An Algebraic Approach
 to Scheduling Problems in Project Management

Nikolai Krivulin

Faculty of Mathematics and Mechanics Saint Petersburg State University

E-mail: nkk<at>math.spbu.ru URL: http://www.math.spbu.ru/user/krivulin/

Annual International Workshop on Advances in Methods of Information and Communication Technology

Petrozavodsk, 2010

Outline

Motivating Example
Activity Network Model
Schedule Development Problem
Idempotent Algebra
Notation and References
Solution to Motivating Example
Linear Equations of the First Kind
Example 2: Start-to-Start Constraints
Activity Network Model
Schedule Development Problem
Linear Equations of the Second Kind
Example 3: Mixed Constraints
Schedule Development Problem
Conclusions
Acknowledgments

Motivating Example: Activity Network Model

Start-to-Finish Precedence Relationship

- Consider a project consisting of n activities
- Every activity finishes as soon as some work is performed within some other activities
- For each activity $i=1, \ldots, n$ we introduce the notation
x_{i}, the initiation time;
y_{i}, the completion time;
$a_{i j}$, the time activity j takes to do the work that has to be completed before the completion of activity i
- The completion time of activity i can be represented as

$$
y_{i}=\max \left(x_{1}+a_{i 1}, \ldots, x_{n}+a_{i n}\right)
$$

Model Transformation

- Consider the precedence relationship equations

$$
y_{i}=\max \left(x_{1}+a_{i 1}, \ldots, x_{n}+a_{i n}\right), \quad i=1, \ldots, n
$$

- Substitution of the symbol \oplus for max, and \otimes for + gives

$$
y_{i}=a_{i 1} \otimes x_{1} \oplus \cdots \oplus a_{i n} \otimes x_{n}, \quad i=1, \ldots, n
$$

- With the symbol \otimes omitted, the equations takes the form

$$
y_{i}=a_{i 1} x_{1} \oplus \cdots \oplus a_{i n} x_{n}, \quad i=1, \ldots, n
$$

(note a formal similarity to equations in the conventional algebra

$$
\left.y_{i}=a_{i 1} x_{1}+\cdots+a_{i n} x_{n}, \quad i=1, \ldots, n\right)
$$

Vector Representation

- The matrix-vector notation

$$
A=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right), \quad \boldsymbol{x}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right), \quad \boldsymbol{y}=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)
$$

- The precedence relationship equation in the vector form

$$
\boldsymbol{y}=A \boldsymbol{x}
$$

(matrix-vector multiplication is performed in the usual way with the standard addition and multiplication replaced with \oplus and \otimes)

A Network and Its Matrix

- An activity network

- The network precedence relationship matrix $(0=-\infty)$

$$
A=\left(\begin{array}{cccc}
8 & 10 & 0 & 0 \\
0 & 5 & 4 & 8 \\
6 & 12 & 11 & 7 \\
0 & 0 & 0 & 12
\end{array}\right)
$$

Schedule Development Problem

Schedule Development Under Late Finish Date Constraints

- Suppose each activity $i=1, \ldots, n$ is subject to the time constraint b_{i}, the late finish date
- The vector notation: $\boldsymbol{b}=\left(b_{1}, \ldots, b_{n}\right)^{T}$

Problem

- Find the vector \boldsymbol{x} of start dates to meet the condition $\boldsymbol{y}=\boldsymbol{b}$
- The solution satisfies the linear equation of the first kind

$$
A \boldsymbol{x}=\boldsymbol{b}
$$

in a semiring with the operations $\oplus=\max$ and $\otimes=+$

Idempotent Algebra: Notation and References

Idempotent Semiring $\mathbb{R}_{\text {max },+}$

- Idempotent semiring (semifield)

$$
\mathbb{R}_{\max ,+}=\langle\mathcal{X}, \mathbb{0}, \mathbb{1}, \oplus, \otimes\rangle
$$

- The set: $\mathbb{X}=\mathbb{R} \cup\{-\infty\}$
- The operations: $\oplus=\max$ and $\otimes=+$
- Null and identity elements: $\mathbb{O}=-\infty$ and $\mathbb{1}=0$
- The inverse: for each $x \in \mathbb{R}$ there exists $x^{-1}(-x$ in conventional algebra)
- The power: for each $x, y \in \mathbb{R}$ one can define $x^{y}(x y$ in conventional algebra)

Matrix Algebra Over $\mathbb{R}_{\text {max },+}$

- Addition and multiplication

$$
\{A \oplus B\}_{i j}=\{A\}_{i j} \oplus\{B\}_{i j}, \quad\{B C\}_{i j}=\bigoplus_{k}\{B\}_{i k}\{C\}_{k j}
$$

- Identity and null matrices: $I=\operatorname{diag}(\mathbb{1}, \ldots, \mathbb{1})$ and $\mathbb{O}=(\mathbb{0})$
- The power: $A^{0}=I, A^{k+l}=A^{k} A^{l}$ for all integer $k, l \geq 0$
- The norm and trace: for any matrix $A=\left(a_{i j}\right)$

$$
\|A\|=\bigoplus_{i, j} a_{i j}, \quad \operatorname{tr} A=\bigoplus_{i} a_{i i}
$$

