known as CC2001)
- IS2002
- IT2005
- SE2004

#### Context

- □ CC2001
  - "Computing Curricula 2001"
  - Joint task force of IEEE-CS and ACM
  - Original goal: update CC91
- □ CC2001 goal changed early in the process
- □ Explosion of computing in the 1990s:
  - Changed the world
  - Changed the computing education world
  - Made the original CC2001 goal archaic

#### Context

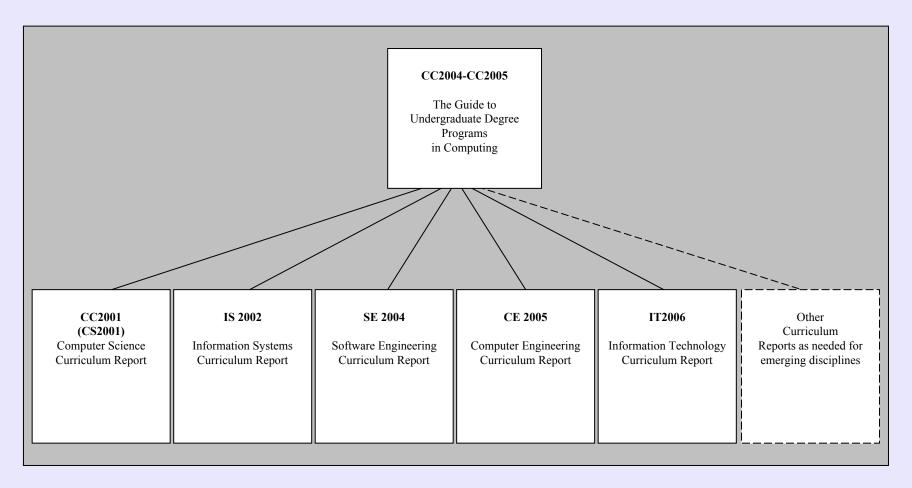
#### CC2001 saw the need for different volumes

- □ It produced the *CS Report*
- □ It called for distinct volumes for each of:
  - Computing Engineering
  - Information Systems
  - Software Engineering
  - New computing disciplines as required
- □ It called for an *Overview Volume* 
  - A *guide* to the computing field
  - A *report* on commonalities and differences

#### Status of the curriculum reports

□ Computer Science CC2001 (CS2001)

□ Information Systems IS2002


Software Engineering SE2004

Computer Engineering CE2005

□ Information Technology IT2006

- □ *The Overview Volume* CC2004-05
  - Based on the Body of Knowledge from each
  - Report on commonalities and differences
  - A users' guide to the computing disciplines
  - A larger project to create a map of computing

#### Organizational Structure



### How computing education changed

#### Computing has become a family of disciplines

- □ Pre-1990s:
  - *Computer Science* on the technical side
  - *Information Systems* on the business side
- □ During the 1990s:
  - **Computer Engineering** became a strong discipline
  - **Software Engineering** an area within CS & began its own identity
  - Information Technology programs began emerging in the US

Pre-1990s:

EE

CS

IS

Post-1990s:

EE

CE

SE

CS

ΙT

IS

#### Pre-1990s:

EE

CS

Hardware

**Software** 

IS

**Business** 

Post-1990s:

