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Abstract

We discuss the estimation of the loss probability in a queueing system with
finite buffer. We apply regenerative technique combined with the so-called
Delta-method to construct confidence interval for the stationary loss prob-
ability. This work is supported by Russian Foundation for Basic research,
project No 10-07-00017 and done in the framework of the Strategy develop-
ment Program for 2012-2016 ”PetrSU complex in the research-educational
space of European North: strategy of the innovation development.

1 Introduction

We consider a single server queue with finite buffer of size b, constant
service rate C and input process A(t) = mt + N(0, tσ2), consisting of
deterministic linear process mt with positive drift m > 0, and Brownian
motion N(0, tσ2). The workload process in this system is described by the
well-known (discrete time) Lindley recursion:

Qn = min((Qn−1 − C +Xn)
+, b), n = 1, 2, . . . , (1.1)

where
Xn := A(n+ 1)−A(n) =st m+N(0, σ2)

are the i.i.d increments of the input process at instants n = 1, 2, .... We
denote this system as Bi/D/1/b system. A motivation of this model can
be found in [3]. Denote by Lb(T ), the total lost workload in interval [0, T ],
that is

Lb(T ) :=
T∑

k=1

(Qk−1 − C +Xk − b)+, T = 1, 2, . . .

c© O. V. Lukashenko, R. S. Nekrasova, E. V. Morozov, M. Pagano, 2011



76 O. V. Lukashenko, R. S. Nekrasova, E. V. Morozov, M. Pagano

The time average loss Pℓ(b, T ) in this system during (discrete-time) interval
[0, T ], is defined as the ratio of the amount of lost workload and the total
arrived workload, during this interval, that is

Pℓ(b, T ) :=
Lb(T )

A(T )
. (1.2)

Because the buffer is finite, the system is stable and the loss ratio, as
T →∞, converges to a stationary loss probability Pℓ(b), that is

Pℓ(b) := lim
T→∞

Pℓ(b, T ) =
E(Q+X − C − b)+

m
, (1.3)

where Q is the stationary workload and X is a generic element of Xn. The
following heuristic expression given in [4]

Pℓ(b) ≈
Pℓ(0)

P(Q > 0)
P(Q > b), (1.4)

allows to calculate the loss probability provided there is an explicit formula
(or a satisfactory approximation) for the overflow probability P(Q > x) in
the associated infinite buffer system. In our case, it is possible to use the
following continious-time approximation (see [5]):

P(Q > x) ≈ exp

(
−2 · C −m

σ
· x
)
. (1.5)

Moreover, it is easy to calculate Pℓ(0), namely,

Pℓ(0) =
E(X − C)+

m

=
1

mσ
√
2π

∫ ∞

c
(x− c)e−(x−m)2/2σ2

dx. (1.6)

Thus results (1.4), (1.5), (1.6) allow to find an approximation of the overflow
probability Pℓ(b) (in the following it will be denoted as Pℓ ) in our model.

2 Regenerative approach

In this section, we show how to estimate the steady-state loss probability
Pℓ using the regenerative approach. First we construct regeneration points
for the content process. (More details can be found in [3].) Let β0 = 0 and

βk+1 = min{n > βk : Qn−1 > 0, Qn = 0}, k ≥ 1, (2.1)
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where, Qn is defined in (1.1). Denote by Li and Ai the workload lost and
arrived per the ith regeneration cycle, respectively, with the corresponding
generic elements L and A. It follows from the regenerative method, that

Pℓ =
EL

EA
.

To apply the regenerative confidence estimation, we generate i.i.d. replica-
tions L1, .., Ln, A1, ..., An, to estimate the unknown means EL, EA and the
probability Pℓ as

L̂ :=
1

n

n∑

i=1

Li, Â :=
1

n

n∑

i=1

Ai, P̂ℓ :=
L̂

Â
, (2.2)

respectively. Using Delta-method, it is possible to show that

√
n
(
P̂ℓ − Pℓ

)
⇒ N(0, η2), n→∞, (2.3)

where ⇒ stands for weak convergence and

η2 =
E [L−A · Pℓ]

2

(EA)2
.

(See [1, 2] for more detail on Delta-method.) In turn, to estimate η2 we
apply standard sample estimation

η̂2 :=

1
n−1

n∑
i=1

(Li − P̂ℓAi)
2

(
1
n

n∑
i=1

Ai

)2 (2.4)

Based on (2.3) one can obtain the following (1− γ/2)% asymptotical con-
fidence interval for Pℓ:

[
P̂ℓ −

zγ√
n
, P̂ℓ +

zγ√
n

]
, (2.5)

where zγ = η̂Φ−1
(γ
2

)
, Φ−1(x) is the inverse of Laplace function and γ is a

given confidence probability.

3 Numerical examples

In this section, we present a few numerical results on confidence estimation
of stationary loss probability in the above considered system Bi/D/1/b.
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Figure 1: 95% Confidence interval for Pℓ in Bi/D/1/4

First of all regeneration points are constructed as in (2.1). Then we cal-
culate the confidence interval for the probability Pℓ according to expression
(2.5).

First we analyze a dependence the simulation results on the step of dig-
itization h := hN = 1/N where N = 1, 2, . . . Figure 1 shows 95% confidence
interval as a function of N for the model with parameters m = 0.8, service
rate C = 1, buffer size b = 4 for a fixed simulation length of T time slots
and T = 105. It is seen that confidence interval width is rather insensitive
to the selection of the concrete value of step digitization h in a wide range
of values of N . This remark may be useful to simplify simulation procedure
and, in particular, to save simulation time.

Figure 2 compares the simulation results (based on the regenerative
approach described above) with the approximation (1.4), where the follow-
ing parameters are used: C = 1; m = 0.7; T = 106, and the confidence
probability is 1− γ = 0.95.

Finally, we study the dependence of the simulation results on the choice
of regeneration points. Namely, we form the subsequences of regeneration
points {βs

k} of (2.1) for arbitrary (fixed) s as βs
i = βsi where s = 1, 2, . . .

and i = 0, 1, ... Figure 3 shows the 95% confidence interval width (for the
loss probability Pℓ) vs. the parameter s. The following parameters are
used in simulation: b = 4; C = 1; m = 0.8; T = 105. Again, simulation
demonstrates an insensitivity to the choice of the parameter s, and, in our
opinion, it can be exploit to speed-up estimation.
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Figure 2: Estimate of Pℓ in Bi/D/1/b: regenerative method vs. approxi-
mation (1.4)

 0.016

 0.018

 0.02

 0.022

 0.024

 0.026

 0.028

 0.03

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

Lo
ss

 P
ro

ba
bi

lit
y

s

lower
upper

estimate

Figure 3: Dependence of the confidence interval width on the choice of
subsequences of regeneration points
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4 Conclusion

The estimation of the stationary loss probability in a single-server fluid
queue with a Gaussian input using the regeneration approach is considered.
A known approximation of the loss probability via the overflow probabil-
ity is used to verify an accuracy the estimation based on the regenerative
simulation. Some numerical results are presented.
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