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Effective bandwidth problem

Consider a buffered queue with a positive recurrent regenerative input and constant

service rate C. The effective bandwidth (EB) problem is to find the minimal

rate C that allows to guarantee given QoS level Γ for overflow/loss probability

Pb = P(W > b) ≤ Γ, (1)

where W is stationary workload process, b the buffer size.

An exponential approximation forW follows from Large Deviation Principle

Pb ≍ e−θ∗b, b → ∞, (2)

where ≍ means logarithmic asymptotics.

Then (1), (2) define unknown guarantee parameter

θ∗ = − ln Γ/b > 0. (3)
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EB definition

Frank Kelly (1991), Ward Whitt (1993), G. de Veciana и J. Walrand (1995)

Determine the limiting scaled cumulant generating function of the input process

Λ(θ) = lim
n→∞

1

n
log Eeθ

∑n
i=1 vi, (4)

where vi denotes the amount of work that arrives per time unit (i−1, i]. Assuming

the existence of the finite limit (4) in a neighborhood of θ ∈ (0, θ0), the EB is

defined by

C :=
Λ(θ∗)

θ∗
. (5)

The main problem is: an analytical form (4) is difficult and sometimes impossible

to find. EB estimation problem reduced to Λ(θ∗) estimation
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Estimation of Λ(θ∗)

Case 1: r. v. {vi} are i. i. d. Let Eeθ
∗v < ∞, then the target (unbiased) estimator

of Λ(θ∗) is sample mean

ln
1

k

k
∑

i=1

eθ
∗vi → Λ(θ∗) = ln Eeθ

∗v, k → ∞ w. p. 1. (6)

Case 2: if r. v. {vi} are dependent there are two simulation methods for Λ(θ∗)

estimation:

1. traditional batch means method (BM);

2. regenarative approach (REG).
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The main properties

It is important to study the properties of the estimators:

• the strong consistency (it is obviously for BM and still the open problem for

REG);

• the bias (this property influences whether the estimator ensures the given

QoS level Γ).
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Batch means method [BM]

Idea: Data from the single simulation run divided into blocks of fixed length B

X̂j =

jB
∑

i=(j−1)B+1

vi, j ≥ 1.

Main assumption: if B is large enough then r. v. X̂j can be approximately

regarded as i. i. d.

The BM estimator of ΛV (θ
∗, B) =

ln Eeθ
∗X̂

B
is

Λ̂k(θ, B) :=
1

B
ln

1

k

k
∑

i=1

eθX̂i → Λ(θ∗, B), k → ∞, (7)

where k is the block number, n = kB is the total number of observations.
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BM estimator problems

1. Partition into blocks excluding properties of the input process looks quite

"rough".

2. The problem is how to choose block size B to obtaine effective estimation.

3. The estimator is biased, moreover,

E

[

Ĉk(θ
∗, B)

]

<
1

θ∗B
lnE

[

eθ
∗X̂
]

= C(θ∗, B), (8)

so, there is a risk to choose too small rate C that doesn’t provide the required

guarantees for Pb.

4. Due to "roughly division" dependent data can get into different blocks. This

fact in turn can dramatically affect the estimator variance.
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Regenerative approach

Idea: block = regenerative cycle.

Assume that the process {vn, n ≥ 1} is regenerative, let βk be the kth reg.

time, then αk = βk+1 − βk is kth reg. period (cycle length). The structure of

dependencies between {vi} can be considered in refined EB estimator due to

division into cycles. So, the regenerative blocks are really i. i. d.

X̂k :=

βk+1−1
∑

i=βk

vi, k ≥ 0, β0 = 0. (9)
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Regenerative EB estimator

Assume that Eα < ∞, lnEeθ
∗X̂ < ∞, θ∗ ∈ (0, θ0), E(α − Eα)2 := σ2 ∈ (0,∞),

then the REG estimator of Λ(θ∗) defined by k regenerative cycles and w. p. 1 holds

Λ̂k(θ
∗) :=

k

βk
ln

1

k

k
∑

i=1

eθ
∗X̂i →

1

Eα
ln Eeθ

∗X̂ =: ΛREG(θ
∗), k → ∞. (10)

It is necessary to prove that the following convergence holds as n → ∞

1

n
lnEeθ

∗∑n
i=1 vi →

1

Eα
lnEeθ

∗X̂ = ΛREG(θ
∗). (11)

