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Preface 1

Preface

The Annual International Seminar ”Advances in Methods of Information
and Communication Technology” AMICT is a direct continuation of the
”Finnish Data Processing Week at the Petrozavodsk State University”.
FDPW was originally started in 1994 as a guest lecturers’ week, where the
presentations came from the University of Helsinki. However, the frame
of FDPW very soon developed to a research-oriented seminar with pre-
sentations from various Finnish, Karelian, and Russian computer science
departments, research institutions, and even from industry. An interested
reader finds a more detailed description of the FDPW history on the www
page http://www.cs.karelia.ru/fdpw/index.php.en.

This eleventh volume of the Proceedings of the Annual Finnish Data
Processing Week / Advances in Methods of Information and Communica-
tion Technology contains selected presentations from two seminars, AMICT
2010 organized 25.–26.5. 2010, and AMICT 2011 organized 27.–28.5. 2011.

In 2010 we also had the honor of having a long-standing collaborator
of the seminar, Prof. Timo Alanko from University of Helsinki, attending
the seminar as a special guest.

The two seminars combined consisted of 15 technical presentations, 4
keynote speeches, and a demo session in AMICT 2010 showing student
projects with Maemo. Participants in the seminars came from University of
Helsinki, Petrozavodsk State University, Saint Petersburg State University,
and the Karelian Research Center of the Russian Academy of Science. Out
of the seminar presentations, these proceedings contain 10 papers from the
technical paper sessions.

I. L. Bratchikov and A. A. Popov use genetic programming in their
article to recognize typewritten symbols. Genetic programming is a special
case of genetic algorithms and has the potential to be used to optimize
computer programs.

N. K. Krivulin’s article focuses on scheduling problems in project man-
agement and proposes algebraic solutions. The solutions are given in a
compact vector form and provide a basis for developing efficient algorithms.

E. V. Morozov and A. S. Rumyantsev study moment properties and
long-range dependence of queueing processes. They empirically extend
known results on long-range dependence to a 2-station tandem system.

M. Paksula presents an introduction into how Redis, a persistent and
fast key-value database stores data. The article also provides a pattern to
persist simple objects. This pattern focuses on consistency under race and
failure conditions.
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The paper of A. V. Sokolov and A. V. Drac considers the optimal imple-
mentation of FIFO queues in single-level memory. Their solution is based
on random walks into different areas of n-measured space.

A. S. Rumyantsev and L. V. Potakhina present a case study for opti-
mizing performance in a heavy-tailed system. They consider three cases:
choosing an optimal queueing policy, switching to a multi-server system,
and choosing a task assignment policy. Their goal is to minimize effect of
heavy tails on system performance.

O. V. Lukashenko et al. discuss analytical aspects of regenerative sim-
ulation of fluid models. Their approach combined regenerative methods
with the so-called Delta-method.

Fluid systems are also the topic of another paper by O. V. Lukashenko
and M. Nasadkin, where they simulate fluid systems with long-range depen-
dent input. They focus on fractional Brownian input because its properties
match that of the network traffic to a certain degree.

T. Niklander’s article gives an overview of modern plagiarism detec-
tion tools and presents a more detailed overview of the system TurnItIn.
The article also gives many helpful hints on how to avoid unintentional
plagiarism.

R. S. Goricheva et al. present regenerative simulation of the loss prob-
ability in a finite buffer queue with Brownian input.

We want to express our sincere gratitude to the Rector of the Petroza-
vodsk State University, professor Anatoly V. Voronin, the President of
the University, professor Victor Vasiljev, and to the vice-rectors Natalia
S. Ruzanova, and Natalia V. Dorshakova, who all have provided both or-
ganizational and financial support to the seminars. We are grateful to
professor Esko Ukkonen, the head of the Department of Computer Science
of the University of Helsinki, for the support to the publication of these
proceedings.

We also want to thank everyone involved in organizing the seminars.
The burden of the event organization in Petrozavodsk was shared by Dmitry
Korzun and Dmitry Chistyakov in 2010 and 2011 as well as by Natalia
Kravchenkova in 2011. In Helsinki, the organization was handled by Tiina
Niklander.

The technical editing of the proceedings was carefully done by Liang
Wang and Tiina Niklander (University of Helsinki). This edition of the
proceedings is the first to be published electronically in the University of
Helsinki electronic publication series.