EE

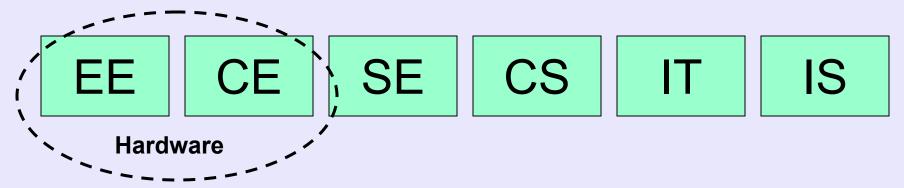
CE

SE

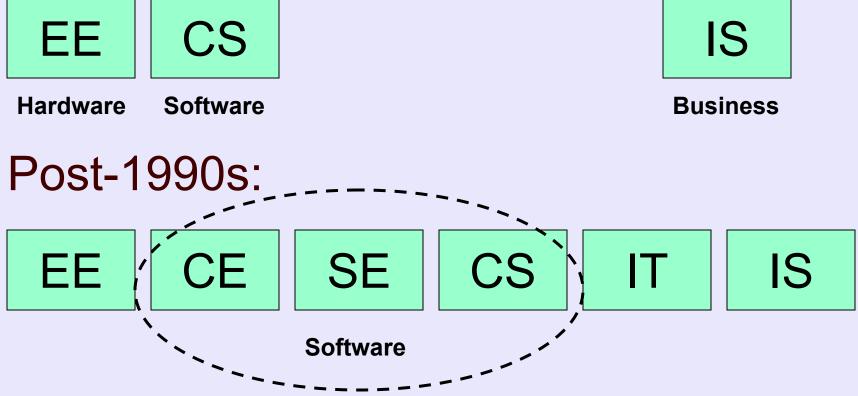
CS

IT

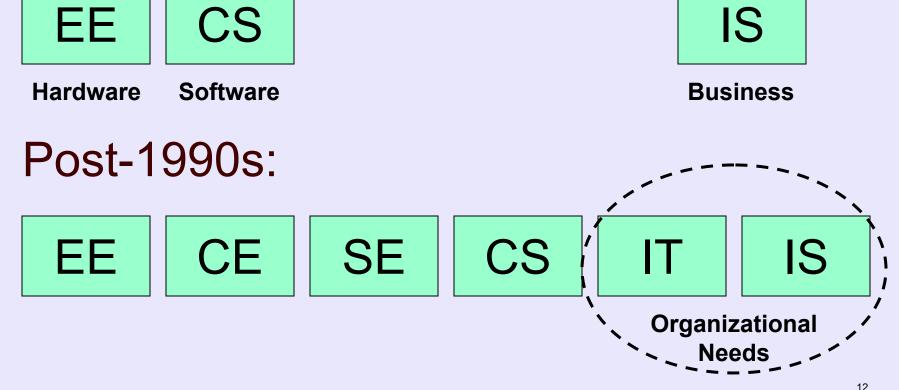
IS


#### Pre-1990s:






**Business** 


#### Post-1990s:

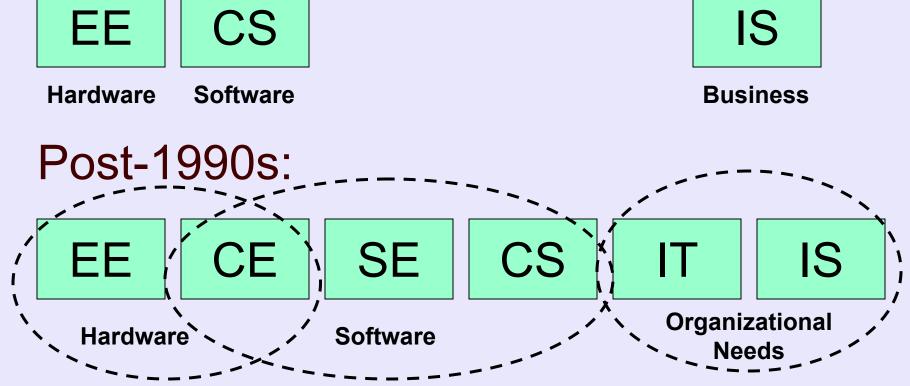


#### Pre-1990s:



#### Pre-1990s:




#### The difference between IT and IS

Both focus on using Information Technology

- □ Information Systems programs:
  - Focus on the *Information* side of *IT*
- □ Information Technology programs:
  - Focus on the *Technology* side of *IT*