- The pseudoinvers: for any matrix $A=\left(a_{i j}\right)$ there exists $A^{-}=\left(a_{i j}^{-}\right)$with $a_{i j}^{-}=a_{j i}^{-1}$, if $a_{j i} \neq \mathbb{O}$, and $a_{i j}^{-}=\mathbb{O}$, otherwise

Early Publications

- N.N. Vorob'ev (1963), A.A. Korbut (1965), I.V. Romanovskii (1967)

Books

- R.A. Cuninghame-Green (1979), B. Carré (1979)
- U. Zimmermann (1981), F. Baccelli et al (1992)
- V.P. Maslov, V.N. Kolokol'tsov (1994), J.S. Golan (1999)
- B. Heidergott et al (2006), N.K. Krivulin (2009)

Hundreds of Contributing Papers

- V.P. Maslov, G.L. Litvinov, G.B. Shpiz, A.N. Sobolevskii, V.D. Matveenko, S.L. Blyumin
- G.J. Olsder, B. Heidergott, S. Gaubert, B. De Schutter, G. Cohen

Solution to Example: First Kind Linear Equations

Problem

- Given a $(m \times n)$-matrix A and a vector $\boldsymbol{b} \in \mathbb{R}^{m}$, find the solution $\boldsymbol{x} \in \mathbb{R}^{n}$ of the first kind equation

$$
A \boldsymbol{x}=\boldsymbol{b}
$$

Theorem (Existence and Uniqueness)

1. The equation has a solution if and only if $\left(A\left(\boldsymbol{b}^{-} A\right)^{-}\right)^{-} \boldsymbol{b}=\mathbb{1}$
2. The maximum solution, if any, takes the form $\boldsymbol{x}=\left(\boldsymbol{b}^{-} A\right)^{-}$
3. If the columns of A form a minimal set generating \boldsymbol{b}, then the solution is unique

General Solution

- For the matrix A, consider a minimal subset of its columns generating b, and denote the set of the column indices by J
- Let \mathcal{J} be the set of all the subsets J
- Let G_{J} be the diagonal matrix that has its diagonal entry in row i set to $\mathbb{0}$, if $i \in J$, and to $\mathbb{1}$, otherwise

Theorem

The general solution of the first kind equation is the family

$$
\boldsymbol{x}_{J}=\left(\boldsymbol{b}^{-} A \oplus \boldsymbol{v}^{T} G_{J}\right)^{-}, \quad \boldsymbol{v} \in \mathbb{R}^{n}, \quad J \in \mathcal{J}
$$

Corollary

The solution of the inequality $A \boldsymbol{x} \leq \boldsymbol{b}$ is given by $\boldsymbol{x} \leq\left(\boldsymbol{b}^{-} A\right)^{-}$

Example 2: Activity Network Model

Start-to-Start Precedence Relationship

- A project involves n activities
- Every activity starts not earlier than some work is performed within some other activities
- For each activity $i=1, \ldots, n$ we introduce the notation
x_{i}, the initiation time;
y_{i}, the completion time;
$a_{i j}$, the time activity j takes to do the work that has to be completed before the start of activity i
- The initiation time of activity i satisfies the condition

$$
x_{i} \geq \max \left(x_{1}+a_{i 1}, \ldots, x_{n}+a_{i n}\right)
$$

Model Representation

- In terms of $\mathbb{R}_{\text {max },+}$, the precedence relationships take the form

$$
x_{i} \geq a_{i 1} x_{1} \oplus \cdots \oplus a_{i n} x_{n}, \quad i=1, \ldots, n
$$

- With the matrix-vector notation, we arrive at the inequality

$$
A \boldsymbol{x} \leq \boldsymbol{x}
$$

Problem

- Find the vector \boldsymbol{x} that satisfies the precedence constraints
- Of particular interest is the solution of the homogeneous linear equation of the second kind

$$
A \boldsymbol{x}=\boldsymbol{x}
$$

A Network and Its Matrix

- An activity network

- The network precedence relationship matrix $(\mathbb{0}=-\infty)$

$$
A=\left(\begin{array}{rrrr}
0 & -2 & 0 & 0 \\
0 & 0 & 3 & -1 \\
-1 & 0 & 0 & -4 \\
2 & 0 & 0 & 0
\end{array}\right)
$$

Schedule Development Problem

Schedule Development Under Early Start Date Constraints

- Suppose each activity $i=1, \ldots, n$ is subject to the time constraint b_{i}, the early start date
- The vector notation: $\boldsymbol{b}=\left(b_{1}, \ldots, b_{n}\right)^{T}$

