Advances in Methods of Information and Communication Technology, 2014

Modeling Data Flows Hierarchy of an Enterprise Network's ICT Infrastructure

Aleksandr Kolosov <akolosov@cs.petrsu.ru>

Department of Computer Science Petrozavodsk State University

> October 22, 2014 Petrozavodsk, Russia

Aleksandr Kolosov

Current State of the Network Management

- Modern networks are constantly growing.
 - ↑ Services
 - ↑ Complexity
 - ↑ Cost of failures
- Network Management
 - ↓ Risks (downtime, poor quality, security threats)
 - ↓ Cost of ownership
- Problems of the modern network management as defined in the Future Internet Design Initiative report:
 - lack of information of network status and health;
 - a deluge of data;
 - unpredictable effect of control actions.

«...a future Internet requires deeply ambitious research in network management.»

— Vint Cerf et al.

Enterprise Network Specific

- Organizational and spatial structures of the enterprise itself affect traffic patterns and ICT-infrastructure management scenarios.
- Many network management tasks become personnel aware.
- Internal traffic specifics:
 - storage area networks, network attached storages;
 - teleconferencing;
 - virtual workplaces.
- VLANs and VPNs.
- All layers of the network is under consideration when network management tasks are performed.

Frontiers of network management

- Research challenges of network management:
 - virtual network environments;
 - maintaining consistency of network state;
 - management friendly protocols and data-plane primitives;
 - scientific methods available for studying network management problems and for evaluating solutions.
- Testbeds should be used to verify new approaches, models and methods of network management:
 - ICT-infrastructure model (network graph + forwarding policies);
 - enterprise structure (spatial and organizational graphs);
 - real traffic data;
 - means for experimental evaluations ("what if" scenarios).

• We are developing such a virtual testbed within the Nest project.

Network Management Methods Virtual Testbed

Aleksandr Kolosov

Network Management Methods Virtual Testbed

Network Management Methods Virtual Testbed

Aleksandr Kolosov

Network Management Methods Virtual Testbed

Aleksandr Kolosov

Modeling Data Flows Hierarchy of an Enterprise Network's ICT Infrastructure

B (6)

Traffic Measurements Structurization

- We have to map traffic flows to the enterprise architecture graph.
- User must have an opportunity to query any kind of traffic flow in terms of enterprise architecture graph.
- All we need is to enrich a traffic flow concept with the hierarchy.
- There isn't a data source, which produce such measurements:
 - Raw packet data
 - NetFlow / IPFIX
 - Application logs
 - Link statistics
- Taken separately neither source provides required level of details:
 - describe only two points of connection
 - we can not say, is that flow a part of some higher-level communication
 - we can not even say how different records of the source are interconnected

Analysing all of available data sources together is the key to solving the problem.

Demands for a Traffic Characterization Model

Hierarchic relations between flows couldn't be obtained from any data source, but might be inferred from the model built on basis of these data.

- The model should describe atomic communication units and relations between them.
- These atomic units shouldn't be tied to any specific protocol stack.
- A communication unit is not only a data transfer process, but may be a business process.
- The model should allow to map these units to network graph nodes.
- Using this model we could express data flows by given direction.
- For any given flow we could find all of its sub-flows.
- For any two given flows we could say if one is aggregated to another.

Network Nodes

• We are considering a network area N.

$$N = \{h_1, s_1, r_1, r_2, r_3, r_4, s_2, h_2\}$$

Network Nodes

• We are considering a network area N.

$$N = \{h_1, s_1, r_1, r_2, r_3, r_4, s_2, h_2\}$$

During any time period τ each node $d \in N$ has a set of associated addresses $E^{\tau}(d)$.

$$E^{\tau}(h_1) = \{IP_1, M_1, IF_1\}, \quad E^{\tau}(s_1) = \{IF_2, IF_3\}, \quad \dots$$

- Communication between any nodes is a series of message exchanges.
- Each message is fragmented into chunks and passed using some protocol stack.
- Passing of each chunk is a data communication process.
- $P^{\tau}(N)$ is a set of all TPs executed during τ between nodes from set N.

- Communication between any nodes is a series of message exchanges.
- Each message is fragmented into chunks and passed using some protocol stack.
- Passing of each chunk is a data communication process.
- $P^{\tau}(N)$ is a set of all TPs executed during τ between nodes from set N.

- Communication between any nodes is a series of message exchanges.
- Each message is fragmented into chunks and passed using some protocol stack.
- Passing of each chunk is a data communication process.
- $P^{\tau}(N)$ is a set of all TPs executed during τ between nodes from set N.

- Communication between any nodes is a series of message exchanges.
- Each message is fragmented into chunks and passed using some protocol stack.
- Passing of each chunk is a data communication process.
- $P^{\tau}(N)$ is a set of all TPs executed during τ between nodes from set N.

- Communication between any nodes is a series of message exchanges.
- Each message is fragmented into chunks and passed using some protocol stack.
- Passing of each chunk is a data communication process.
- $P^{\tau}(N)$ is a set of all TPs executed during τ between nodes from set N.

- Communication between any nodes is a series of message exchanges.
- Each message is fragmented into chunks and passed using some protocol stack.
- Passing of each chunk is a data communication process.
- $P^{\tau}(N)$ is a set of all TPs executed during τ between nodes from set N.

- Communication between any nodes is a series of message exchanges.
- Each message is fragmented into chunks and passed using some protocol stack.
- Passing of each chunk is a data communication process.
- $P^{\tau}(N)$ is a set of all TPs executed during τ between nodes from set N.