We also gratefully acknowledge the remarkable support we traditionally
have had from the International Offices of our Universities personified by



Preface 3

Päivi Tauriainen and Ljudmila Kulikovskaya.

Dr. Iurii Bogoyavlenskiy, Head of the Department of Computer Science
of the Petrozavodsk State University

Dr. Jussi Kangasharju, Department of Computer Science
of the University of Helsinki
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Typewritten symbols recognition using

Genetic Programming

Prof. Igor L. Bratchikov, Alexei A. Popov

Faculty of Applied Mathematics and Control Processes,
Saint-Petersburg State University

Universitetskii prospekt 35, Petergof, Saint-Petersburg, 198504, Russia

E-mail: {braigor@yandex.ru, popov.lex@mail.ru}

Abstract

Genetic programming is a new technique in Artificial Intelligence based
on the evolutionary algorithms and inspired by biological evolution. As a
matter of fact, genetic programming is a special case of genetic algorithms,
where each individual is a computer program. Therefore, this technique
could be used to optimize a population of computer programs to solve the
problem.
This report demonstrates how genetic programming can be used to solve
the problem of optical character recognition, specifically typewritten sym-
bols. At present, there are many approaches to solve this problem, but all
of them have their own limitations.
The approach given in this report could be successful at learning, maintain-
ing and upgrading rules for typewritten symbols recognition, particularly
in disputable situations. Specific fitness functions, terminals and functions
that satisfy the requirements of a main problem were considered.
This research presents the successful application of genetic programming
to a difficult and topical task.

c© Prof. Igor L. Bratchikov, Alexei A. Popov, 2010
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1 Introduction

Genetic programming (GP) is a new technique in Artificial Intelligence
based on the evolutionary algorithms and inspired by biological evolution.
Basically it is a special case of genetic algorithms, where each individual
is a computer program (usually represented in memory as a tree struc-
tures). This technique could be used to optimize a population of computer
programs to solve the problem.

This paper investigates the use of genetic programming for typewrit-
ten symbols recognition. The term ’recognition’ means the mechanical or
electronic translation of scanned images of printed or typewritten symbols
into machine-encoded text. In practice, it is extremely hard to generate,
maintain and upgrade the system that would be successful in solving the
problem of the character recognition especially as such system would give
the human-competitive results. Generally there is a rule set for each sym-
bol that is presumably true only for that symbol. The main point is that
any changes in a current rule set have to be tested on very large sets to
insure that all examples of the symbol are accepted and all others (wrong
ones) are rejected. Therefore it would be great to design and develop the
system that could easily, fluently and correctly recognize any typewritten
characters.

The main purpose of the research is to estimate the application of GP
for the problem of typewritten symbols recognition.

The principle goals are the following:

• To determine the superiorities (advantages) and disadvantages of GP
in comparison with the other approaches;

• To design and develop the terminals and functions, fitness measure,
certain parameters for controlling the run, the termination criteria
and method for designating the results of the run.

GP has been successfully applied to the simple character recognition
problem [2, 3, 4, 5, 6]. John Koza evolved programs that could recognize
an ’I’ and a ’L’ letters using Boolean templates and control code for moving
the templates. This approach involved low-resolution characters, e.g. 4x6
or 5x5. Later on Andre extended this approach by using programs that
were good for recognition of digits using co-evolved two-dimensional feature
detectors [1, 2]. However, this approach involved low-resolution symbols as
well. So both approaches were good at recognition the limited symbol sets
only.
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Therefore the general task is to define whether GP is a successful tech-
nique in solving the problem of character recognition or not. And in case
of positive result, the principal goal is to apply such technique by designing
and developing the GP-based system that could solve the problem of type-
written symbol recognition. Moreover, such a system can be regarded as
the first stage of the development of a system for recognition of handwritten
symbols.

Let us consider the main principles of GP, its specificity, features and
benefits.

2 Typewritten symbols recognition

2.1 What is GP?

Let us continue by saying a few words about GP. Basically it is an auto-
mated method for creating a computer program from a high-level problem
statement of a specific task. Genetic programming starts from a statement
of ”what needs to be done” and automatically creates a computer program
to solve the problem. GP is a machine learning technique used to opti-
mize a population of computer programs according to a fitness landscape
designed to evaluate the program’s ability to solve a given computational
task [4].