Problem

- Find a vector \boldsymbol{x} so as to meet the conditions

$$
A \boldsymbol{x}=\boldsymbol{x}, \quad \boldsymbol{x} \geq \boldsymbol{b}
$$

- The solution satisfies the nonhomogeneous linear equation of the second kind

$$
A \boldsymbol{x} \oplus \boldsymbol{b}=\boldsymbol{x}
$$

Linear Equations of the Second Kind

Problem: Solution for Homogeneous Bellman Equation

- Given a $(n \times n)$-matrix A, find a solution $\boldsymbol{x} \in \mathbb{R}^{n}$ of the equation

$$
A \boldsymbol{x}=\boldsymbol{x}
$$

Problem: Solution for Nonhomogeneous Bellman Equation

- Given a $(n \times n)$-matrix A and a vector $\boldsymbol{b} \in \mathbb{R}^{n}$, find a solution $\boldsymbol{x} \in \mathbb{R}^{n}$ of the equation

$$
A \boldsymbol{x} \oplus \boldsymbol{b}=\boldsymbol{x}
$$

Solution

- For each $(n \times n)$-matrix A, we introduce the matrices

$$
A^{+}=I \oplus A \oplus \cdots \oplus A^{n-1}, \quad A^{\times}=A A^{+}=A \oplus \cdots \oplus A^{n}
$$

and the symbol

$$
\operatorname{Tr} A=\bigoplus_{m=1}^{n} \operatorname{tr} A^{m}
$$

- Provided that $\operatorname{Tr} A=\mathbb{1}$, we define the matrix A^{*} with the columns

$$
\boldsymbol{a}_{i}^{*}= \begin{cases}\boldsymbol{a}_{i}^{+}, & \text {if } a_{i i}^{\times}=\mathbb{1} \\ \mathbb{O}, & \text { otherwise }\end{cases}
$$

where \boldsymbol{a}_{i}^{+}is column i of A^{+}, and $a_{i i}^{\times}$is entry (i, i) of A^{\times}

Lemma

Let \boldsymbol{x} be the general solution of the homogeneous equation with an irreducible matrix. Then it holds

1) if $\operatorname{Tr} A=\mathbb{1}$, then $\boldsymbol{x}=A^{*} \boldsymbol{v}$ for all $\boldsymbol{v} \in \mathbb{R}^{n}$;
2) if $\operatorname{Tr} A \neq \mathbb{1}$, then there exists only the solution $x=\mathbb{0}$

Theorem

Let x be the general solution of the nonhomogeneous equation with an irreducible matrix. Then it holds

1) if $\operatorname{Tr} A<\mathbb{1}$, then there exists the unique solution $\boldsymbol{x}=A^{+} \boldsymbol{b}$;
2) if $\operatorname{Tr} A=\mathbb{1}$, then $\boldsymbol{x}=A^{+} \boldsymbol{b} \oplus A^{*} \boldsymbol{v}$ for all $\boldsymbol{v} \in \mathbb{R}^{n}$;
3) if $\operatorname{Tr} A>\mathbb{1}$, then with the condition $\boldsymbol{b}=\mathbb{0}$, there exists only the solution $\boldsymbol{x}=\mathbb{0}$, whereas with $\boldsymbol{b} \neq \mathbb{0}$ there is no solution

Example 3: Schedule Development Problem

Schedule Development Under Mixed Time Constraints

- Consider a project with late finish date constraints in the form

$$
A_{1} \boldsymbol{x} \leq \boldsymbol{b}
$$

- Suppose the project also has early start date constraints imposed

$$
A_{2} \boldsymbol{x}=\boldsymbol{x}
$$

Problem

- Find the vector \boldsymbol{x} to meet the mixed set of precedence constraints

Solution

- Suppose the equation $A_{2} \boldsymbol{x}=\boldsymbol{x}$ has the solution

$$
\boldsymbol{x}=A_{2}^{*} \boldsymbol{v}
$$

- Substitution of the solution into the inequality $A_{1} \boldsymbol{x} \leq \boldsymbol{b}$ gives

$$
A_{1} A_{2}^{*} \boldsymbol{v} \leq \boldsymbol{b}
$$

- The maximum solution of the last inequality takes the form

$$
\boldsymbol{v}=\left(\boldsymbol{b}^{-} A_{1} A_{2}^{*}\right)^{-}
$$

- Therefore, the vector x of activity initiation dates is written as

$$
\boldsymbol{x}=A_{2}^{*}\left(\boldsymbol{b}^{-} A_{1} A_{2}^{*}\right)^{-}
$$

Conclusions Acknowledgments

Conclusions

- A new approach to schedule development is proposed based on idempotent algebra
- The approach offers a convenient algebraic technique to describe and analyze different logical relationships in schedules
- The approach reduces scheduling problems to solution of linear equations in an idempotent semiring
- The solutions to the equations are given in compact vector form
- The approach and related techniques provide the basis for new efficient software solutions for schedule development

Acknowledgments

- The work was supported in part by the Russian Foundation for Basic Research Grant \#09-01-00808.

