

Aalto University School of Electrical Engineering

Floating Content: Information Sharing in Urban Areas

Jussi Kangasharju Jörg Ott, Esa Hyytiä, Pasi Lassila Tobias Vaegs, Ossi Karkulahti

Infrastructure-less Content Sharing...

- Ad-hoc local social network-style information sharing: Digital graffiti w/o servers and infrastructure
- Leaves notes, comments, stories, etc. in places
- Define reach (area of interest) and lifetime
- Leverage delay-tolerant ad-hoc communication between mobile devices for information replication & acquisition

...in Urban Environments?!

- Connectivity (to infrastructure)
- Location privacy
- Content "privacy"
- Geographic validity
- Temporal validity
- User identification

What for?

Coupling in location, decoupling in time

- Tourists and locals, sharing context information
- Going out with friends (bars, theme parks, hiking)

What for?

- Ride sharing
- Flea markets
- Ticket trading
- Content sharing
- Anything
 - ephemeral
 - co-located
 - loss-tolerant
 - (time-insensitive)

What's new?

- Similar concepts have been "floating" around
 - Digital graffiti
 - At least as early as 2005 on something similar to floating content
 - Geocasting and other approaches in the late 1990's
- Often limited in scope
- Our contribution
 - Extended notion of floating content [PerCom 2010 WiP]
 - Analytical modeling [Infocom 2011]
 - Thorough evaluation of feasibility
 - Figuring out how to make this work in practice

Floating Model

Aalto University School of Electrical Engineering

Two-Pronged Approach to Evaluation

- Analytical modeling
 - Not really covered in this talk [Infocom 2011]
 - Different scenarios, different mobility models
 - Main result: criticality condition
- Simulations
 - Initially simple simulations to test feasibility [PerCom 2010 WiP]
 - First result: Need 1 person per 50m² on average
 - This agrees with the analytical criticality condition
 - In this paper: criticality validation + parameter space exploration

Simple Analytical Model: Black Box

Evaluation Setup

- The ONE Simulator: 4500 x 3400m simulation area
 - Helsinki City Scenario
 - Restless nodes (tourists)
 - Moving around along shortest paths between points of interest
 - On foot, by car
 - Some trams following regular routes
 - 126, 252, 504 nodes
 - 10m, 50m radio range
 - r = a = 200m, 500m

Contact density distribution

• Example: 252 nodes, 10m radio

Aalto University School of Electrical Engineering

Feasibility

Feasibility: Analytical Model Validation

- Tiny messages, de-facto infinite buffer, one location only
- Example: 252 nodes, 10m radio, r=a=500m, TTL=1h

Holds equally well for other parameter settings

Feasibility: Floating over time

Operational Considerations: DoS

Aalto University School of Electrical Engineering

Operational Considerations: DoS

- Prioritization functions to encourage locality and modesty for replication and deletion
 - FIFO
 - RaNDom
 - Smallest Area First: f(a)
 - Smallest Volume First: f(a × size)
 - Small Total resources First: f(a × size × TTL)

Performance characterization

- Helsinki City Scenario
- Parallel content posted at arbitrary locations
 - 126 nodes, 50m radio, 2 Mbit/s net data rate
 - Message rates: 1, 2, 4 messages per node per hour
- Mix of floating content messages
 - Random message sizes: [100 KB ... 1000 KB]
 - TTL [30min ... 3 hours]
 - Anchor zones [500m ... 2000m]

Findings for 4 Messages/node/hour

Aalto University School of Electrical Engineering

Conclusion and Next Steps

- Simple, yet appealing geo cooperation model
- Workable already for modestly dense scenarios
 - Simulations agree well with theoretical modeling
- Some built-in DoS protection and garbage collection
- Probabilistic operation and user acceptance?
- More extensive simulation studies
- Implementation for Android: real-world experiments

