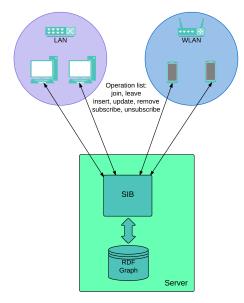
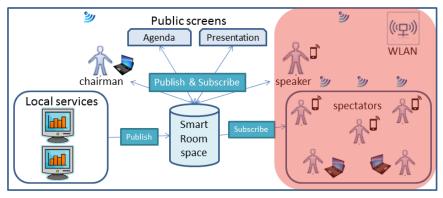


Petrozavodsk State University Department of Computer Science

Andrey Vdovenko, Dmitry Korzun


Mobile Client Control of Notification Check Interval for Subscription in Smart Space

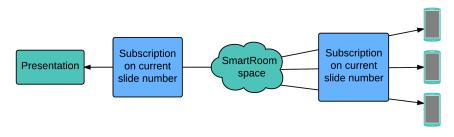
AMICT-2014 conference October 22, 2014, Petrozavodsk, Russia


22.10.2014

Smart-M3 Platform

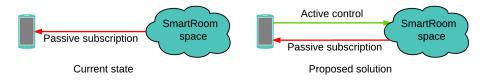
- Implements infrastructure of Smart Spaces for knowledge sharing by agents (M3-agent, knowledge processor, KP)
- SIB: Semantic Information Broker for maintenance of shared content
- RDF data representation model: semantic interoperability and ontology-driven programming

SmartRoom System



Many services (composition, personalization) informational, control, collaborative work,

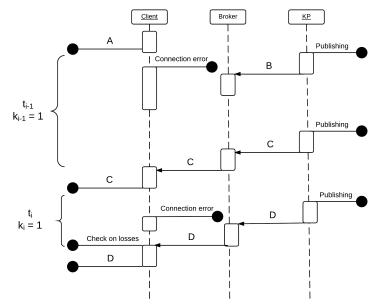
- Participation of many users (user can be indoor and outdoor)
 - → Many (mobile) clients running and accessing services
- Users come with own devices
 - → Many mobile platforms, IoT-like device diversity


Publish/subscribe in Smart Spaces

- Subscription process:
 - a publisher produces some informational content
 - subscriber is interested in certain content, then it specifies its interest as a persistent query-subscription
 - a change can affect many subscribers, the specified content can be changed by different publishers
- For Smart-M3:
 - subscription requires its client to establish a network connection
 - changes are controlled on the smart space side
 - the corresponding notifications are sent to the client (passive)

Delivery guarantee problem

- Subscription's Problems:
 - Broker (SIB) doesn't check delivery for already sent notifications
 - In mobile clients:
 - ★ the subscription is affected by losses of notifications
 - fault tolerance is essentially affected due to the specifics of wireless network communication (Wi-Fi, 3G, etc.)
- Solution:
 - Active control by a mobile client itself for receiving subscription notifications
 - Additional control allows mitigating the consequences of notification losses



Subscription Parameters at the Client Side

The tradeoff of passive and active notifications:

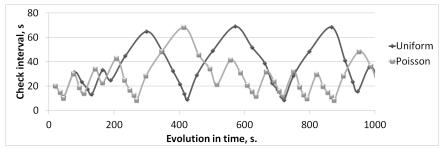
- Notifications arrive sequentially to the client
- *i* is the sequence number of a notification the client successfully has received by the subscription
- **t**_{*i*} is the time interval between delivered notifications i 1 and i
- k_i is the observed number of losses in the interval t_i, i.e., between successfully delivered notifications i − 1 and i
 - ► In the simplest case, the client can assign k_i = 1 if it observes an evident failure
- $\lambda = \lambda_i = k_i/t_i$ is the estimation of instant rate for the notification loss
 - The client is interested in minimizing λ .