GP evolves computer programs traditionally represented in memory as
tree structures. Trees can be easily evaluated in a recursive manner. Every
tree node has an operator function and every terminal node has an operand
that makes mathematical expressions easy to evolve and evaluate. Thus
traditionally GP favors the use of programming languages that naturally
embody tree structures (for example, Lisp; other functional programming
languages are also suitable).

The fact that genetic programming can evolve entities that are com-
petitive with human-produced results suggests that genetic programming
can be used as an automated invention machine to create new and useful
patentable inventions.

2.2 How does it work?

One of the central challenges of computer science is to force a computer
to do what needs to be done, without specifying how to do it. Genetic
programming starts with a set of thousands of randomly created computer
programs. This population of programs is progressively evolved over a se-
ries of generations. The evolutionary search uses the Darwinian principle
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of natural selection (survival of the fittest) and analogs of various natu-
rally occurring operations, including crossover (sexual recombination), mu-
tation, gene duplication, gene deletion. Sometimes genetic programming
also employs developmental processes by which an embryo grows into fully
developed organism.

Therefore GP is a domain-independent method that genetically breeds
a population of computer programs to solve a problem. Specifically, such
technique iteratively transforms a population of computer programs into
a new generation of programs by applying analogs of naturally occurring
genetic operations. In addition, GP can automatically create a general solu-
tion to a problem in the form of a graphical structure whose nodes or edges
represent components and where the parameter values of the components
are specified by mathematical expressions containing free variables.

However to achieve the goal the user (human) has to specify the follow-
ing preparatory steps:

1 the set of terminals (the independent variables of the problem) for
each branch of the program;

2 the set of functions for each branch of the program;

3 the fitness measure (for implicitly or explicitly measuring the fitness
of individuals in the population);

4 certain parameters for controlling the run;

5 termination criterion and method for designating the result of the
run.

The figure below shows the aforesaid preparatory steps for the basic
version of genetic programming. Those steps are the user-supplied input
to the GP-system. The computer program represents the output of the
genetic programming system.

Genetic programming iteratively transforms a population of computer
programs into a new generation of the population by applying analogs of
naturally occurring genetic operations. These operations are applied to
some individuals selected from the population. They are stochastically se-
lected to participate in the genetic operations based on their fitness (the
third preparatory step). The iterative transformation of the population is
executed inside the main generational loop of the run of genetic program-
ming.

The first two preparatory steps specify the ingredients that are avail-
able to create the computer programs. A run of genetic programming is
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Figure 1: How does GP work

a competitive search among a diverse population of programs composed of
the available functions and terminals.

The important thing to remember is that GP is a highly iterative pro-
cess. It involves nested loops of procedures. The goal is to evolve suc-
cessively better individuals with every generation. Theoretically we might
want to run GP indefinitely, but due to limited computational power, we
need to define some kind of termination criteria.

Generally the termination criteria has two parts, a successful fitness or
a maximum number of generations. We provide GP with some number
and say, if you evolve an individual with fitness better than or equal to
that number, accept it and stop the run. This means that we have found
a solution that is good enough. Alternatively, we want to stop GP from
running too long if it is not progressing. We find that the probability of
making further progress drops with number of generations passed, so we
define some maximum number of generations. If we haven’t succeeded by
so many generations, it might be time to stop and try again.

The whole procedure can be described as follows:

1. Randomly create an initial population (generation 0) of individual
computer programs composed of the available functions and termi-
nals.

2. Iteratively perform the following sub-steps (called a generation) on
the population until the termination criterion is satisfied:

a Execute each program in the population and ascertain its fitness
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(explicitly or implicitly) using the problem’s fitness measure.

b Select one or two individual program(s) from the population
with a probability based on fitness (with reselection allowed) to
participate in the genetic operations in (c).

c Create new individual program(s) for the population by applying
the following genetic operations with specified probabilities:

I Reproduction: Copy the selected individual program to the
new population.

II Crossover : Create new offspring program(s) for the new
population by recombining randomly chosen parts from two
selected programs.

III Mutation: Create one new offspring program for the new
population by randomly mutating a randomly chosen part
of one selected program.

IV Architecture-altering operations: Choose an architecture-
altering operation from the available repertoire of such op-
erations and create one new offspring program for the new
population by applying the chosen architecture-altering op-
eration to one selected program.

