An Algebraic Approach to Scheduling Problems in Project Management

Nikolai Krivulin

Faculty of Mathematics and Mechanics Saint Petersburg State University

E-mail: nkk<at>math.spbu.ru URL: http://www.math.spbu.ru/user/krivulin/

Annual International Workshop on Advances in Methods of Information and Communication Technology Petrozavodsk, 2010

《曰》 《聞》 《臣》 《臣》 三臣 …

Outline

Motivating Example

Activity Network Model Schedule Development Problem Idempotent Algebra Notation and References Solution to Motivating Example Linear Equations of the First Kind Example 2: Start-to-Start Constraints Activity Network Model Schedule Development Problem Linear Equations of the Second Kind

Example 3: Mixed Constraints

Schedule Development Problem

Conclusions

Acknowledgments

N. Krivulin (SPbSU)

An Algebraic Approach

2/22

AMICT'2010

Motivating Example: Activity Network Model

Start-to-Finish Precedence Relationship

- Consider a project consisting of *n* activities
- Every activity finishes as soon as some work is performed within some other activities
- For each activity $i = 1, \ldots, n$ we introduce the notation
 - x_i , the initiation time;
 - y_i , the completion time;
 - a_{ij} , the time activity j takes to do the work that has to be completed before the completion of activity i
- The completion time of activity i can be represented as

$$y_i = \max(x_1 + a_{i1}, \dots, x_n + a_{in})$$

N. Krivulin (SPbSU)

・ロット (雪) (き) (き) (き)

Model Transformation

Consider the precedence relationship equations

$$y_i = \max(x_1 + a_{i1}, \dots, x_n + a_{in}), \quad i = 1, \dots, n$$

 \blacktriangleright Substitution of the symbol \oplus for \max , and \otimes for + gives

$$y_i = a_{i1} \otimes x_1 \oplus \cdots \oplus a_{in} \otimes x_n, \quad i = 1, \dots, n$$

► With the symbol ⊗ omitted, the equations takes the form

$$y_i = a_{i1}x_1 \oplus \cdots \oplus a_{in}x_n, \quad i = 1, \dots, n$$

(note a formal similarity to equations in the conventional algebra

$$y_i = a_{i1}x_1 + \dots + a_{in}x_n, \quad i = 1, \dots, n$$

N. Krivulin (SPbSU)

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Vector Representation

► The matrix-vector notation

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}, \quad \boldsymbol{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \quad \boldsymbol{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

The precedence relationship equation in the vector form

$$y = Ax$$

(matrix-vector multiplication is performed in the usual way with the standard addition and multiplication replaced with \oplus and \otimes)

N. Krivulin (SPbSU)

An Algebraic Approach

AMICT'2010 5 / 22

・ロット 御マ キョット きょう

A Network and Its Matrix

An activity network

• The network precedence relationship matrix ($\mathbb{O} = -\infty$)

$$A = \begin{pmatrix} 8 & 10 & 0 & 0 \\ 0 & 5 & 4 & 8 \\ 6 & 12 & 11 & 7 \\ 0 & 0 & 0 & 12 \end{pmatrix}$$

N. Krivulin (SPbSU)

Schedule Development Problem

Schedule Development Under Late Finish Date Constraints

- ► Suppose each activity i = 1,...,n is subject to the time constraint b_i, the late finish date
- The vector notation: $\boldsymbol{b} = (b_1, \dots, b_n)^T$

Problem

- Find the vector x of start dates to meet the condition y = b
- The solution satisfies the linear equation of the first kind

$$A \boldsymbol{x} = \boldsymbol{b}$$

in a semiring with the operations $\,\oplus=\max\,$ and $\,\otimes=+$

N. Krivulin (SPbSU)

An Algebraic Approach

Idempotent Algebra: Notation and References

Idempotent Semiring $\ \mathbb{R}_{\max,+}$

Idempotent semiring (semifield)

$$\mathsf{R}_{\max,+} = \langle \mathbb{X}, \mathbb{0}, \mathbb{1}, \oplus, \otimes \rangle$$

• The set:
$$\mathbb{X} = \mathbb{R} \cup \{-\infty\}$$

- The operations: $\oplus = \max$ and $\otimes = +$
- Null and identity elements: $0 = -\infty$ and 1 = 0
- ► The inverse: for each $x \in \mathbb{R}$ there exists x^{-1} (-x in conventional algebra)
- ► The power: for each $x, y \in \mathbb{R}$ one can define x^y (*xy* in conventional algebra)

N. Krivulin (SPbSU)

An Algebraic Approach

AMICT'2010 8 / 22

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

Matrix Algebra Over $\mathbb{R}_{\max,+}$

Addition and multiplication

$${A \oplus B}_{ij} = {A}_{ij} \oplus {B}_{ij}, \quad {BC}_{ij} = \bigoplus_k {B}_{ik} {C}_{kj}$$

