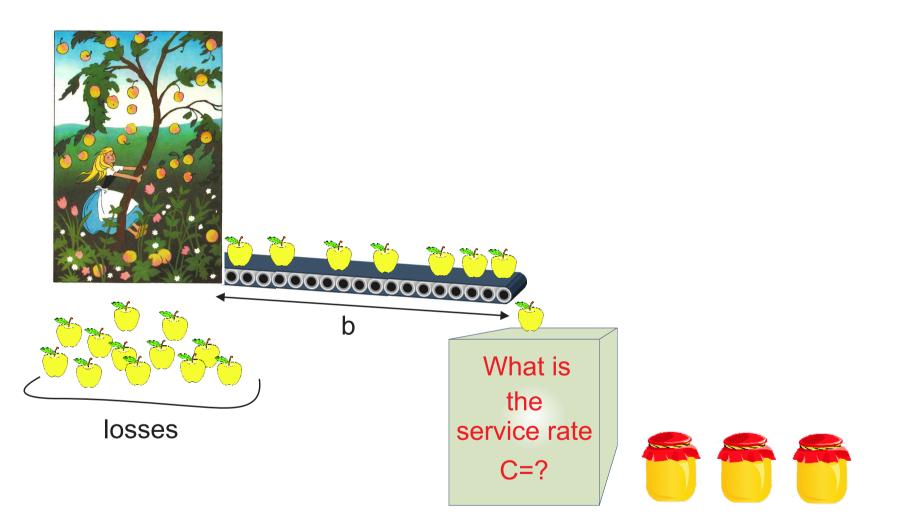
Verification of communication node effective bandwidth estimator

Alexandra Borodina

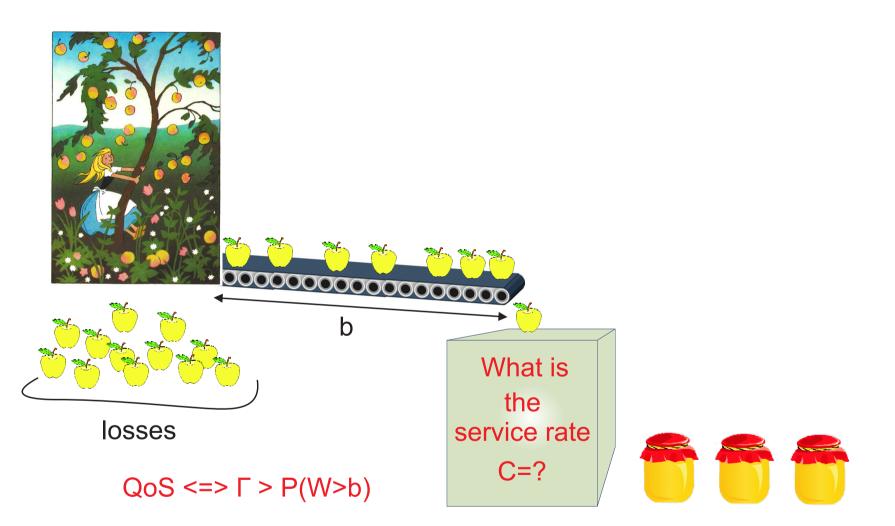
Institute of Applied Mathematical Research Karelian Research Centre RAS

The work is supported by the Strategic development program of Petrozavodsk State University

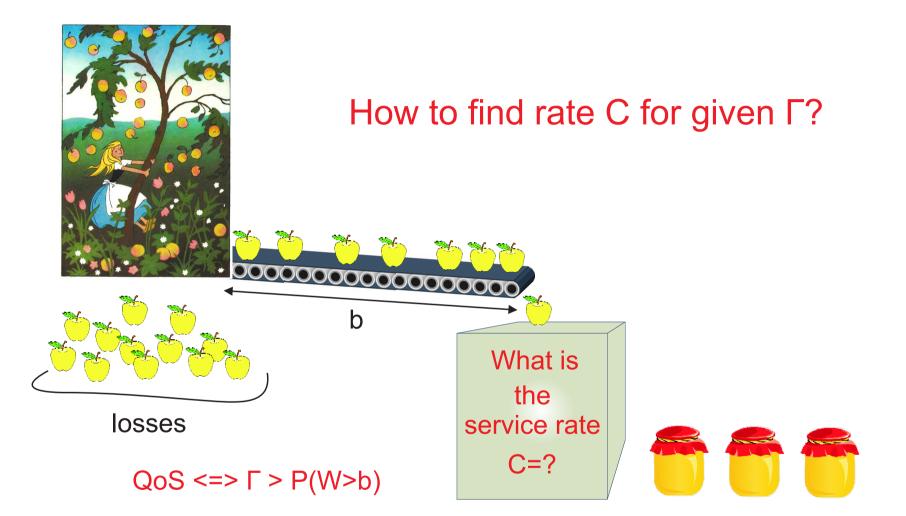
Nature of the problem



Nature of the problem



Nature of the problem



Effective bandwidth problem

Consider a buffered queue with a positive recurrent regenerative input and constant service rate C. The **effective bandwidth (EB) problem** is to find the *minimal rate* C that allows to guarantee given QoS level Γ for overflow/loss probability