3. After the termination criterion is satisfied, the single best program in
the population produced during the run (the best-so-far individual)
is harvested and designated as the result of the run. If the run is
successful, the result may be a solution (or approximate solution) to
the problem.

2.3 Adding GP to the problem

Please see the flowchart of GP in Figure 2.

Now let’s get back to our research, and especially to the character recog-
nition problem. The data source was database of typewritten symbols. It
consists of testing and training subsets.

The symbols are centered and represented by a matrix of black and
white pixels (20 pixels wide and 30 pixels in height). The first step in the
recognition of any symbol is to extract the boundary pixels from the bitmap.
This can be done using a quick one-pass raster scan method [1] Each element
in a list contains row and column information for a boundary pixel. The
second step is to close holes that are small enough to be accounted for by
noise. The outer boundary of the symbol is then split into four segments
(left, right, bottom and top). Therefore, the maximum and minimum row
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Figure 2: Typical GP scheme

and column are calculated for each hole, for each segment, and for the
symbol as a whole. In addition, the number of pixels in each hole stored,
and the segments are ranked according to their number of pixels.

It is assumed that solutions are always comparable and that, given a
pair of them, we are always able to point the better one, unless they have
the same value of the evaluation function.

For some hypothesis the evaluation function returns its accuracy of
classification on the training set. Incomparability involves a partial order
in the solution space and the possibility of existence of many best solutions
at the same time. We can prevent the algorithm from losing good solutions
by replacing the scalar evaluation function with a pairwise comparison of
solutions.

Let’s define formally the outranking relation between two solutions (hy-
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potheses), given the sets of examples correctly classified by these hypothe-
ses. Outranking means that first hypothesis is at least as good as a second
one [5]. This condition has to hold separately and simultaneously for ex-
amples representing some decision classes. Therefore someone might ask
an obvious question, how to select the best solutions?

Tournament selection scheme cannot work properly in solving this prob-
lem due to the fact, that the incomparability decreases the selection pres-
sure, so some tournaments might remain undecided. Therefore we have to
select some non-outranked solutions (hypotheses).

The solutions (programs-candidates) performing image analysis and
recognition are evaluated on a set of training cases (images), called fitness
cases. Let us now consider some estimated values. Thus, the population
size was 2000 (that’s a quite enough indeed). The probability of mutation
equals to 0.05 (it is a common or standard value). The value of maximal
depth of a randomly generated tree (initialization): 3 or 4 (it depends in
common case). Maximal number of generations: 100 (stopping condition;
in some cases this value could be increased or decreased). Training set size
equals to 200 (100 images per each class). We used the tournament selection
which means that the selection works by selecting a number of individuals
from the population at random, a tournament, and then selecting only the
best of those individuals. Tournament sizes tend to be small relative to
the population size. The ratio of tournament size to population size can be
used as a measure of selective pressure. Note that a tournament size of 1
would be equivalent to selecting individuals at random and a tournament
size equal to the population size would be equivalent to selecting the best
individual at any given point. The selective pressure of tournament selec-
tion can be adjusted by means of the tournament size parameter, which
makes it a more flexible selective procedure than fitness-proportional se-
lection [4]. Therefore, the tournament selection works by creating a tight
selective pressure on a small local group of individuals. Neither of these
two selection procedures is better than the other for every problem. There
are also a whole slew of other selection procedures that may or may not be
based on either of these.

Because we only care about whether one individual is better than an-
other, to save processing, we only need to consider standardized fitness for
this selection procedure. Recall that better individuals have lower standard
fitnesses.
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3 Conclusion

In conclusion we would like to mention that GP has some evident superior-
ity in comparison with the other approaches such statistics, neural networks
and the other techniques, though it is not an ideal approach to solve the
problem. In theory it could be successfully used simultaneously with the
other methods in some disputable issues.

The main result obtained in the experiment is that the aforesaid search
technique solves the problem in common cases. In addition the accuracy of
classification on both testing and training sets was increased, although the
results did deviate sometimes. Furthermore the results were false positive
or negative at times. The system recognized the given symbols as a rule
except some complicated cases. For example, the recognition of the digit
’0’ and letter ’O’; or the recognition of the digit ’1’ and letter ’l’. Another
interesting fact is that the good solutions were commonly defended from
discarding. Therefore we expect that the better results will be obtained
after performing some modifications.

