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Motivating Example Activity Network Model

Motivating Example: Activity Network Model

Start-to-Finish Precedence Relationship

I Consider a project consisting of n activities
I Every activity finishes as soon as some work is performed within

some other activities
I For each activity i = 1, . . . , n we introduce the notation

xi , the initiation time;
yi , the completion time;
aij , the time activity j takes to do the work that has to be

completed before the completion of activity i

I The completion time of activity i can be represented as

yi = max(x1 + ai1, . . . , xn + ain)
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Motivating Example Activity Network Model

Model Transformation
I Consider the precedence relationship equations

yi = max(x1 + ai1, . . . , xn + ain), i = 1, . . . , n

I Substitution of the symbol ⊕ for max , and ⊗ for + gives

yi = ai1 ⊗ x1 ⊕ · · · ⊕ ain ⊗ xn, i = 1, . . . , n

I With the symbol ⊗ omitted, the equations takes the form

yi = ai1x1 ⊕ · · · ⊕ ainxn, i = 1, . . . , n

(note a formal similarity to equations in the conventional algebra

yi = ai1x1 + · · ·+ ainxn, i = 1, . . . , n)
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Motivating Example Activity Network Model

Vector Representation

I The matrix-vector notation

A =

 a11 · · · a1n
...

. . .
...

an1 · · · ann

 , x =

 x1
...
xn

 , y =

 y1
...
yn


I The precedence relationship equation in the vector form

y = Ax

(matrix-vector multiplication is performed in the usual way with the
standard addition and multiplication replaced with ⊕ and ⊗ )
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Motivating Example Activity Network Model

A Network and Its Matrix
I An activity network
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I The network precedence relationship matrix ( 0 = −∞ )

A =


8 10 0 0

0 5 4 8
6 12 11 7
0 0 0 12


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Motivating Example Schedule Development Problem

Schedule Development Problem

Schedule Development Under Late Finish Date Constraints

I Suppose each activity i = 1, . . . , n is subject to the time constraint
bi , the late finish date

I The vector notation: b = (b1, . . . , bn)
T

Problem
I Find the vector x of start dates to meet the condition y = b

I The solution satisfies the linear equation of the first kind

Ax = b

in a semiring with the operations ⊕ = max and ⊗ = +

N. Krivulin (SPbSU) An Algebraic Approach AMICT’2010 7 / 22



Idempotent Algebra Notation and References

Idempotent Algebra: Notation and References

Idempotent Semiring Rmax,+

I Idempotent semiring (semifield)

Rmax,+ = 〈X,0,1,⊕,⊗〉

I The set: X = R ∪ {−∞}
I The operations: ⊕ = max and ⊗ = +

I Null and identity elements: 0 = −∞ and 1 = 0

I The inverse: for each x ∈ R there exists x−1 (−x in conventional
algebra)

I The power: for each x, y ∈ R one can define xy ( xy in
conventional algebra)
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Idempotent Algebra Notation and References

Matrix Algebra Over Rmax,+

I Addition and multiplication

{A⊕B}ij = {A}ij ⊕ {B}ij , {BC}ij =
⊕
k

{B}ik{C}kj

I Identity and null matrices: I = diag(1, . . . ,1) and 0 = (0)

I The power: A0 = I , Ak+l = AkAl for all integer k, l ≥ 0

I The norm and trace: for any matrix A = (aij)

‖A‖ =
⊕
i,j

aij , trA =
⊕
i

aii

I The pseudoinvers: for any matrix A = (aij) there exists
A− = (a−ij) with a−ij = a−1

ji , if aji 6= 0 , and a−ij = 0 , otherwise
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Idempotent Algebra Notation and References
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Solution to Motivating Example Linear Equations of the First Kind

Solution to Example: First Kind Linear Equations

Problem
I Given a (m× n) -matrix A and a vector b ∈ Rm , find the solution

x ∈ Rn of the first kind equation

Ax = b

Theorem (Existence and Uniqueness)

1. The equation has a solution if and only if (A(b−A)−)−b = 1

2. The maximum solution, if any, takes the form x = (b−A)−

3. If the columns of A form a minimal set generating b , then the
solution is unique
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Solution to Motivating Example Linear Equations of the First Kind

General Solution
I For the matrix A , consider a minimal subset of its columns

generating b , and denote the set of the column indices by J

I Let J be the set of all the subsets J

I Let GJ be the diagonal matrix that has its diagonal entry in row i
set to 0 , if i ∈ J , and to 1 , otherwise

Theorem
The general solution of the first kind equation is the family

xJ = (b−A⊕ vTGJ)
−, v ∈ Rn, J ∈ J

Corollary
The solution of the inequality Ax ≤ b is given by x ≤ (b−A)−
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Example 2: Start-to-Start Constraints Activity Network Model

