

Youtube Revisited: On the Importance of Correct Measurement Methodology

Ossi Karkulahti, Jussi Kangasharju University of Helsinki

Introduction

- Measuring large systems is challenging
 - Full system analysis is expensive -> sampling
- The way sampling is conducted affects the results
 - Ideally a random and representative sample
 - Technological limitation may skew the sampling process
 - Biased sample may yield incorrect conclusions
 - Could also affect any derivative work
- We will show the effects of three different sampling methods on YouTube

Motivation

- Previously YouTube video metadata collection:
 - selecting videos belonging to certain categories
 - crawling related videos
 - using most recent videos
- We argue that all these methods lead to a biased sample
- The result are not representative in all aspects
- Other work base their assumptions on these results

Our Contributions

- We have collected three datasets with three methods
- We compare the methods for collecting YouTube video metadata
- We demonstrate the differences in various metrics between the different datasets

Data Collection

- We have collected metadata by three different methods:
 - 1. Most recent videos (MR)
 - 2. Related videos (BFS)
 - 3. Random string (RS)
- Fourth method is to use videos from a certain category, which is obviously biased
 - M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon. I tube, you tube, everybody tubes: Analyzing the world's largest user generated content video system. IMC, 2007.

1. Most Recent Videos (MR)

- Collect periodically metadata of the most recent videos
 - Included information: video ID, view count, length, category, publish date etc.
- Obviously limited to new videos
- Previously used by, e.g.:
 - X. Cheng, J. Liu, and C. Dale. Understanding the characteristics of internet short video sharing: A youtube-based measurement study. Multimedia, IEEE Transactions on, 2013.
 - G. Szabo and B. A. Huberman. Predicting the popularity of online content. Communications of the ACM, 2010.

2. Related Videos (BFS)

- Select a video ID and then ask its related videos and then the related videos for all those videos and so on
- We limited related videos to 50 per one video
- In theory, one seed yields to ~125,000 videos (50x50x50)
- N unique videos is lower, the related videos overlap
- Can be seen as similar to breadth-first search (BFS)
- Fast, most of the time one query returns metadata of tens of videos
 - X. Cheng, J. Liu, and C. Dale. Understanding the characteristics of internet short video sharing: A youtube-based measurement study. Multimedia, IEEE Transactions on, 2013.

3. Random Strings (RS)

- Zhou et al. have used similar method to estimate YouTube's size ("Counting YouTube Videos via Random Prefix Sampling", IMC 2011)
- Generate a random character string and ask the API to return videos which IDs include the string
- 'a-Z', '0-9', '-', '_', four-letter strings work the best
- On average a random string matched to 6.9 video IDs
- For an unknown reason IDs include '-'

3. Random Strings (RS)

A random string w57j would match and return metadata for the following videos:

W57J-21gSSo XcY-W57J-Uo w57j-VVNAg0 W57J-msuors

Datasets

Dataset	Method	Time period	Ν
MR-09	Most recent videos	Summer 2009	9,405
MR-11	Most recent videos	Summer 2011	8,766
MR-14	Most recent videos	Late 2013-early 2014	10,000
RS	Random ID	Early 2014	~ 5 million
BFS	Related videos	Early 2014	~ 5 million

Results

- Popularity
- Views
- Age
- Categories
- Length

Popularity

 RS and BFS: Very different view count distributions

- BFS has two-part distribution, with a quickdropping tail
- RS follows more closely Zipf, with a truncated tail
 - BFS data seems to over-estimate view counts

RS:Top 10 -> 5% of all views, top 1000 -> 43 %, top 10,000 -> 74 %

Popularity after 30 days

- MR and BFS seem to ever-estimate video popularity
- However MR-09 resembles RS

Views

- The 5th percentile of BFS is higher than the median of RS and MR
- BFS view counts are at least one order of magnitude higher than the RS ones

 The median, 5th and 95th percentiles for BFS and RS over eight years

Age Distribution

- BFS has less videos newer than two years, but a lot of very recent videos
- The drop in RS is an artifact of the method
- RS: 29 % of videos are newer than a year, majority is newer than two years

EINGFORS UNIVERSITET

Categories (share of videos)

- Most videos of:
 - RS: People & Blogs (Default category for an upload)
 - BFS: Music
 - MR: News & Politics

RS MR BFS

Categories (share of views)

- Distribution of number of views is more similar
- Music videos get most views

RS MR BFS

Popularity based on Category

Video Length

- RS and MR: Most common length is 60 s or less
- BFS: Most common 3-5 min, music videos?
- All: Videos of 3-5 mins length get most views

Summary of the Methods

BFS	MR	RS
Tends to over- estimate some metrics	Over-estimates views	Most 'reliable'
Fast, up to 100 per query	Slow	Not that fast, ~7 per query
Mostly popular music videos?	Limited to new videos Mostly news clips?	Mysterious '-' curiosity

Conclusion 1/2

- We have used YouTube as an example, using three data collection methods
- The datasets differ in many key metrics that have used in past research (MR, BFS)
- RS not previously used in this manner
- Differences between RS and the others raise questions about the general applicability of the previous results
- We believe the RS produces a representative sample

Conclusion 2/2

- As BFS dataset demonstrates even large datasets are not immune to bias introduced by the method
- Data collection method can have a significant impact on the results
- Whatever is the selected sampling method, be aware of its properties and weaknesses
- Be careful when adopting results from earlier work
- Time to accept more reappraisal work?

