
Fundamentals of Software
Architecture

AMICT 2014
Dr. Antti-Pekka Tuovinen

University of Helsinki

20.10.2014 1AMICT 2014 / A-P Tuovinen

Why Software Architecture?

• Sofware used to be just one piece of a system
• Software is everywhere
• Applications need to work on global scale

• 20 years of active research, decades of
practice

20.10.2014 AMICT 2014 / A-P Tuovinen 2

Outline of the talk

• What is Software Architecture?
• Why and when is Software Architecture

important?

20.10.2014 3AMICT 2014 / A-P Tuovinen

SOFTWARE ARCHITECTURE

20.10.2014 AMICT 2014 / A-P Tuovinen 4

What is it?

• Definition (Software Engineering Institute /
Carnegie-Mellon Universisty)

” The software architecture of a system is the set of
structures needed to reason about the system,
which comprise software elements, relations
among them, and properties of both.”

20.10.2014 AMICT 2014 / A-P Tuovinen 5

Ok, but what does it mean?

• The definition does not tell us what those
structures actually are
– Not just one structure, but a set of structures
– Any appropriate collection of elements (code

modules, run-time components, virtual machines,…)
and their relationships (dependencies, connections)
can form a structure

– Different types of systems have different structures
– Structures are abstract – they show only selected,

essential details needed for reasoning about the
system

20.10.2014 AMICT 2014 / A-P Tuovinen 6

…huh?

• The key thing is that the structures enable us to reason
about the macro-level qualitites of the software system
that are important for a stakeholder
– Client/customer, end-user, developer, maintainer,

managers, business-owner, authorities, …
– Suitability, dependability, efficiency, performance usability,

modifiability, scalability, security, external dependencies, …
– The question to ask is: if the system is built the way that

the structures show, will it have the desired qualities?
• Software architecture is a means to an end (a tool) – it

does not have value of its own (like art has)

20.10.2014 AMICT 2014 / A-P Tuovinen 7

Example - Rackspace

20.10.2014 AMICT 2014 / A-P Tuovinen 8

Log.txt
Hosted E-mail
service provider !!

System under study
• A system for storing, accessing and searching the data

in the log files produced by Email servers for technical
customer support

• Mission goal & requirements
– Support solving customers’ email problems by making the

data in the email server logs easily accessible
– The log data available via the system needs to be fresh to

solve acute problems
– The log data should be kept for a period of time to support

analysing past problems
• Rackspace built three versions of the system that had

different architectures

20.10.2014 AMICT 2014 / A-P Tuovinen 9

V. 1
• Local log files on the servers

– The techinal support person needs to ask as a system
operator/engineer to log in to the customer’s email server in person
and search in the log files on the server machine to figure out what’s
wrong

– To make this easier, they wrote one script that would automatically
connect to a number of servers and execute a grep command locally
to search in the log files

– The operators could control the search by changing the arguments
given to the grep command

• Problems:
– Executing the searches on the server machines started to impact their

performance negatively
– They always needed an operator to do a search; the technical support

persons could not do it by themselves

20.10.2014 AMICT 2014 / A-P Tuovinen 10

V. 2
• Central database for all log data

– Email servers send every few minutes their most recent log data to a
central database server that stores the data in a relational database
(moving the log data off the email servers)

– Technical support persons have a web-UI to execute pre-programmed
queries on the database server

– Because there were more and more updates all the time, they started
to use batch inserts at every 10 minutes so that the database server
could handle all the requests with an acceptable performane

• Problems:
– When the amount of data and the number of queries kept increasing,

the database server wash pushed to its limit, which lead to frequent
failures

– The searches were getting slower, data was lost due random failures
(there were no backups), and only few days worth of log data could be
kept in the database

20.10.2014 AMICT 2014 / A-P Tuovinen 11

V. 3
• Indexing cluster

– The log data was streamed from the email servers into a
cluster of commodity servers storing the data into a
distributed (Hadoop DFS) file system (with triple copies of
data)

– A Map-Reduce –job indexes the individual log files and
builds a complete index of all the data every 15 minutes

– Technical support personnel has a web interface to search
the log data, as before

– Searching the index is fast but programming a new kind of
search takes some hours

– Complete backups, log data is kept for six months
• No problems

20.10.2014 AMICT 2014 / A-P Tuovinen 12

Comparing the solutions
minaisuus V. 1 V. 2 V. 3

Functionality

Scalability –
amount of data and
queries

Delay – time to wait
before new data is
available

Flexibility – new
searches

20.10.2014 AMICT 2014 / A-P Tuovinen 13

bad poor Very
good

No delay 10 min. 15 min.

good good satisfactory

Reflections

• All three versions of the system provide
basically the same functionality (service) to its
users
– In all cases, the same data is made available to the

technical support personnel

• The technical solution is not based on
functional requirements
– The architecture is a separate choice from the

functions provided by the system

20.10.2014 AMICT 2014 / A-P Tuovinen 14

Reflections

• The architecture of the system is mostly
determined by the required qualities (a.k.a.
’non-functional requirements’)
– Scalability, latency/delay, modifiability

• Scalability is by far the most important quality
of the example system
– A poorly scalable system can not cope with the

amount data and the number of queries and
totally fails to serve its users

20.10.2014 AMICT 2014 / A-P Tuovinen 15

minaisuus V. 1 V. 2 V. 3

Functionality

Scalability –
amount of data ad
queries

Delay – time to wait
before new data is
available

Flexibility – new
searches

Reflections

20.10.2014 AMICT 2014 / A-P Tuovinen 16

bad poor Very
good

No delay 10 min. 15 min.