- Identity and null matrices: $I = \operatorname{diag}(1, \ldots, 1)$ and 0 = (0)
- The power: $A^0 = I$, $A^{k+l} = A^k A^l$ for all integer $k, l \ge 0$
- The norm and trace: for any matrix $A = (a_{ij})$

$$||A|| = \bigoplus_{i,j} a_{ij}, \quad \text{tr} A = \bigoplus_i a_{ii}$$

▶ The pseudoinvers: for any matrix $A = (a_{ij})$ there exists $A^- = (a_{ij}^-)$ with $a_{ij}^- = a_{ji}^{-1}$, if $a_{ji} \neq 0$, and $a_{ij}^- = 0$, otherwise

N. Krivulin (SPbSU)

・ロト ・ 同ト ・ ヨト・

Early Publications

N.N. Vorob'ev (1963), A.A. Korbut (1965), I.V. Romanovskii (1967)

Books

- R.A. Cuninghame-Green (1979), B. Carré (1979)
- U. Zimmermann (1981), F. Baccelli et al (1992)
- V.P. Maslov, V.N. Kolokol'tsov (1994), J.S. Golan (1999)
- B. Heidergott et al (2006), N.K. Krivulin (2009)

Hundreds of Contributing Papers

- V.P. Maslov, G.L. Litvinov, G.B. Shpiz, A.N. Sobolevskii,
 V.D. Matveenko, S.L. Blyumin
- G.J. Olsder, B. Heidergott, S. Gaubert, B. De Schutter, G. Cohen

N. Krivulin (SPbSU)

. . .

An Algebraic Approach

(金田) (金田)

Solution to Example: First Kind Linear Equations

Problem

• Given a $(m \times n)$ -matrix A and a vector $b \in \mathbb{R}^m$, find the solution $x \in \mathbb{R}^n$ of the first kind equation

$$A \boldsymbol{x} = \boldsymbol{b}$$

Theorem (Existence and Uniqueness)

- 1. The equation has a solution if and only if $(A(b^{-}A)^{-})^{-}b = 1$
- 2. The maximum solution, if any, takes the form $\boldsymbol{x} = (\boldsymbol{b}^{-}A)^{-}$
- 3. If the columns of A form a minimal set generating b, then the solution is unique

N. Krivulin (SPbSU)

ヘロン 人間と 人間と 人間と

General Solution

- For the matrix A, consider a minimal subset of its columns generating b, and denote the set of the column indices by J
- Let \mathcal{J} be the set of all the subsets J
- ▶ Let G_J be the diagonal matrix that has its diagonal entry in row i set to 0, if $i \in J$, and to 1, otherwise

Theorem

The general solution of the first kind equation is the family

$$\boldsymbol{x}_J = (\boldsymbol{b}^- A \oplus \boldsymbol{v}^T G_J)^-, \quad \boldsymbol{v} \in \mathbb{R}^n, \quad J \in \mathcal{J}$$

Corollary

The solution of the inequality $Ax \le b$ is given by $x \le (b^-A)^-$

N. Krivulin (SPbSU)

(문) (문)

Example 2: Activity Network Model

Start-to-Start Precedence Relationship

- A project involves n activities
- Every activity starts not earlier than some work is performed within some other activities
- For each activity $i = 1, \ldots, n$ we introduce the notation
 - x_i , the initiation time;
 - y_i , the completion time;
 - a_{ij} , the time activity j takes to do the work that has to be completed before the start of activity i
- The initiation time of activity i satisfies the condition

$$x_i \ge \max(x_1 + a_{i1}, \dots, x_n + a_{in})$$

N. Krivulin (SPbSU)

An Algebraic Approach

<ロ> (四) (四) (三) (三) (三) (三)

Model Representation

 \blacktriangleright In terms of $\,\mathbb{R}_{\max,+}$, the precedence relationships take the form

 $x_i \ge a_{i1}x_1 \oplus \cdots \oplus a_{in}x_n, \quad i = 1, \dots, n$

With the matrix-vector notation, we arrive at the inequality

 $A \boldsymbol{x} \leq \boldsymbol{x}$

Problem

- Find the vector x that satisfies the precedence constraints
- Of particular interest is the solution of the homogeneous linear equation of the second kind

$$Ax = x$$

N. Krivulin (SPbSU)

An Algebraic Approach

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

A Network and Its Matrix

An activity network

• The network precedence relationship matrix ($0 = -\infty$)

$$A = \begin{pmatrix} 0 & -2 & 0 & 0 \\ 0 & 0 & 3 & -1 \\ -1 & 0 & 0 & -4 \\ 2 & 0 & 0 & 0 \end{pmatrix}$$

N. Krivulin (SPbSU)

An Algebraic Approach

AMICT'2010 15 / 22

(日) (圖) (E) (E) (E)

Schedule Development Problem

Schedule Development Under Early Start Date Constraints

- ► Suppose each activity i = 1,...,n is subject to the time constraint b_i, the early start date
- The vector notation: $\boldsymbol{b} = (b_1, \dots, b_n)^T$