$$\mathsf{P}_b = \mathsf{P}(W > b) \le \Gamma,\tag{1}$$

where W is stationary workload process, b the buffer size.

An exponential approximation for W follows from Large Deviation Principle

$$\mathsf{P}_b \asymp e^{-\theta^* b}, b \to \infty, \tag{2}$$

where \asymp means *logarithmic asymptotics*.

Then (1), (2) define unknown guarantee parameter

$$\theta^* = -\ln\Gamma/b > 0. \tag{3}$$

EB definition

Frank Kelly (1991), Ward Whitt (1993), G. de Veciana и J. Walrand (1995)

Determine the limiting scaled *cumulant generating function* of the input process

$$\Lambda(\theta) = \lim_{n \to \infty} \frac{1}{n} \log \mathsf{E} e^{\theta \sum_{i=1}^{n} v_i},\tag{4}$$

where v_i denotes the amount of work that arrives per time unit (i-1, i]. Assuming the existence of the finite limit (4) in a neighborhood of $\theta \in (0, \theta_0)$, the EB is defined by

$$C := \frac{\Lambda(\theta^*)}{\theta^*}.$$
(5)

The main problem is: an analytical form (4) is difficult and sometimes impossible to find. EB estimation problem reduced to $\Lambda(\theta^*)$ estimation

Estimation of $\Lambda(\theta^*)$

Case 1: r. v. $\{v_i\}$ are i. i. d. Let $\mathsf{E}e^{\theta^* v} < \infty$, then the target (unbiased) estimator of $\Lambda(\theta^*)$ is sample mean

$$\ln \frac{1}{k} \sum_{i=1}^{k} e^{\theta^* v_i} \to \Lambda(\theta^*) = \ln \mathsf{E} e^{\theta^* v}, \ k \to \infty \text{ w. p. 1.}$$
(6)

Case 2: if r. v. $\{v_i\}$ are dependent there are two simulation methods for $\Lambda(\theta^*)$ estimation:

- 1. traditional batch means method (BM);
- 2. regenarative approach (REG).

The main properties

It is important to study the properties of the estimators:

- the strong consistency (it is obviously for BM and still the open problem for REG);
- the bias (this property influences whether the estimator ensures the given QoS level Γ).

Batch means method [BM]

Idea: Data from the single simulation run divided into blocks of fixed length B

$$\hat{X}_j = \sum_{i=(j-1)B+1}^{jB} v_i, \quad j \ge 1.$$

Main assumption: if *B* is large enough then r. v. \hat{X}_j can be approximately regarded as i. i. d.

The BM estimator of
$$\Lambda_V(\theta^*, B) = \frac{\ln \mathsf{E} e^{\theta^* \dot{X}}}{B}$$
 is

$$\hat{\Lambda}_k(\theta, B) := \frac{1}{B} \ln \frac{1}{k} \sum_{i=1}^k e^{\theta \hat{X}_i} \to \Lambda(\theta^*, B), \ k \to \infty,$$
(7)

where k is the block number, n = kB is the total number of observations.

BM estimator problems

- Partition into blocks excluding properties of the input process looks quite "rough".
- 2. The problem is how to choose block size B to obtain effective estimation.
- 3. The estimator is biased, moreover,

$$\mathsf{E}\left[\hat{C}_{k}(\theta^{*},B)\right] < \frac{1}{\theta^{*}B}\ln\mathsf{E}\left[e^{\theta^{*}\hat{X}}\right] = C(\theta^{*},B),\tag{8}$$

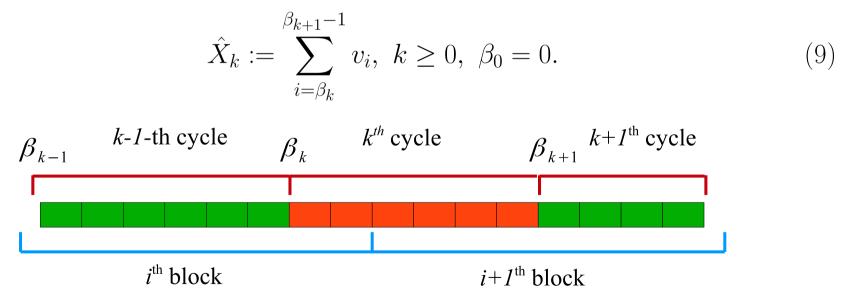
so, there is a risk to choose too small rate C that doesn't provide the required guarantees for P_b .

