
The optimal implementation of n FIFO-queues
in single-level memory.

Prof. A.V. Sokolov, A.V. Drac
IAMR KarRC RAS, Petrozavodsk State University,
Petrozavodsk.

AMICT – 2010
Petrozavodsk.

2

Introduction
In many applications there is a problem of allocation of multiple queues in single-level memory. There
are two fundamentally different ways of organizing work with dynamic data structures – consecutive
and linked allocation.
In the case of sequential presentation all the memory is splitted into several parts and each queue is
allocated in separate section of memory. In this case we will have losses of memory when any queue
overflow and other data structures don’t overflow.

Figure 1: The consecutive implementation

The linked list implementation is the second method. In this view the data structure is stored as a
list. In this case any number of elements of the lists can coexist in the fast memory area until the free
memory is exhausted. But on the other hand, this approach requires an additional link field for each
element.

Figure 2: The linked list implementation

3

The problem
We suppose that if any queue allocates all its memory then all elements will be discarded until the
appearance of the free memory (i.e. until the exclusion from queue). Overflow is a typical not an
emergency situation. Such behaviour is called the “reset tail“.
We also suppose that the time is discrete and in the case of exclusion from an empty data structure
there is no shutdown.
We will adhere to the following notation:

• m – size of memory,

• n – number of queues in the memory,

• pj – probability of insertion of an element into the j-th queue,

• qj – probability of deletion of an element from the j-th queue,

• r – probabilitiy of operation which doesn’t change the data structure length (for example only
reading),

• kj – size of memory separated to the queue with number j with sequential presentation,

• l – the ratio of the size of node to the size of a pointer (for the linked presentation),

• P ∗ – the part of time which the system is situated in the state of “reset tail“.

We assume and the probabilities pj, qj, r are known. The problem is to find the part of time which
the system is situated in the state of “reset tail“ and find the optimal partition of memory in case of
consecutive presentation.

4

One queue
Consider one FIFO-queue in the memory of size m and build a homogeneous Markov’s chain with

m + 2 states, where states with numbers 0 . . . m corespond to the number fo elements in queue and the
state with number m + 1 coresponds the state of “reset tail“. Build a matrix of transition probabilities
P : 

q + r p 0 0 . . . 0 0 0 0 0

q r p 0 . . . 0 0 0 0 0

0 q r p . . . 0 0 0 0 0

. .

0 0 0 0 . . . q r p 0 0

0 0 0 0 . . . 0 q r p 0

0 0 0 0 . . . 0 0 q r p

0 0 0 0 . . . 0 0 q r p


The component αm+1 of the limit vector is needed to be find from the equations (αP = α, α0 + ... +

αm+1 = 1). The part of time which system is situated in the state of “reset tail“ is equal to:

αm+1 =


q − p(q

p

)m+1

− 1
q 6= p

p

m + 1
q = p

(1)

5

Consecutive allocation of the queues
Consider k1, . . . , kn is the fixed partition of the memory.
As the mathematical model we consider the random walk on an integer lattice space inside n-dimensional
parallelepiped with vertex at the origin, edges parallel to the axes and the lengths of edges k1, . . . , kn.
(i1, . . . , in) is the state of the system. 0 ≤ i1 ≤ k1 + 1, . . . , 0 ≤ in ≤ kn + 1.
ij = kj + 1 – the states of “reset tail“.
αi1...in it the limit probability which system is situated in the state (i1, . . . , in).
The problem is to find the part of time from the equations (αP = α, ||α||1 = 1).

Figure 3: n = 2, m = 17, k1 = 10, k2 = 7

6

Consecutive allocation of the queues
I1 = {j : ij = 0}
I2 = {j : 1 ≤ ij ≤ kj − 2}
I3 = {j : ij = kj − 1}
I4 = {j : ij = kj}
I5 = {j : ij = kj + 1}
The solve of the equation is:

αi1...in = C

(
p1

q1

)i1

. . .

(
pn

qn

)in

1−
∑
j∈I4

pj

 I5 = ∅

αi1...ij ...in = C

(
p1

q1

)i1

. . .

(
pj

qj

)ij−1

. . .