#### Pre-1990s:



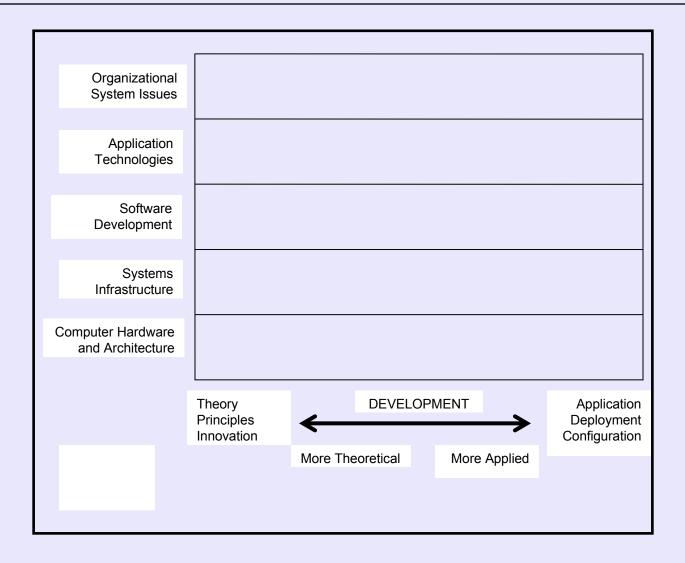
### Growing diversity in computing

#### The diversity is localized

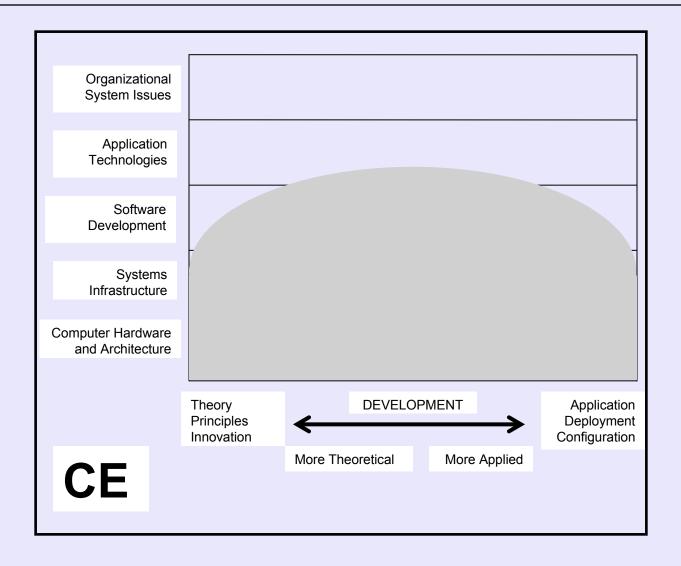
- ☐ There has always been a home for hardware
  - It was only *EE*; now has become *EE* and *CE*
- ☐ There has always been a home for business
  - Information Systems
- □ The increased diversity has occurred in the space between hardware and application
  - The space traditionally filled by *CS* programs