If so then the EB estimator can be obtained from (5) as

Ĉk(θ
∗) =

Λ̂k(θ
∗)

θ∗
. (12)
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The upper bound problem

The lower bound has been established in [A. Borodina, I. Dudenko, E. Morozov,

2009]

lim
n→∞

inf
1

n
Eeθ

∗∑n
i=1 vi ≥ ΛREG(θ

∗) :=
1

Eα
lnEeθ

∗X̂. (13)

The upper bound evaluation is still the open problem

lim
n→∞

sup
1

n
Eeθ

∗∑n
i=1 vi ≤ ΛREG(θ

∗), (14)

but we can offer the regenerative estimator as an approximation for Λ(θ∗)

Due to simulation we were able to show that the regenarative method gives the

the pessimistic EB estimator!
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The main question is

How can we check the quality of estimation?
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Means of verification

1. to calculate directly the function Λ(θ∗) = limn→∞
1
n
log Eeθ

∗∑n
i=1 vi;

2. to estimate the probability Pb = P(W > b) ≤ Γ for a given value of Ĉ for

the stationary workload process W .

But the value of Γ is small (due to QoS requirements), so the standard Monte-

Carlo method most often gives P̂b = 0!

Possible solutions are:

1. waiting for a long time by Monte-Carlo;

2. speed-up simulation by Splitting method (rare event simulation).
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Idea of the Splitting method

We will consider Lindley’s reqursion for the workload proces

Wn+1 = [Wn + vn+1 − C]+, n ≥ 0; W0 = 0, (15)

constructed by the arrival times {tn}, where Wn is the waiting time of the customer

n in the queue.

Define the set of thresholds L1 . . . LM , L0 = 0, LM+1 = b, where we will split

the trajectory of the process.

Splitting condition: if the trajectory of the process hits the threshold Li+k,

i+k ≤ M+1 (it happens at arrival instants) then it split into
∏k

j=1Ri+j subpaths.
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Illustration of splitting
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[1] A. Borodina. PhD thesis ”Regenerative modification of splitting method for

overload probability estimation in queuing systems” (in Russian), 2008.
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Simulation: EB estimation in 2-nd node

Consider 2-node tandem network. 1-st node input process is renewal with intensity

λ and i. i. d. service times {S, Sn} with ES = 1/µ and ρ := λ/µ < 1. So, the 2-nd

node is fed by a positive recurrent regenerative input, Eα < ∞.

Regeneration occurs when the 1-st node have been left by the customer which

have seen the 1-st node empty.

18



Verifacation via overfull probability simulation

Regenerative EB estimator for 2-node tandem Let vi is strongly

dependable on the cycle vj =
∑j

k=1 ηk
j , 1 ≤ j ≤ α, where ηk distributed by Weibull

(γ = 3, c=4). ∆ := Γ− Γ̂.

# Γ θ∗ Ĉ(k) Γ̂ ∆/Γ

1 10−3 0,230259 0,264602 8, 15 · 10−4 0,15

2 10−4 0,307011 0,290134 2, 05 · 10−5 0,75

3 10−5 0,383764 0,348517 1, 84 · 10−6 0,816

4 10−6 0,460517 0,527721 2, 97 · 10−8 0,97

5 10−7 0,53727 0,661887 0, 45 · 10−8 0,955

6 10−8 0,614023 0,986111 8, 67 · 10−10 0,913
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Discrete time. Workload restrictions

Regenerative EB estimator for 2-node tandem with restrictions

# Γ θ∗ d α̂ Ĉ(k) V arĈ(k) Γ̂ ∆/Γ

1 10−4 0,153506 50 89,1 0,560441 5, 23 · 10−6 0, 3433 · 10−5 0,6567

2 10−5 0,191882 50 89,2 0,560947 7, 73 · 10−6 0, 4153 · 10−5 0,5847

3 10−6 0,230259 70 124,9 0,561252 2, 64 · 10−6 0, 8698 · 10−6 0,1302

4 10−7 0,268635 70 124,8 0,562472 4, 23 · 10−6 0, 8871 · 10−7 0,1129

5 10−8 0,307011 70 124,5 0,563537 6, 98 · 10−6 0, 2116 · 10−8 0,7884
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Thank you for attention!
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