Although the research is made, its subject could be extended. There
are some problems and aspects that were not consider in the current paper.
First of all it will be great to make a deskewing and font normalization of
the characters before their recognition. The second main task in perspective
is to design and develop the recognition system (programming complex or
toolbox). Once it is done it will be a big improvement to recognize not
only the typewritten symbols but also handwritten characters. It will also
be interesting to try to use in practice the approach given in this paper
simultaneously with the other techniques such as the neural networks and
the other techniques.
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Abstract

We offer a computational approach to schedule development based on mod-
els and methods of idempotent algebra. The approach allows one to repre-
sent different types of precedence relationships among activities as linear
vector equations written in terms of an idempotent semiring. As a result,
many issues in project scheduling can be reduced to solving computational
problems in the idempotent algebra setting, including linear equations and
the eigenvalue-eigenvector problem. We give solutions to the problems in a
compact vector form that provides a basis for the development of efficient
computation algorithms and related software applications, including those
intended for parallel implementation.

1 Introduction

The problem of scheduling a large-scale set of activities is a key issue in
project management [1, 2]. There is a variety of project-scheduling tech-
niques developed to deal with different aspects of the problem, ranging
from the classical Critical Path Method and the Program Evaluation and
Review Technique marked the beginning of the active research in the area
in 1950s, to more recent methods of idempotent algebra [4, 5, 6, 7, 10].

We offer a new computational approach [10] to schedule development
based on implementation of models and methods of idempotent algebra.
The approach allows one to represent different types of precedence rela-
tionships among activities as linear vector equations written in terms of an
idempotent semiring. As a result, many issues in project scheduling can
be reduced to solving computational problems in the idempotent algebra
setting, including linear equations and the eigenvalue-eigenvector problem.
We give solutions to the problems in a compact vector form that provides

c© Dr. Nikolai K. Krivulin, 2010
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a basis for the development of efficient computation algorithms and related
software applications, including those intended for parallel implementation.

The rest of the paper is organized as follows. We start with algebraic
definitions and notation, and then outline basic results that underlie subse-
quent applications of idempotent algebra. Furthermore, examples of actual
problems in project scheduling are considered. We show how to formulate
the problems in an algebraic setting, and give related algebraic solutions.
Finally, concluding remarks are given to summarize the results.

2 Definitions and Notation

We start with a brief overview of basic concepts, terms and symbols in
idempotent algebra. Further details can be found in [4, 5, 6, 7, 10].

2.1 Idempotent Semiring

Consider a set X that is equipped with two operations ⊕ and ⊗ referred
to as addition and multiplication, and has neutral elements 0 and 1 called
zero and identity. We suppose that 〈X, 0, 1,⊕,⊗〉 is a commutative semir-
ing, where addition is idempotent and multiplication is invertible. Such a
semiring is usually called idempotent semifield.

Let us define X+ = X \ {0}. Each x ∈ X+ is assumed to have its inverse
x−1. For any x ∈ X+ and integer p > 0, the power is defined in the ordinary
way,

x0 = 1, xp = xp−1 ⊗ x = x⊗ xp−1, x−p = (x−1)p, 0
p = 0.

In what follows, the multiplication sign ⊗ is omitted as is usual in
conventional algebra. The notation of power is thought of as defined in
terms of idempotent algebra. However, in the expressions that represent
exponents, we use ordinary arithmetic operations.

Since the addition is idempotent, it induces a partial order ≤ on X

according to the rule: x ≤ y if and only if x⊕ y = y. The relation symbols
are understood below in the sense of this partial order. According to the
order, it holds that has x ≥ 0 for any x ∈ X.

As a classical example of idempotent semirings (semifields), one can
consider the semiring

Rmax,+ = 〈R ∪ {−∞},−∞, 0,max,+〉.

The semiring has the neutral elements 0 = −∞ and 1 = 0. For each x ∈
R, there exists its inverse x−1, which is equal to −x in ordinary arithmetics.
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For any x, y ∈ R, the power xy is equivalent to the arithmetic product xy.
The order induced by idempotent addition coincides with the natural linear
order on R.

The semiring Rmax,+ provides the basis for the development of algebraic
solutions to project scheduling problems in subsequent sections.

2.2 Matrix Algebra

Now consider matrices with elements in X. The set of all matrices of size
m× n is denoted by Xm×n.