#### Relative Emphases in Programs of Study

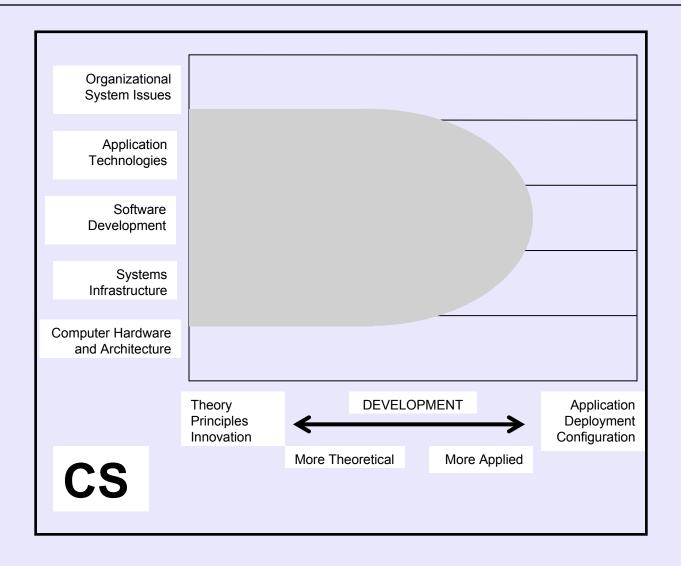
| Knowledge/Skill Area                     |     | CE CS |     | IS  |     | IT  |     | SE  |     |     |
|------------------------------------------|-----|-------|-----|-----|-----|-----|-----|-----|-----|-----|
| Kilowiedge/Skili Alea                    | MIN | MAX   | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX |
| Programming Fundamentals                 | 4   | 4     | 5   | 5   | 2   | 4   | 1   | 3   | 5   | 5   |
| Algorithms and Complexity                | 2   | 4     | 5   | 5   | 1   | 2   | 0   | 1   | 4   | 4   |
| Computer Architecture & Organization     | 5   | 5     | 2   | 4   | 1   | 2   | 1   | 2   | 2   | 4   |
| Operating Systems: Principles, Design    | 2   | 4     | 3   | 5   | 1   | 1   | 1   | 1   | 3   | 4   |
| Operating Systems: Use, Configuration    | 2   | 3     | 2   | 4   | 1   | 3   | 5   | 5   | 2   | 4   |
| Net-centric: Principles, Design          | 1   | 3     | 2   | 4   | 1   | 3   | 3   | 4   | 2   | 4   |
| Net-centric: Use and Configuration       | 1   | 2     | 2   | 3   | 2   | 4   | 5   | 5   | 2   | 3   |
| Theory of Programming Languages          | 1   | 2     | 3   | 5   | 0   | 1   | 0   | 0   | 2   | 4   |
| Human-Computer Interaction               | 2   | 5     | 2   | 4   | 2   | 5   | 4   | 5   | 3   | 5   |
| Graphics and Visualization               | 1   | 3     | 1   | 5   | 1   | 1   | 0   | 0   | 1   | 3   |
| Intelligent Systems (AI)                 | 1   | 3     | 2   | 5   | 1   | 1   | 0   | 0   | 0   | 0   |
| Information Management (DB): Theory      | 1   | 3     | 2   | 5   | 1   | 2   | 1   | 1   | 2   | 5   |
| Information Management (DB):Practice     | 1   | 2     | 1   | 4   | 4   | 5   | 2   | 4   | 1   | 4   |
| Scientific computing (Numerical methods) | 0   | 2     | 0   | 5   | 0   | 0   | 0   | 0   | 0   | 0   |
| Organizational Theory                    | 0   | 0     | 0   | 0   | 1   | 4   | 1   | 2   | 0   | 0   |


| Knowledge/Skill Area                 | Knowledge/Skill Area                    |  |
|--------------------------------------|-----------------------------------------|--|
| Management of IS organization        | e-Business                              |  |
| Decision Theory                      | Security: Theory and Principles         |  |
| Organizational Behavior              | Security: Implementation and Management |  |
| Organizational Change Management     | Computer Systems Engineering            |  |
| Legal/Professional/Ethics/Society    | Embedded Systems                        |  |
| General Systems Theory               | Circuits and Systems                    |  |
| Information Systems Development      | Electronics                             |  |
| Risk Management (Project & Safety)   | Digital Logic                           |  |
| Project Management                   | Distributed Systems                     |  |
| Analysis of Business Requirements    | Digital Signal Processing               |  |
| Engineering Foundations for Software | VLSI Design                             |  |
| Engineering Economics for Software   | Hardware Testing and Fault Tolerance    |  |
| Software Modeling and Analysis       | Systems Administration                  |  |
| Software Design                      | Systems Integration                     |  |
| Software Verification and Validation | Digital Media Development               |  |
| Software Evolution (Maintenance)     | Technical Support                       |  |
| Software Process                     | Interpersonal Communication             |  |
| Software Quality                     | Mathematics                             |  |