 Due to "roughly division" dependent data can get into different blocks. This fact in turn can dramatically affect the estimator variance.

Regenerative approach

Idea: block = regenerative cycle.

Assume that the process $\{v_n, n \ge 1\}$ is regenerative, let β_k be the *k*th reg. time, then $\alpha_k = \beta_{k+1} - \beta_k$ is *k*th reg. period (cycle length). The structure of dependencies between $\{v_i\}$ can be considered in **refined EB estimator** due to division into cycles. So, the regenerative blocks are really i. i. d.



Regenerative EB estimator

Assume that $\mathsf{E}\alpha < \infty$, $\ln \mathsf{E}e^{\theta^* \hat{X}} < \infty$, $\theta^* \in (0, \theta_0)$, $\mathsf{E}(\alpha - \mathsf{E}\alpha)^2 := \sigma^2 \in (0, \infty)$, then the REG estimator of $\Lambda(\theta^*)$ defined by k regenerative cycles and w. p. 1 holds

$$\hat{\Lambda}_k(\theta^*) := \frac{k}{\beta_k} \ln \frac{1}{k} \sum_{i=1}^k e^{\theta^* \hat{X}_i} \to \frac{1}{\mathsf{E}\alpha} \ln \mathsf{E} e^{\theta^* \hat{X}} =: \Lambda_{REG}(\theta^*), \quad k \to \infty.$$
(10)

It is **necessary to prove** that the following convergence holds as $n \to \infty$

$$\frac{1}{n}\ln\mathsf{E}e^{\theta^*\sum_{i=1}^n v_i} \to \frac{1}{\mathsf{E}\alpha}\ln\mathsf{E}e^{\theta^*\hat{X}} = \Lambda_{REG}(\theta^*).$$
(11)

If so then the EB estimator can be obtained from (5) as

$$\hat{C}_k(\theta^*) = \frac{\hat{\Lambda}_k(\theta^*)}{\theta^*}.$$
(12)

The upper bound problem

The **lower bound** has been established in [A. Borodina, I. Dudenko, E. Morozov, 2009]

$$\lim_{n \to \infty} \inf \frac{1}{n} \mathsf{E} e^{\theta^* \sum_{i=1}^n v_i} \ge \Lambda_{REG}(\theta^*) := \frac{1}{\mathsf{E}\alpha} \ln \mathsf{E} e^{\theta^* \hat{X}}.$$
 (13)

The **upper bound** evaluation is still the open problem

$$\lim_{n \to \infty} \sup \frac{1}{n} \mathsf{E} e^{\theta^* \sum_{i=1}^n v_i} \le \Lambda_{REG}(\theta^*), \tag{14}$$

but we can offer the regenerative estimator as an approximation for $\Lambda(\theta^*)$

Due to simulation we were able to show that the regenarative method gives the **the pessimistic** EB estimator!

The main question is

How can we check the quality of estimation?

Means of verification

- 1. to calculate directly the function $\Lambda(\theta^*) = \lim_{n \to \infty} \frac{1}{n} \log \mathsf{E} e^{\theta^* \sum_{i=1}^n v_i};$
- 2. to estimate the probability $\mathsf{P}_b = \mathsf{P}(W > b) \leq \Gamma$ for a given value of \hat{C} for the stationary workload process W.

But the value of Γ is small (due to QoS requirements), so the standard Monte-Carlo method most often gives $\hat{P}_b = 0!$

Possible solutions are:

- 1. waiting for a long time by Monte-Carlo;
- 2. speed-up simulation by Splitting method (rare event simulation).

