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TCP Congestion Control

• The paradigm of Distributed Control in Packet Switching Network

• Transmission Control Program, 1974.

• Congestion collapse

• Variance not important yet
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S. Low tree
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Example of Tahoe Trajectory
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TCP Congestion Control Development

• Jitter sensitive applications

• TCP vs UDP

• High BDP links utilization vs Congestion Control

• Best effort vs QoS guarantees
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Variety of Experimental Versions

• TCP CUBIC - cubical growth period. RTT independent

• High Speed TCP (HSTCP), S. Floyd 2003. Congestion Avoidance
coeff. of linear growth and multiplicative decrease are convex functions
of current window size

• Scalable TCP (STCP) T. Kelly, 2003. Decreases time of data recovery

• H-TCP, Hamilton Institute, Ireland, 2004. Intended for links with
high BDP value. Uses RTT size to react on losses

• TCP Hybla 2003-04. Developed for satellite links. Scales throughput
to mimic NewReno and utilize link at the same time.
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Variety of Experimental Versions

• TCP Westwood, 2001. Tries to identify the reason behind losses.
Developed for wireless links.

• TCP-Illinois uses dynamic function for defining Congestion Avoidance
parameters

• TCP-LP (Low Priority)

• TCP-YeAH
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TCP Variance

• Why important?

• A lot of models of average window size — Reno, NewReno, CUBIC

• Asymptotic studies etc.

D. Towsley group for p > 0.025
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TCP NewReno ’Saw’
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Variance evaluation

• Altman E., Avrachenkov K., Barakat C. A Stochastic model of TCP/IP
with Stationary Random Losses, Proceedings of ACM SIGCOMM’00.
Stockholm, 2000. pp. 231-242.

• Some ‘popular’ assumptions provide difficulties in estimating TCP
variance, e.g.

• Variance is V ar[X ] = E[X2]− (E[X ]2)

• Root square lows are derived thorough Goelders’s inequality i.e.

E[X ] ≤
√

E[X2]
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Variance estimation

• Using geometrical considerations one get from TCP ‘saw’

X2
n+1 = αX2

n + 2bSn,

• Expanding, one gets

X2
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Variance estimation

E[Xk+n] = E
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Now when n → ∞ one gets the following

E[X ] = lim
n→∞
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√
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For b = 1 and α = 1
2 and hence
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√
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√
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Variance evaluation

Now we have two estimations of sliding window size expectation

• E[X ] ≤ A =
√

8
3E[S2

n]

• E[X ] ≤ B = 2
√
2E[

√
Sn]

Reminder.

If B < A then it could be used for estimation variance

V ar[X ] ≤ A2 − B2.

This holds if

E[
√

Sn] <

√

E[Sn]

3
.
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Variance evaluation. Examples

Lets p.d.f. of Sn is F (x) = 1− eλx then

E[Sn] =
1

λ
and

E[
√

Sn] =

√
π

2

√

1

λ
.

Condition does not hold.
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Variance evaluation. Examples.

Lets p.d.f of Sn is Pierson root square distribution then its moments
can be calculated through Γ-function and

E[Sn] = 2
1
2
Γ(n+12 )

Γ(n2)

and

E[
√

Sn] = 2
1
4
Γ(2n+14 )

Γ(n2)
.

The result depends on parameter n. Condition holds for e.g. n = 10.
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Variance evaluation

Notice that
lim

n→∞
E[X2

n] = lim
n→∞

E[X2
n+1]

and
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n→∞

E[X2
n] =

2bE[Sn]
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.

Hence there might take place
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√
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√

Sn].

GetTCP kernel level monitor for OS Linux
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Conclusion

• The Development of Congestion Control schemes is considered

• The importance of TCP variance evaluation is demonstrated

• Possible approaches to the problem are analyzed

• Variance estimation is proposed
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