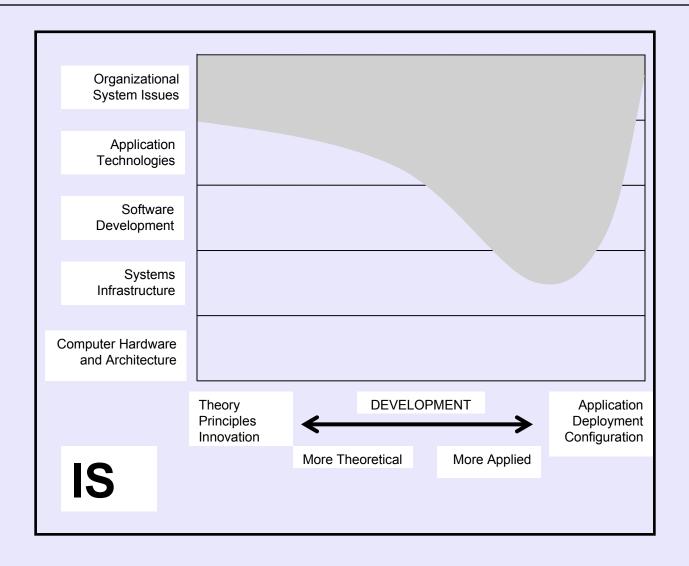
#### Relative Performance Capability of Graduates


| Area                  | Performance Capability                   | CE | CS | IS | IT | SE |
|-----------------------|------------------------------------------|----|----|----|----|----|
| Application           | Design an application program            | 3  | 4  | 1  | 0  | 4  |
| Programs              | Implement an application program         | 3  | 4  | 0  | 0  | 5  |
|                       | Use application program features well    | 3  | 3  | 5  | 5  | 3  |
|                       | Train and support application users      | 2  | 2  | 4  | 5  | 2  |
| Information           | Design a database program                | 2  | 5  | 1  | 0  | 4  |
| Management (Database) | Use a database program well              | 2  | 2  | 5  | 5  | 2  |
| (Database)            | Implement information retrieval software | 1  | 5  | 3  | 3  | 4  |
|                       | Select database products                 | 1  | 3  | 5  | 5  | 3  |
|                       | Configure database products              | 1  | 2  | 5  | 5  | 2  |
|                       | Manage databases                         | 1  | 2  | 5  | 5  | 2  |
|                       | Train and support database users         | 2  | 3  | 4  | 5  | 3  |
| Programming           | Do small-scale programming               | 5  | 5  | 3  | 3  | 5  |
|                       | Do large-scale programming               | 3  | 4  | 2  | 2  | 5  |
|                       | Do systems programming                   | 3  | 4  | 2  | 3  | 4  |
|                       | Develop new software systems             | 3  | 4  | 1  | 1  | 5  |

