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Abstract

We discuss the estimation of the loss probability in a queueing system with
finite buffer. We apply regenerative technique combined with the so-called
Delta-method to construct confidence interval for the stationary loss prob-
ability. This work is supported by Russian Foundation for Basic research,
project No 10-07-00017 and done in the framework of the Strategy develop-
ment Program for 2012-2016 ”"PetrSU complex in the research-educational
space of European North: strategy of the innovation development.

1 Introduction

We consider a single server queue with finite buffer of size b, constant
service rate C' and input process A(t) = mt + N(0, to?), consisting of
deterministic linear process mt with positive drift m > 0, and Brownian
motion N (0, to?). The workload process in this system is described by the
well-known (discrete time) Lindley recursion:

Qn=min((Qn_1 —C+ X,)",b), n=1,2,..., (1.1)
where
X, :=A(n+1) — A(n) =¢ m+ N(0,0?)

are the i.i.d increments of the input process at instants n = 1,2,.... We
denote this system as Bi/D/1/b system. A motivation of this model can
be found in [3]. Denote by Ly(T"), the total lost workload in interval [0, T,
that is

T
Ly(T) =Y (Qe-1—C+ X —b)F, T=1,2,...
k=1
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The time average loss Py(b, T') in this system during (discrete-time) interval
[0, 77, is defined as the ratio of the amount of lost workload and the total
arrived workload, during this interval, that is

Ly(T)
A(T)

Pe(b,T) := (1.2)
Because the buffer is finite, the system is stable and the loss ratio, as
T — oo, converges to a stationary loss probability Py(b), that is
E X-C-b)"
Py(b) = lim Py(b,T) = E@+F " (1.3)
T—o0

m

where () is the stationary workload and X is a generic element of X,,. The
following heuristic expression given in [4]

P¢(0)
P(Q > 0)

allows to calculate the loss probability provided there is an explicit formula
(or a satisfactory approximation) for the overflow probability P(Q > z) in
the associated infinite buffer system. In our case, it is possible to use the
following continious-time approximation (see [5]):

Pe(b) = P(Q > ), (1.4)

P(Q > z) ~ exp <—2-C;m'x>. (1.5)

Moreover, it is easy to calculate P;(0), namely,

E(X —C)*+

1 o0 —(—m)2 /952
= max/%/ (z — c)e” @M /2% gy, (1.6)

Thus results (1.4), (1.5), (1.6) allow to find an approximation of the overflow
probability Py(b) (in the following it will be denoted as P, ) in our model.

Pe(0) =

2 Regenerative approach

In this section, we show how to estimate the steady-state loss probability
P, using the regenerative approach. First we construct regeneration points
for the content process. (More details can be found in [3].) Let 8y = 0 and

Bk’—i—l = mln{n > B Qn-1>0,Qn= 0}7 kE>1, (21)
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where, @, is defined in (1.1). Denote by L; and A; the workload lost and
arrived per the ith regeneration cycle, respectively, with the corresponding
generic elements L and A. It follows from the regenerative method, that

EL

P, = ——.
‘" EA

To apply the regenerative confidence estimation, we generate i.i.d. replica-
tions L1, .., L, A1, ..., An, to estimate the unknown means EL, EA and the
probability P, as

SO O ~ I
L=~ L;, A:=— A;, Ppi= =, 2.2
a2l AT Py >

respectively. Using Delta-method, it is possible to show that
Vi (P = Pe) = N(©O,7%), n— o, (2.3)

where = stands for weak convergence and

s E[L—A P
T T (EAp

(See [1, 2] for more detail on Delta-method.) In turn, to estimate n? we
apply standard sample estimation

NgE

niy (Li — PA;)?
= . (2.4)

(1)

Based on (2.3) one can obtain the following (1 — +/2)% asymptotical con-
fidence interval for Py:

I
-

3=

|:/|Sg _ % P+ \Z/”%] , (2.5)

where 2, = &1 (%), ®~1(x) is the inverse of Laplace function and v is a
given confidence probability.

3 Numerical examples

In this section, we present a few numerical results on confidence estimation
of stationary loss probability in the above considered system Bi/D/1/b.
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Figure 1: 95% Confidence interval for Py in Bi/D/1/4

First of all regeneration points are constructed as in (2.1). Then we cal-
culate the confidence interval for the probability P, according to expression
(2.5).

First we analyze a dependence the simulation results on the step of dig-
itization h :== hy = 1/N where N = 1,2, ... Figure 1 shows 95% confidence
interval as a function of IV for the model with parameters m = 0.8, service
rate C' = 1, buffer size b = 4 for a fixed simulation length of T time slots
and T = 10°. It is seen that confidence interval width is rather insensitive
to the selection of the concrete value of step digitization A in a wide range
of values of N. This remark may be useful to simplify simulation procedure
and, in particular, to save simulation time.

Figure 2 compares the simulation results (based on the regenerative
approach described above) with the approximation (1.4), where the follow-
ing parameters are used: C = 1;m = 0.7; T = 10%, and the confidence
probability is 1 — v = 0.95.

Finally, we study the dependence of the simulation results on the choice
of regeneration points. Namely, we form the subsequences of regeneration
points {3;} of (2.1) for arbitrary (fixed) s as 37 = (s where s = 1,2,...
and i = 0, 1,... Figure 3 shows the 95% confidence interval width (for the
loss probability Py) vs. the parameter s. The following parameters are
used in simulation: b = 4; C = 1; m = 0.8; T = 10°. Again, simulation
demonstrates an insensitivity to the choice of the parameter s, and, in our
opinion, it can be exploit to speed-up estimation.
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Figure 2: Estimate of P, in Bi/D/1/b: regenerative method vs. approxi-
mation (1.4)
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Figure 3: Dependence of the confidence interval width on the choice of
subsequences of regeneration points
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4 Conclusion

The estimation of the stationary loss probability in a single-server fluid
queue with a Gaussian input using the regeneration approach is considered.
A known approximation of the loss probability via the overflow probabil-
ity is used to verify an accuracy the estimation based on the regenerative
simulation. Some numerical results are presented.
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