

Publish/Subscribe for the Internet

AMICT'2010, Petrozavodsk, 2010-05-25
Dr. Arto Karila, Helsinki Institute for Information Technology

New paradigm

PSIRP

- 2.5-year FP7 project
- Design, implement, and validate an entirely information-centric pub/sub-based Internet architecture through all the layers

Clean slate approach

Data published once, received multiple times

- Asynchronous multicast, timely separated requests
- Data delivery from caches instead of the actual source

Data-centric publish/subscribe

- The publisher and the subscriber are decoupled in time and space, with the publication in the middle
- Publication = persistent, immutable association between an ID and the data value created by the publisher
- Immutability of publications enables caching in the network
- Structured identifier-space
 - Streaming media with Algorithmic Identifiers

PSIRP identifiers

PSIRP component wheel

RTFM architecture

- Rendezvous matching publish and subscribe events
- Topology network topology knowledge, path creation
- Forwarding fast delivery

Concrete Results

- An open-source implementation of the core architecture:
 - FreeBSD-based BlackHawk prototype (end node)
 - NetFPGA based fast forwarding and encryption
 - Working Rendezvous Server and Topology Manager
- Some test applications, including:
 - Multicast BitTorrent
 - Firefox plug-in
 - Socket emulator
- All of the components above are already working but the integration is still not complete
- An integrated system, including some applications, will be demonstrated at ICT 2010 in Brussels in September

Implementation

- NS3 simulator
- FreeBSD 7.x : end-host + forwarding
- NetFPGA : Forwarding
- BSD & NetFPGA Implementations available at http://www.psirp.org

Testbed

- The PSIRP implementation is validated on a relatively large and real-life-like testbed
- The University of Cambridge and the University of Essex are testing PSIRP over an optical connection between them
- VPN connections will be created to the other partners: Aachen, Athens, Helsinki and Sofia
- PSIRP is cooperating with OneLab2 under FIRE
- The University of Essex is integrating the Blackhawk with campus-wide wireless network (using a dedicated SSID) accessible to 2500+ students in their dorms
- Helsinki University of Technology is running a code camp where students develop applications on the BlackHawk
- Interested parties are invited to join in the testbed the hardware is inexpensive and the software is downloadable at http://www.psirp.org

Experimentation

Bloom filters – basic idea

Link IDs and forwarding Bloom filters (zFilters)

- No names for nodes
 - Each link is identified with a unidirectional Link ID
- Link IDs
 - Statistically unique
 - Periodically changing
 - Size e.g. 256 bits
 - Local or centrally controlled
- Source routing
 - Include all Link IDs into a Bloom filter
 - Multicasting supported
- "Stateless"

Forwarding Decision

Forwarding decision based on binary AND and CMP

- zFilter in the packet matched with all outgoing Link IDs
- Multicasting: zFilter contains more than one outgoing links

Using Link Identity Tags (LIT)

- Make results better with a simple trick
 - Define d different LITs instead of a single LID
 - LIT has the same size as LID, and also k bits set to 1
 - [Power of choices]
- Route creation and packet forwarding
 - Calculate d different candidate zFilters
 - Select the best performing zFilter, based on some policy

Virtual Trees

- Popular paths can be merged into virtual trees
 - A single Link ID for the tree
 - Additional state in the forwarding nodes
 - Increase scalability

Virtual B->C->D->E 0 0 1 0 1 0 0 0 1

Summary of LIPSIN and zFilters

- Link-identity-based source routing
- Stateless small-group multicast and unicast
- Small forwarding table
- Very simple forwarding decision
- Preventing unwanted traffic
 - No possibility to send data by guessing the destination
- Forwarding implemented in both software and hardware

Conclusions

- During the 2.5 years we have defined, implemented and tested an entirely pub/sub based internet architecture
- The system appears to work, scale, and offer some clear benefits over conventional end-point-centric networking
- Because of the iterative ("life-cycle") mode of working, the current prototype is not the latest version of the architecture
- In the new PURSUIT project we'll expand the work towards:
 - Applications
 - Wireless
 - Optical
- We need human-understandable naming
- Academic dissemination appears to be the way to ultimately get these new ideas into deployment

18