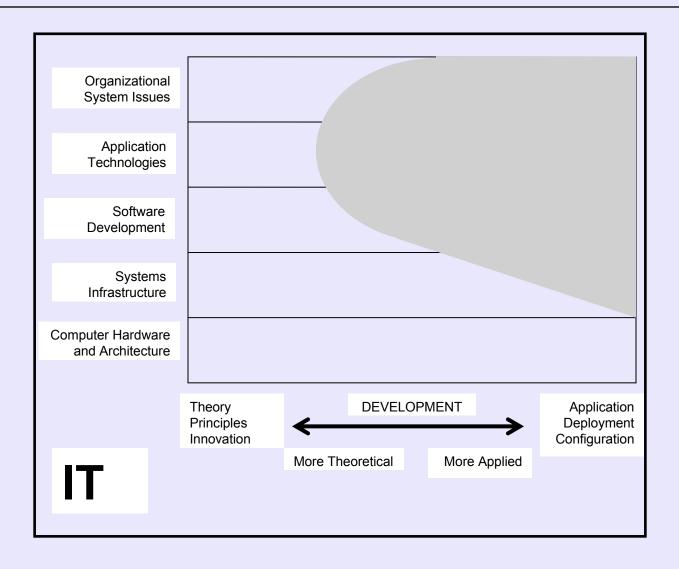
| Area                                                              | Performance Capability                | Area                | Performance Capability                 |  |  |  |
|-------------------------------------------------------------------|---------------------------------------|---------------------|----------------------------------------|--|--|--|
| Info<br>Systems                                                   | Design an application program         | Algorithms          | Prove theoretical results              |  |  |  |
|                                                                   | Implement an application program      |                     | Develop ways to attack problems        |  |  |  |
|                                                                   | Use application program features well |                     | Develop proof-of-concept software      |  |  |  |
|                                                                   | Train and support application users   |                     | Determine if better solutions possible |  |  |  |
| Application<br>Infra-<br>structure  Computer-<br>based<br>Systems | Manage websites                       | Intelligent         | Design automated reasoning systems     |  |  |  |
|                                                                   | Create e-commerce software            | Systems (AI)        | Implement automated reasoning syst's   |  |  |  |
|                                                                   | Create multimedia systems             |                     | Implement intelligent systems          |  |  |  |
|                                                                   | Develop health-related info system    | Network &           | Design network configuration           |  |  |  |
|                                                                   | Create e-learning software            | Communi-<br>cations | Select network components              |  |  |  |
|                                                                   | Develop business applications         |                     | Install a computer network             |  |  |  |
|                                                                   | Evaluate new forms of search engine   |                     | Manage computer networks               |  |  |  |
|                                                                   | Design embedded systems               |                     | Implement communications software      |  |  |  |
|                                                                   | Implement embedded systems            |                     | Manage communications resources        |  |  |  |
|                                                                   | Design computer peripherals           |                     | Implement mobile computing app's       |  |  |  |
|                                                                   | Implement computer peripherals        | IT Resource         | Develop corporate information plan     |  |  |  |
|                                                                   | Design complex sensor system          | Planning            | Develop computing resources plan       |  |  |  |
|                                                                   | Implement complex sensor system       |                     | Schedule/budget resource upgrades      |  |  |  |
|                                                                   | Design a chip                         |                     | Install / upgrade hardware             |  |  |  |
|                                                                   | Design a computer                     |                     | Install / upgrade software             |  |  |  |


### Simple Snapshots

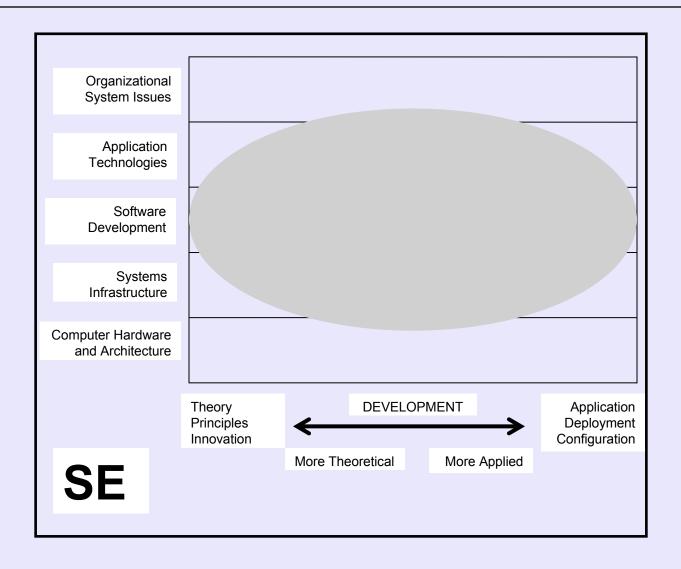



### Snapshot: Computer Engineering




### Snapshot: Computer Science




### **Snapshot: Information Systems**



### Snapshot: Information Technology



### Snapshot: Software Engineering



### Two Overview Projects

- □ Computing Curricula 2004 is:
  - The smaller project
  - Focused on the *intersections*
  - Characterizing the <u>differences</u>
- □ *The Computing Ontology Project* is:
  - The larger project
  - Focused on the *union*
  - Characterizing the *problem space*

### Two Overview Projects

- □ Computing Curricula 2004 is a guide for:
  - Students, parents, guidance counselors
  - Administrators
  - Faculty
- □ *The Computing Ontology* is a *map* for:
  - Curriculum revision
  - Discipline definition
  - Topic classification
  - Accreditation

John Impagliazzo

# **The Overview Report on Computing Curricula 2004**

For available drafts... for input and critique

Follow the curriculum link at: www.acm.org/education/

### Спасибо

Вопросы?