Example 2: Activity Network Model

Start-to-Start Precedence Relationship

I A project involves n activities
I Every activity starts not earlier than some work is performed

within some other activities
I For each activity i = 1, . . . , n we introduce the notation

xi , the initiation time;
yi , the completion time;
aij , the time activity j takes to do the work that has to be

completed before the start of activity i

I The initiation time of activity i satisfies the condition

xi ≥ max(x1 + ai1, . . . , xn + ain)
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Example 2: Start-to-Start Constraints Activity Network Model

Model Representation

I In terms of Rmax,+ , the precedence relationships take the form

xi ≥ ai1x1 ⊕ · · · ⊕ ainxn, i = 1, . . . , n

I With the matrix-vector notation, we arrive at the inequality

Ax ≤ x

Problem
I Find the vector x that satisfies the precedence constraints
I Of particular interest is the solution of the homogeneous linear

equation of the second kind

Ax = x
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Example 2: Start-to-Start Constraints Activity Network Model

A Network and Its Matrix
I An activity network
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I The network precedence relationship matrix ( 0 = −∞ )

A =


0 −2 0 0

0 0 3 −1
−1 0 0 −4
2 0 0 0


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Example 2: Start-to-Start Constraints Schedule Development Problem

Schedule Development Problem

Schedule Development Under Early Start Date Constraints

I Suppose each activity i = 1, . . . , n is subject to the time constraint
bi , the early start date

I The vector notation: b = (b1, . . . , bn)
T

Problem
I Find a vector x so as to meet the conditions

Ax = x, x ≥ b

I The solution satisfies the nonhomogeneous linear equation of the
second kind

Ax⊕ b = x
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Example 2: Start-to-Start Constraints Linear Equations of the Second Kind

Linear Equations of the Second Kind

Problem: Solution for Homogeneous Bellman Equation

I Given a (n× n) -matrix A , find a solution x ∈ Rn of the equation

Ax = x

Problem: Solution for Nonhomogeneous Bellman Equation

I Given a (n× n) -matrix A and a vector b ∈ Rn , find a solution
x ∈ Rn of the equation

Ax⊕ b = x
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Example 2: Start-to-Start Constraints Linear Equations of the Second Kind

Solution
I For each (n× n) -matrix A , we introduce the matrices

A+ = I ⊕A⊕ · · · ⊕An−1, A× = AA+ = A⊕ · · · ⊕An,

and the symbol

TrA =

n⊕
m=1

trAm

I Provided that TrA = 1 , we define the matrix A∗ with the columns

a∗
i =

{
a+
i , if a×ii = 1,

0, otherwise,

where a+
i is column i of A+ , and a×ii is entry (i, i) of A×
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Example 2: Start-to-Start Constraints Linear Equations of the Second Kind

Lemma
Let x be the general solution of the homogeneous equation with an
irreducible matrix. Then it holds

1) if TrA = 1 , then x = A∗v for all v ∈ Rn ;
2) if TrA 6= 1 , then there exists only the solution x = 0

Theorem
Let x be the general solution of the nonhomogeneous equation with
an irreducible matrix. Then it holds

1) if TrA < 1 , then there exists the unique solution x = A+b ;
2) if TrA = 1 , then x = A+b⊕A∗v for all v ∈ Rn ;
3) if TrA > 1 , then with the condition b = 0 , there exists only the

solution x = 0 , whereas with b 6= 0 there is no solution
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Example 3: Mixed Constraints Schedule Development Problem

Example 3: Schedule Development Problem

Schedule Development Under Mixed Time Constraints

I Consider a project with late finish date constraints in the form

A1x ≤ b

I Suppose the project also has early start date constraints imposed

A2x = x

Problem
I Find the vector x to meet the mixed set of precedence constraints
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Example 3: Mixed Constraints Schedule Development Problem

Solution
I Suppose the equation A2x = x has the solution

x = A∗
2v

I Substitution of the solution into the inequality A1x ≤ b gives

A1A
∗
2v ≤ b

I The maximum solution of the last inequality takes the form

v = (b−A1A
∗
2)

−

I Therefore, the vector x of activity initiation dates is written as

x = A∗
2(b

−A1A
∗
2)

−
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Conclusions Acknowledgments

Conclusions
I A new approach to schedule development is proposed based on

idempotent algebra
I The approach offers a convenient algebraic technique to describe

and analyze different logical relationships in schedules
I The approach reduces scheduling problems to solution of linear

equations in an idempotent semiring
I The solutions to the equations are given in compact vector form
I The approach and related techniques provide the basis for new

efficient software solutions for schedule development
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