Problem

Find a vector x so as to meet the conditions

$$A \boldsymbol{x} = \boldsymbol{x}, \quad \boldsymbol{x} \ge \boldsymbol{b}$$

The solution satisfies the nonhomogeneous linear equation of the second kind

$$A \boldsymbol{x} \oplus \boldsymbol{b} = \boldsymbol{x}$$

N. Krivulin (SPbSU) An Algebraic Approach AMICT'2010 16 / 22

Linear Equations of the Second Kind

Problem: Solution for Homogeneous Bellman Equation

• Given a $(n \times n)$ -matrix A, find a solution $\boldsymbol{x} \in \mathbb{R}^n$ of the equation

 $A\boldsymbol{x} = \boldsymbol{x}$

Problem: Solution for Nonhomogeneous Bellman Equation

• Given a $(n \times n)$ -matrix A and a vector $b \in \mathbb{R}^n$, find a solution $x \in \mathbb{R}^n$ of the equation

$$A \boldsymbol{x} \oplus \boldsymbol{b} = \boldsymbol{x}$$

N. Krivulin (SPbSU)

An Algebraic Approach

AMICT'2010 17 / 22

◆□ → ◆圖 → ◆画 → ◆画 → 一画

Solution

 \blacktriangleright For each $(n\times n)$ -matrix A , we introduce the matrices

$$A^+ = I \oplus A \oplus \dots \oplus A^{n-1}, \qquad A^{\times} = AA^+ = A \oplus \dots \oplus A^n,$$

and the symbol

$$\operatorname{Tr} A = \bigoplus_{m=1}^{n} \operatorname{tr} A^{m}$$

• Provided that $\operatorname{Tr} A = 1$, we define the matrix A^* with the columns

$$oldsymbol{a}_i^* = egin{cases} oldsymbol{a}_i^+, & ext{if } a_{ii}^ imes = \mathbb{1}, \ \mathbb{0}, & ext{otherwise}, \end{cases}$$

where a_i^+ is column *i* of A^+ , and a_{ii}^{\times} is entry (i,i) of A^{\times}

N. Krivulin (SPbSU)

ヘロト 人間 とくほとくほとう

Lemma

Let x be the general solution of the homogeneous equation with an irreducible matrix. Then it holds

1) if $\operatorname{Tr} A = \mathbb{1}$, then $\boldsymbol{x} = A^* \boldsymbol{v}$ for all $\boldsymbol{v} \in \mathbb{R}^n$;

2) if $\operatorname{Tr} A \neq \mathbb{1}$, then there exists only the solution $x = \mathbb{0}$

Theorem

Let x be the general solution of the nonhomogeneous equation with an irreducible matrix. Then it holds

- 1) if $\operatorname{Tr} A < 1$, then there exists the unique solution $x = A^+ b$;
- 2) if $\operatorname{Tr} A = 1$, then $\boldsymbol{x} = A^+ \boldsymbol{b} \oplus A^* \boldsymbol{v}$ for all $\boldsymbol{v} \in \mathbb{R}^n$;
- 3) if Tr A > 1, then with the condition b = 0, there exists only the solution x = 0, whereas with b ≠ 0 there is no solution

N. Krivulin (SPbSU)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Example 3: Schedule Development Problem

Schedule Development Under Mixed Time Constraints

Consider a project with late finish date constraints in the form

 $A_1 \boldsymbol{x} \leq \boldsymbol{b}$

Suppose the project also has early start date constraints imposed

$$A_2 \boldsymbol{x} = \boldsymbol{x}$$

Problem

Find the vector x to meet the mixed set of precedence constraints

・ロト ・ 理 ト ・ ヨ ト ・

Solution

• Suppose the equation $A_2 x = x$ has the solution

$$\boldsymbol{x} = A_2^* \boldsymbol{v}$$

Substitution of the solution into the inequality $A_1 x \leq b$ gives

$$A_1 A_2^* \boldsymbol{v} \le \boldsymbol{b}$$

The maximum solution of the last inequality takes the form

$$\boldsymbol{v} = (\boldsymbol{b}^- A_1 A_2^*)^-$$

Therefore, the vector x of activity initiation dates is written as

$$x = A_2^* (b^- A_1 A_2^*)^-$$

N. Krivulin (SPbSU)

An Algebraic Approach

AMICT'2010 21 / 22

・ロト ・ 同ト ・ ヨト ・ ヨト

Conclusions

- A new approach to schedule development is proposed based on idempotent algebra
- The approach offers a convenient algebraic technique to describe and analyze different logical relationships in schedules
- The approach reduces scheduling problems to solution of linear equations in an idempotent semiring
- The solutions to the equations are given in compact vector form
- The approach and related techniques provide the basis for new efficient software solutions for schedule development

Acknowledgments

The work was supported in part by the Russian Foundation for Basic Research Grant #09-01-00808.

N. Krivulin (SPbSU)

An Algebraic Approach

AMICT'2010 22 / 22

・ロト ・ 理 ト ・ ヨ ト ・