Subscription process example

Mathematical Model

With active notifications, *t_i* becomes a control variable for the client
 Let the client have observed no losses in *t_{i-1}*, i.e., *k_{i-1}* = 0:

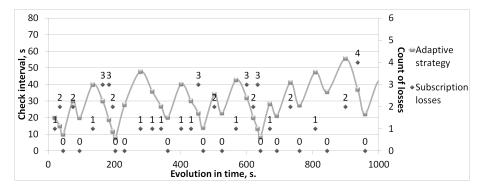
$$t_i = t_{i-1} + \delta \tag{1}$$


Let the client have observed certain losses in t_{i-1} , i.e., $k_{i-1} > 0$:

$$t_i = \alpha t_{i-1} + (1 - \alpha) \frac{t_{i-1}}{k_{i-1} + 1}$$
(2)

Combining (1) and (2) we construct the recurrent system

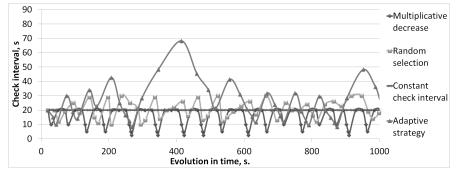
$$t_{i} = \begin{cases} t_{i-1} + \delta & \text{if } k_{i-1} = 0, \\ \frac{1 + \alpha k_{i-1}}{k_{i-1} + 1} t_{i-1} & \text{if } k_{i-1} > 0. \end{cases}$$
(3)


Simulation Experiments: adaptive strategy

Behaviour of strategy for different distribution of notifications losses:

Parameter	Value	Description			
Uniform distribution		Value for k_i is selected from $[at_i, bt_i]$			
а	0	uniformly at random			
b	0,1				
Poisson distribution		Value for k_i follows the distribution with			
λ	0,05	mean and variance λt_i for $\lambda > 0$			

Simulation Experiments: adaptive strategy with losses


- Shows the count of losses (k_i) and the response behavior of the adaptive strategy
- The distribution of losses is Poisson

Parameters of the experimented strategies

Strategy		Description		
Parameter	Value	Description		
Adaptive strategy		$\alpha = 0.5$ trades off previous and recent		
α	0.5	observations equally. $\delta =$ 20 s is equal to		
δ	20	the interval for one loss on average.		
Multiplicative decrease		When $k_{i-1} > 0$ the check interval t_i is		
factor	0,5	reduced by 2. If $k_{i-1} = 0$ then set $t_i = t_0$.		
Random selection		Random strategy when t_i is selected		
а	10	- from interval (a, b) at random.		
b	30			
Constant check interval		The check interval is always set $t_i = t_0$.		

The initial value is $t_0 = 20s$, which confirms the intuition that one loss happens on this interval on average

Simulation Experiments: comparison

Metric	Multiply	Random	Constant	Adaptive
	decrease	selection	interval	strategy
$k_{\text{avg}} = \frac{1}{n} \sum_{i=1}^{n} k_i$	0,59	1,19	0,89	1,23
$t_{\text{avg}} = \frac{1}{n} \sum_{i=1}^{n} t_i$	14,23	19,87	20	28,8
$\lambda = k_{\rm avg}/t_{\rm avg}$	0,042	0,06	0,045	0,041
$\lambda_{\text{avg}} = \frac{1}{n} \sum_{i=1}^{n} \frac{k_i}{t_i}$	0,078	0,06	0,045	0,043

22.10.2014

Variation of δ in the adaptive strategy

Parameters	Variation				
δ	10	20	40	60	
Metric	Values				
$k_{\text{avg}} = \frac{1}{n} \sum_{i=1}^{n} k_i$	1,06	1,14	1,77	2,16	
$t_{\text{avg}} = \frac{1}{n} \sum_{i=1}^{n} t_i$	22,01	24,76	32,6	43,86	
$\lambda = k_{ m avg}/t_{ m avg}$	0,048	0,046	0,054	0,049	
$\lambda_{\text{avg}} = \frac{1}{n} \sum_{i=1}^{n} \frac{k_i}{t_i}$	0,047	0,049	0,054	0,048	

- Smaller values for δ leads to less losses
- Bigger values reduce the load the client shifts to the SIB

Conclusion

- Studied the problem of subscription fault tolerance for the case of a mobile client interacts with other participant in a smart space
 - if the client performs none or rare active checks then it can suffer from losses of some notifications
 - high pooling from the client leads to excessive load
- Proposed a simple mathematical model that aims at achieving a trade-off at the client side when the client adapts its check interval to the current observations of the notification loss
 - Simulation experiments show that the solution is reasonability compared with non-adaptive client strategies
- Start to apply the model in real settings
 - Applying for SmartRoom clients
 - Problem in counting losses