(
pn

qn

)in

pj I5 = {j}

The constant C can be found from the normalization equation. The part of time which the system is
situated in the state of “reset tail“ is equal to:

P ∗ =

n∑
i=1

p∗i =

s∑
i=1

qi − pi(
qi

pi

)ki+1

− 1

+

n∑
i=s+1

pi

ki + 1

7

The optimal partition of memory
1. The case of equal probabilities pi = qi. The problem is to find

min
k1+···+kn=m

n∑
i=1

pi

ki + 1

Consider the function

F (k1, k2, . . . , kn−1) =

n−1∑
i=1

pi

ki + 1
+

pn

m−
n−1∑
i=1

ki + 1

and find its minimum considering conditions ki > 0, k1 + ... + kn−1 < m:

k∗i =
(m + n)

√
pi

n∑
l=1

√
pl

− 1 1 ≤ i ≤ n− 1

The minimum part of time which the system is situated in the state of “reset tail“ is equal to:

n∑
i=1

pi

k∗i + 1
=

n∑
i=1

(1

m + n

√
pi

n∑
l=1

√
pi

)
=

(n∑
i=1

√
pi

)2

m + n

8

The optimal partition of memory
2. The general case.

Denote Zm – part of time which system is situated it the state of “reset tail“ in the case of optimal
partition of memory of size m.

Zm(k1, . . . , kn) = min
k1+···+kn=m

n∑
i=1

p∗i (ki)

p∗i is the part of time which i-th queue is situated in the state of “reset tail“.
Consider the recurrence relation

Zm(k1, . . . , kn) = Zm−1 − max
1≤i≤n

(p∗i (ki)− p∗i (ki + 1))

The start value Z0 is equal to

Z0(0, . . . , 0) =

n∑
i=1

pi

I.e. in the case of lack of memory, any attempt of insertion will lead to the lost of element.
Using this scheme it is possible to calculate the optimal partition of memory and part of time which
system is situated in the state of “reset tail“ over the time O(mn)

9

The linked list implementation
As the mathematical model we consider the random walk on the integer lattice in n-dimensional

pyramid with edges 0 ≤ i1 ≤ M, 0 ≤ i2 ≤ M, . . . , 0 ≤ in ≤ M and base i1 + i2 + · · · + in = M .
(M = m(1− 1

l))

(i1, . . . , in) is the state of the system.
The problem is to find the part of time from the equations (αP = α, ||α||1 = 1).

Figure 4: n = 2, M = 7

10

The linked list implementation
The solve of the equation is:

αi1i2...in = C

(
p1

q1

)i1

. . .

(
pn

qn

)in

0 ≤ i1 + · · · + in ≤ M − 1

αi1i2...in = C(1− p1 − · · · − pn)

(
p1

q1

)i1

. . .

(
pn

qn

)in

i1 + · · · + in = M

αi1i2...in = C(p1 + · · · + pn)

(
p1

q1

)i1

. . .

(
pn

qn

)in

i1 + · · · + in = M

The constant C can be found from the normalization equation.

1. The case of different probabilities: pi/qi 6= pj/qj and pi 6= qi

Denote xi = pi/qi, then the part of time which system is situated in the state of “reset tail“ is equal to:

P ∗ = (p1 + · · · + pn)

n∑
i=1

xM+n−1
i

n∏
j=1
j 6=i

(xi − xj)

n∑
i=1

xM+n
i

(xi − 1)
n∏

j=1
j 6=i

(xi − xj)
+

1
n∏

j=1

(1− xj)

11

The linked list implementation
2. The general case:

There is k0 queues where pi = qi.
There is k1 queues where pi1/qi1 = x1.
...
There is ks queues where pis/qis = xs.
The part of time which the system is situated in the state of “reset tail“ is equal to:

P ∗ = k0(p0k0 + · · · + psks)

∂n−s−1

∂k0−1x0∂k1−1x1 . . . ∂ks−1xs

{
s∑

i=0

xM+n−1
i

s∏
j=0
j 6=i

(xi − xj)

}

∂n−s

∂k0x0∂k1−1x1 . . . ∂ks−1xs

{
s∑

i=0

xM+n
i

s∏
j=0
j 6=i

(xi − xj)

}

12

Comparison between consecutive and linked presentations
1. p1 > q1 and

p1

q1
>

pi

qi
for i = 2, . . . , n.

Consecutive implementation:

P ∗ →
n∑

i=1

max(pi − qi, 0)

Linked list implementation:

P ∗
l → (p1 + · · · + pn)

(
p1 − q1

p1

)
= (p1 + · · · + pn)

(
1− q1

p1

)
P ∗

c < P ∗
l even when the size of memory is rather small

2. pi = qi for i = 1, . . . , n.

P ∗
c ≤

n

m + n
P ∗

l =
n

M + n
P ∗

c < P ∗
l

3. pi < qi for i = 1, . . . , n. and
p1

q1
>

pi

qi

P ∗
c ≈

1

exp

(
m− n

n∑
i=1

1

log(qi
pi

)

− log n

) = O
(

exp

(
− m

n∑
i=1

1

log(qi
pi

)

))

P ∗
l = O

((
q1

p1

)M)
= O

(
exp
(
−m(1− 1

l
) log

q1

p1

))