- Communication between any nodes is a series of message exchanges.
- Each message is fragmented into chunks and passed using some protocol stack.
- Passing of each chunk is a data communication process.
- $P^{\tau}(N)$ is a set of all TPs executed during τ between nodes from set N.

- Communication between any nodes is a series of message exchanges.
- Each message is fragmented into chunks and passed using some protocol stack.
- Passing of each chunk is a data communication process.
- $P^{\tau}(N)$ is a set of all TPs executed during τ between nodes from set N.

- Communication between any nodes is a series of message exchanges.
- Each message is fragmented into chunks and passed using some protocol stack.
- Passing of each chunk is a data communication process.
- $P^{\tau}(N)$ is a set of all TPs executed during τ between nodes from set N.

- Communication between any nodes is a series of message exchanges.
- Each message is fragmented into chunks and passed using some protocol stack.
- Passing of each chunk is a data communication process.
- $P^{\tau}(N)$ is a set of all TPs executed during τ between nodes from set N.

- Communication between any nodes is a series of message exchanges.
- Each message is fragmented into chunks and passed using some protocol stack.
- Passing of each chunk is a data communication process.
- $P^{\tau}(N)$ is a set of all TPs executed during τ between nodes from set N.

- Communication between any nodes is a series of message exchanges.
- Each message is fragmented into chunks and passed using some protocol stack.
- Passing of each chunk is a data communication process.
- $P^{\tau}(N)$ is a set of all TPs executed during τ between nodes from set N.

- Communication between any nodes is a series of message exchanges.
- Each message is fragmented into chunks and passed using some protocol stack.
- Passing of each chunk is a data communication process.
- $P^{\tau}(N)$ is a set of all TPs executed during τ between nodes from set N.

Telecommunication Process Properties

- Each process $p \in P^{\tau}(N)$ is characterized by:
 - source address $s(p) \in E^{\tau}(N)$;
 - destination addresses $d(p) \in E^{\tau}(N)$;
 - a set of attributes a(p);
 - timestamps of the process start $t_s(p) \in \tau$ and the process end $t_e(p) \in \tau$.

Each process *p* during its execution can generate another process:

- Each process *p* during its execution can generate another process:
 - if it can not transfer a data block to the endpoint directly, then a *child* process q is generated (p is called the *parent* of q);

- Each process *p* during its execution can generate another process:
 - if it can not transfer a data block to the endpoint directly, then a *child* process q is generated (p is called the *parent* of q);
 - 2 if the endpoint of the process doesn't coincide with the endpoint of the parent process, then a *subsequent* process q is generated (p is called a *predecessor* of q).

- Each process *p* during its execution can generate another process:
 - if it can not transfer a data block to the endpoint directly, then a *child* process q is generated (p is called the *parent* of q);
 - 2 if the endpoint of the process doesn't coincide with the endpoint of the parent process, then a *subsequent* process q is generated (p is called a *predecessor* of q).
- Using these rules we can build a tree of TPs hierarchy.

Traffic Flows

Flow definition

A traffic flow is a set of data blocks (packets, frames, messages, ...) passing a network during a certain time interval and having a set of common properties.

- Flow doesn't exist in the network, it is just a slice of traffic, defined by a network engineer.
- As each TP corresponds to a data block, so any subset of $P^{\tau}(N)$ corresponds to some flow during τ .
- To define a slice of traffic, engineer specifies a direction a tuple, describing sources, destinations and attributes of the processes, carrying interesting traffic, e.g.:

$$\delta = \langle \{IP_1, M_3\}, \{IP_2\}, \{\langle vlan, 2\rangle\} \rangle$$

 Flow by the given direction could be inferred from the TP hierarchy tree.

- Flow by the given direction could be inferred from the TP hierarchy tree.
 - at first it should be slightly simplified.

- Flow by the given direction could be inferred from the TP hierarchy tree.
 - at first it should be slightly simplified.
- Each TP has a direction history: predecessor history + its own direction.

- Flow by the given direction could be inferred from the TP hierarchy tree.
 - at first it should be slightly simplified.
- Each TP has a direction history: predecessor history + its own direction.
- Flow by some direction δ during time interval τ is a set of processes, which direction history include δ .

Flow Example 1: $f^{\tau}_{\langle \{IP_1\}, \{IP_2\}, \varnothing \rangle} = \{p_1^N, p_2^N\}$

Flow Example 2: $f^{\tau}_{\langle \{M_8\}, \{IP_2\}, \varnothing \rangle} = \{p_6^L\}$

Flow Example 3: $f^{ au}_{\langle \{IP_1\}, \{M_5, IF_6\}, \varnothing \rangle} = \{p^P_5\}$

Flows aggregation

An HTTP-session

Model Application

An HTTP-session over OpenVPN tunnel

Conclusions

- Modern networks require innovations and deep researches in network management in face of constant complexity growth.
- Enterprise networks have its own specific in network management that is rarely taken into consideration.
- Testbeds are required for new network management approaches evaluation, as well for ad hoc solutions verification in enterprise networks.
- The main challenge is to map traffic data on the enterprise architecture graph.
- A model, describing traffic on basis of incomplete traffic measurements data is proposed:
 - telecommunication process describes any kind of communication between two nodes in the network;
 - tree of telecommunication processes hierarchy could be build;
 - network engineer or software system could query any kind of data flows from this tree.