Idea of the Splitting method

We will consider Lindley's requision for the workload proces

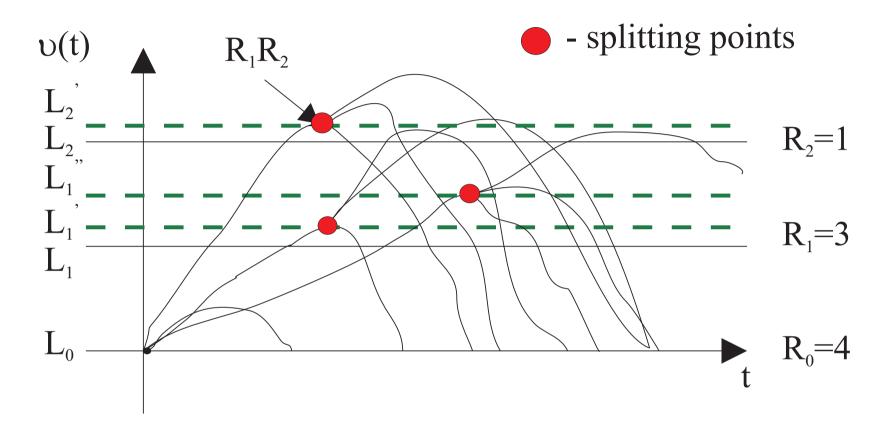
$$W_{n+1} = [W_n + v_{n+1} - C]^+, \ n \ge 0; \ W_0 = 0, \tag{15}$$

constructed by the arrival times $\{t_n\}$, where W_n is the waiting time of the customer n in the queue.

Define the set of thresholds $L_1 \dots L_M$, $L_0 = 0$, $L_{M+1} = b$, where we will split the trajectory of the process.

Splitting condition: if the trajectory of the process hits the threshold L_{i+k} , $i+k \leq M+1$ (it happens at arrival instants) then it split into $\prod_{j=1}^{k} R_{i+j}$ subpaths.

Illustration of splitting

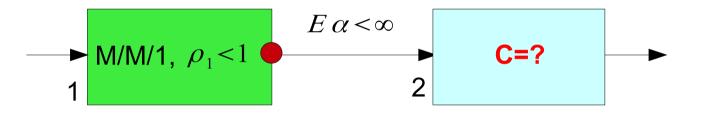


[1] A. Borodina. PhD thesis "Regenerative modification of splitting method for overload probability estimation in queuing systems" (in Russian), 2008.

Simulation: EB estimation in 2-nd node

Consider 2-node tandem network. 1-st node input process is renewal with intensity λ and i. i. d. service times $\{S, S_n\}$ with $\mathsf{E}S = 1/\mu$ and $\rho := \lambda/\mu < 1$. So, the 2-nd node is fed by a positive recurrent regenerative input, $\mathsf{E}\alpha < \infty$.

Regeneration occurs when the 1-st node have been left by the customer which have seen the 1-st node empty.



Verifacation via overfull probability simulation

Regenerative EB estimator for 2-node tandem Let v_i is strongly dependable on the cycle $v_j = \frac{\sum_{k=1}^{j} \eta_k}{j}$, $1 \le j \le \alpha$, where η_k distributed by Weibull $(\gamma = 3, c=4)$. $\Delta := \Gamma - \hat{\Gamma}$.

#	Γ	$ heta^*$	$\hat{C}(k)$	Γ	Δ/Γ
1	10^{-3}	0,230259	0,264602	$8,15 \cdot 10^{-4}$	0,15
2	10^{-4}	0,307011	0,290134	$2,05 \cdot 10^{-5}$	0,75
3	10^{-5}	0,383764	0,348517	$1,84 \cdot 10^{-6}$	0,816
4	10^{-6}	0,460517	0,527721	$2,97 \cdot 10^{-8}$	0,97
5	10^{-7}	0,53727	0,661887	$0,45 \cdot 10^{-8}$	0,955
6	10^{-8}	0,614023	0,986111	$8,67 \cdot 10^{-10}$	0,913

Discrete time. Workload restrictions

Regenerative EB estimator for 2-node tandem with restrictions

#	Γ	$ heta^*$	d	\hat{lpha}	$\hat{C}(k)$	$Var\hat{C}(k)$	Γ	Δ/Γ
1	10^{-4}	0,153506	50	89,1	0,560441	$5,23 \cdot 10^{-6}$	$0,3433 \cdot 10^{-5}$	0,6567
2	10^{-5}	0,191882	50	89,2	0,560947	$7,73 \cdot 10^{-6}$	$0,4153 \cdot 10^{-5}$	0,5847
3	10^{-6}	0,230259	70	124,9	0,561252	$2,64 \cdot 10^{-6}$	$0,8698 \cdot 10^{-6}$	0,1302
4	10^{-7}	0,268635	70	124,8	0,562472	$4,23 \cdot 10^{-6}$	$0,8871 \cdot 10^{-7}$	0,1129
5	10^{-8}	0,307011	70	124,5	0,563537	$6,98 \cdot 10^{-6}$	$0,2116 \cdot 10^{-8}$	0,7884

Thank you for attention!