The matrix with all entries equal to zero is the null matrix denoted by
0. A matrix is called regular if it has at least one nonzero element in every
row.

For any scalar x ∈ X and matrices

A = (aij) ∈ Xm×n, B = (bij) ∈ Xm×n, C = (cij) ∈ Xn×l

matrix addition and multiplication, as well as multiplication by scalars are
defined in the usual way with the expressions

{A⊕B}ij = aij ⊕ bij , {BC}ij =
n⊕

k=1

bikckj , {xA}ij = xaij .

A square matrix is called diagonal if all its off-diagonal entries are zero,
and triangular if its entries above (below) the diagonal are zero. The matrix
I = diag(1, . . . , 1) is referred to as identity matrix.

A matrix A is irreducible if and only if it cannot be put in a block
triangular form by simultaneous permutations of rows and columns.

For any square matrix A and integer p > 0, the power is defined as
usual,

A0 = I, Ap = Ap−1A = AAp−1.

For a square matrix A = (aij) ∈ Xn×n, its trace is given by

trA =
n⊕

i=1

aii.

Let A = (aij) ∈ Xm×n be a regular matrix. The pseudo-inverse matrix
of A is defined as A− = (a−ij) ∈ Xn×m, where a−ij = aji if aji 6= 0, and
aij = 0 otherwise.

Finally, consider the set Xn of all column vectors with elements in X.
The vector with all elements equal to zero is called null vector and denoted
by 0.
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For any column vector x = (x1, . . . , xn)
T 6= 0, one can define a row

vector x− = (x−1 , . . . , x
−
n ) with elements x−i = xi if xi 6= 0, and xi = 0

otherwise, i = 1, . . . , n.
We define the distance between any two vectors x,y ∈ Xn

+ with a metric

ρ(x,y) = y−x⊕ x−y.

When y = x we have the minimum distance ρ(x,x) = 1.
In the semiring Rn

max,+, the metric takes the form

ρ(x,y) = max
i
|xi − yi|,

and thus coincides with the Chebyshev metric.

3 Preliminary Results

Now we outline some basic results from [8, 9, 10] that underlie subsequent
applications of idempotent algebra to project scheduling.

3.1 The Equation Ax = d

Suppose a matrix A ∈ Xm×n and a vector d ∈ Xm are given. Let x ∈ Xn

be an unknown vector. We examine the equation

Ax = d, (3.1)

and the inequality

Ax ≤ d, (3.2)

A solution x0 to equation (3.1) or inequality (3.2) is called the maximum
solution if x0 ≥ x for all solutions x of (3.1) or (3.2).

We present a solution to (3.1) based on analysis of distance between
vectors in Xn. To simplify further formulae, we use the notation

∆ = (A(d−A)−)−d.

Lemma 1. Suppose A ∈ Xm×n is a regular matrix, and d ∈ Xm
+ is a vector

without zero components. Then it holds that

min
x∈Xn

+

ρ(Ax,d) = ∆1/2,

where the minimum is achieved at x0 = ∆1/2(d−A)−.
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Lemma 2. Under the same conditions as in Lemma 1 it holds that

min
Ax≤d

ρ(Ax,d) = min
Ax≥d

ρ(Ax,d) = ∆,

where the first minimum is achieved at x1 = (d−A)−, and the second at
x2 = ∆(d−A)−.

As a consequence of Lemma 1 and 2, we get the following result.

Theorem 1. A solution of equation (3.1) exists if and only if ∆ = 1. If
solvable, the equation has the maximum solution given by

x = (d−A)−.

Suppose that ∆ > 1. In this case equation (3.1) has no solution. How-
ever, we can define a pseudo-solution to (3.1) as a solution of the equation

Ax = ∆1/2A(d−A)−,

which is always exists and takes the form x0 = ∆1/2(d−A)−. It follows from
Lemma 1 that the pseudo-solution yields the minimum deviation between
vectors y = Ax and the vector d in the sense of the metric ρ.

Consider the problem of finding two vectors x1 and x2 that provide
the minimum deviation between both sides of (3.1), while satisfying the
respective inequalities Ax ≤ d and Ax ≥ d. As it is easy to see from
Lemma 2, these vectors are given by

x1 = (d−A)−, x2 = ∆(d−A)−.

The next statement is another consequence of the above results.