good good satisfactory

Reflections

• As we improve the scalability of the system in
the 3. version, the other qualities suffer a little
– The delay in the availablity of new data grows up

to 15 min
– Modifiability is slightly worse because it takes

longer time to implement new kind of queries
• We trade-off qualities against each other

(there is no free lunch)
– Priorisation of the qualities in the example system:

20.10.2014 AMICT 2014 / A-P Tuovinen 17

Scalability > Delay > Modifiability

Arhitectural design decisions

• The aspects of the technical solutions discussed above
are the key choices that determine the architecture of
the three versions of the example system

• So, we give an alternative definition for software
architecture: SWA is the set of design decisions that are
important for achieving the overall qualities of a
system
– Based on those design decisions, we can build a system

that meets its quality requirements
• The domain and the specific requirements of a system

determine which design decisions are architectural

20.10.2014 AMICT 2014 / A-P Tuovinen 18

Typical architectural design decisions

• Partitioning of the system under design (SUD) into
subsystems/main components and determining their role,
functionality and mutual dependencies and collaboration
(separation of concerns)

• Identifying the interfaces of the SUD (UI, APIs) and separating them
from their implementation (information hiding)

• Decisions that impact the ease of development and maintainability
• Allocation of the software elements into the run-time environment,

which affects the performance, dependability and security of the
SUD

• The storage and access solutions for the data managed by the SUD
• Use of technologies/platforms and reference architectures that

they promote or dictate

20.10.2014 AMICT 2014 / A-P Tuovinen 19

Architecture vs. Design

20.10.2014 AMICT 2014 / A-P Tuovinen 20

All Design Decisions

Architec-
tural

Decisions

Drawing the line between Architecture and Design is not always easy

But it is usually possible to recognize the design decisions that affect qualities

WHY AND WHEN IS SOFTWARE
ARCHITECTURE IMPORTANT?

20.10.2014 AMICT 2014 / A-P Tuovinen 21

SWA is important, because

• Architecture acts as a skeleton of a system
– Every system has an architecture – it is better to

choose it consciously
– There is no single, absolutely right architecture,

but there are more or less suitable skeletons for
the job

– The skeleton (architectural style) determines the
basic capabilities of the system

20.10.2014 AMICT 2014 / A-P Tuovinen 22

SWA is important, because

• Architecture influences quality attributes
– Architecture enables or inhibits qualities such as

performance of security

• Architecture is (mostly) independent of
functionality
– But: an unsuitable architecture can make it

difficult and expensive to implement functionality
(e.g. a very fine grained separation of concerns
gets in the way of implementing functions)

20.10.2014 AMICT 2014 / A-P Tuovinen 23

SWA is important, because

• Architecture constrains systems (guide rails)
– Architecture may place constraints on the (detailed)

design and implementation that guide the
development to the desired direction

– Constraints help the developers
• Transferring of wisdom and experience from experts without

full transfer of knowledge
• Promoting conceptual integrity1 by reducing ”needless

creativity” of developers in places where it would be harmful
(reducing accidental complexity)

• Can enforce run-time behaviors that would be difficult to
deduce from the code directly

20.10.2014 AMICT 2014 / A-P Tuovinen 24

1 ”A single good idea consistently applied is better than several brilliant ideas scattered across a system” (Fred Brooks)

When is Architecture important?

• The solution space is small
– It is hard to find any acceptable technical solution
– There is a lot of essential complexity in the design

problem
• System failures can cause significant damage

– People will get hurt or die, equipment or the
environment may be damaged, money is lost

• Difficult quality requirements
– It is really hard to make an on-line information system

that scales up to a billion users

20.10.2014 AMICT 2014 / A-P Tuovinen 25

When is Architecture important?
• New domain

– A new application domain will have some new kind of
problems and technologies that the software
developer is unfamiliar with

• Product lines
– A software product line comprises of products that

share a significant amount of implementation (code)
and that have a common architecture

– The common architecture has to be designed to
support the common features of the products, and, at
the same time, it has to cater for the needed
variations in product specific features

20.10.2014 AMICT 2014 / A-P Tuovinen 26

When is Architecture important?

• Make a thought experiment: think, what
would be the consequences of getting the
architecture wrong?
– If the system is small and simple, your architecture

choices won’t make a big difference and there is
no need to spend too much time on architecture

– If the system (or the project) has significant risks,
it is wortwhile to focus on architecture to mitigate
the risks

20.10.2014 AMICT 2014 / A-P Tuovinen 27

Summary

• Software Architecture is the set of design
decisions that are important for achieving the
overall qualities of a system

• Do just enough architecture work to control
the technical and project risks of the system to
be developed

20.10.2014 AMICT 2014 / A-P Tuovinen 28

References

• Fairbanks, G.: Just Enough Software Architecture - A
Risk-Driven Approach. Marshall & Brainerd, 2010

• Bass, L., Clements, P., Kazman, R.: Software
Architecture in Practice, Third Edition. Addison-Wesley
Professional Series, 2012

• Hoff, T.: How Rackspace Now Uses MapReduce and
Hadoop to Query Terabytes of Data. HighSclability.com,
January 30, 2008
http://highscalability.com/how-rackspace-now-uses-
mapreduce-and-hadoop-query-terabytes-data

20.10.2014 AMICT 2014 / A-P Tuovinen 29