Lemma 3. For any regular matrix A and vector d without zero components,
the solution to (3.2) is given by the inequality

x ≤ (d−A)−.

A solution to equation (3.1) with an arbitrary matrix A and a vector d
is considered in [10]
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3.2 The Equation Ax⊕ b = x

Suppose a matrix A ∈ Xn×n and a vector b ∈ Xn are given, and x ∈ Xn is
an unknown vector. Consider the equation

Ax⊕ b = x, (3.3)

and the inequality
Ax⊕ b ≤ x, (3.4)

A solution to equation (3.3) is proposed based on application of a func-
tion TrA that takes each square matrix to a scalar and plays the role of
the determinant in conventional linear algebra. The function is given by

TrA =
n⊕

m=1

trAm

and exploited to examine whether the equation has a unique solution, many
solutions, or no solution.

For any A ∈ Xn×n, we define matrices A+ and A× as follows

A+ = I ⊕A⊕ · · · ⊕An−1, A× = AA+ = A⊕ · · · ⊕An.

Let a+
i be column i of A+, and a×ii be entry (i, i) of A×. Provided that

TrA = 1, we define the matrix A∗ = (a∗
i ) with the columns

a∗
i =

{
a+
i , if a×ii = 1,

0, otherwise.

If TrA 6= 1, then we take A∗ = 0.
The solution to equation (3.3) is given by the following result.

Theorem 2. Let x be the solution of equation (3.3) with an irreducible
matrix A. Then the following statements hold:

1) if TrA < 1, then there exists a unique solution x = A+b;

2) if TrA = 1, then x = A+b⊕A∗v for all v ∈ Xn;

3) if TrA > 1, then with the condition b = 0, there exists only the
solution x = 0, whereas with b 6= 0, there is no solution.

Lemma 4. Let x be the solution of inequality (3.4) with an irreducible
matrix A. Then the following statements hold:

1) if TrA ≤ 1, then x = A+(b⊕ v) for all v ∈ Xn;

2) if TrA > 1, then with the condition b = 0, there exists only the
solution x = 0, whereas with b 6= 0, there is no solution.

Related results for the case of arbitrary matrices can be found in [8, 10].
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3.3 Eigenvalues and Eigenvectors

A scalar λ is an eigenvector of a square matrix A ∈ Xn×n if there is a vector
x ∈ Xn \ {0} such that

Ax = λx.

The maximum eigenvalue is called spectral radius of A and given by

̺ =
n⊕

m=1

tr1/m(Am).

The eigenvector corresponding to ̺ takes the form

x = A∗
̺v,

where A̺ = ̺−1A, and v is any vector.

Lemma 5. For any irreducible matrix A with the spectral radius ̺, it holds
that

min
x∈Xn

+

ρ(Ax,x) = ̺⊕ ̺−1,

where the minimum is achieved at any eigenvector x corresponding to ̺.

The case of arbitrary matrices is considered in [9, 10].

4 Applications to Project Scheduling

In this section we show how to apply the algebraic results presented above
to solve scheduling problems under various constraints (for further details
on the schedule development in project management see, e.g., [1, 2]).

As the underlying idempotent semiring, we use Rmax,+ in all examples
under discussion.

4.1 Precedence Relations of the Start-to-Finish Type

Consider a project that involves n activities. Activity dependencies are as-
sumed the form of Start-to-Finish relations that do not allow an activity to
complete until some time after initiation of other activities. The schedul-
ing problem of interest is to find initiation time for all activities subject to
given constraints on their completion time.

For each activity i = 1, . . . , n, denote by xi its initiation time, and by
yi its completion time. Let di be a due date, and aij a minimum possible
time lag between initiation of activity j = 1, . . . , n and completion of i.
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Given aij and di, the completion time of activity i must satisfy the
relations

yi = di, xj + aij ≤ yi, j = 1, . . . , n,

where if aij is not actually given for some j, it is assumed to be 0 = −∞.
The relations can be combined into one equation in the initiation times

max(x1 + ai1, . . . , xn + ain) = di.

By replacing the ordinary operations with those in Rmax,+ in all equa-
tions, we get

ai1 ⊗ x1 ⊕ · · · ⊕ ain ⊗ xn = di, i = 1, . . . , n.

For simplicity, we drop the multiplication symbol ⊗, and write

ai1x1 ⊕ · · · ⊕ ainxn = di, i = 1, . . . , n.

With the notation

A =




a11 . . . a1n
...

. . .
...

an1 . . . ann


 , d =




d1
...
dn


 , x =




x1
...
xn


 ,

the scheduling problem under the start-to-finish constraints leads us to
solution of the equation

Ax = d.

Consider ∆ = (A(d−A)−)−d. According to Theorem 1, provided that
the condition ∆ = 1 = 0 is satisfied, the equation has a unique solution
x = (d−A)−.

If it appears that ∆ > 0, then one can compute approximate solutions
to the equation

x0 = ∆1/2(d−A)−, x1 = (d−A)−, x2 = ∆(d−A)−.

The completion times corresponding to these solution are given by

y0 = Ax0, y1 = Ax1 ≤ d, y2 = Ax2 ≥ d,

and have their deviation from the due dates bounded with

ρ(y0,d) = ∆1/2, ρ(y1,d) = ρ(y2,d) = ∆.

Suppose that the due date constraints may be adjusted to some extent.
As a new vector of due dates, it is natural to take a vector d′ such that
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y1 ≤ d′ ≤ y2. In this case, deviation of the new due dates from the original
ones does not exceed ∆. The minimum deviation which is equal to ∆1/2 is
achieved at d′ = y0.

As an example, consider a project with a constraint matrix and two due
date vectors given by

A =




8 10 0 0

0 5 4 8
6 12 11 7
0 0 0 12


 , d1 =




14
11
16
15


 , d2 =




15
15
15
15


 .

Fig. 1 demonstrates a network representation of the project.
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Figure 1: An activity network with Start-to-Finish precedence relations

First we examine the equation Ax = d1. Simple calculation gives ∆1 =
(A(d−

1 A)
−)−d1 = 0. Therefore, the equation has a unique solution

x = (d−
1 A)

− = (6, 4, 5, 3)T .

Consider the equation Ax = d2. Since ∆2 = (A(d−
2 A)

−)−d2 = 4 > 0,
the equation does not have a solution. Evaluation of approximate solutions
gives

x0 = ∆
1/2
2 (d−

2 A)
− = (9, 5, 6, 5)T , y0 = Ax0 = (17, 13, 17, 17)T ,

x1 = (d−
2 A)

− = (7, 3, 4, 3)T , y1 = Ax1 = (15, 11, 15, 15)T ,

x2 = ∆2(d
−
2 A)

− = (11, 7, 8, 7)T , y2 = Ax2 = (19, 15, 19, 19)T .

4.2 Precedence Relations of the Start-to-Start Type

Suppose there is a project consisting of n activities and operating under
Start-to-Start precedence constraints that determine the minimum (maxi-
mum) allowed time intervals between initiation of activities.
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For each activity i = 1, . . . , n, let bi be an early possible initiation time,
and let aij be a minimum possible time lag between initiation of activity
j = 1, . . . , n and initiation of i. The problem is to find the earliest initiation
time xi for every activity i so as to provide for the relations

bi ≤ xi, aij + xj ≤ xi, j = 1, . . . , n,

which can be replaced with one equation

max(max(x1 + ai1, . . . , xn + ain), bi) = xi.

Representation in terms of Rmax,+, gives the scalar equations

ai1x1 ⊕ · · · ⊕ ainxn ⊕ bi = xi, i = 1, . . . , n.

With the notation A = (aij), b = (b1, . . . , bn)
T , x = (x1, . . . , xn)

T we
arrive at a problem that is to solve the equation

Ax⊕ b = x.

For simplicity, assume the matrix A to be irreducible. It follows from
Theorem 2 that if TrA ≤ 1 = 0 then the equation has a nontrivial solution
given by x = A+b⊕A∗v for any vector v.

Consider a project with start-to-start relations and examine two cases,
with and without early initiation time constraints imposed. Let us define
a matrix and two vectors as follows

A =




0 −2 0 0

0 0 3 −1
−1 0 0 −4
2 0 0 0


 , b1 = 0, b2 =




1
1
2
1


 .

A graph representation of the project is depicted in Fig. 2.
Let us first calculate the initiation time of activities in the project when

b = b1 = 0 (that is, without early initiation time constraints given). Under
this assumption, the equation takes the form Ax = x.

As it is easy to see, the matrix A is irreducible and TrA = 0. Therefore,
the equation has a solution.

Simple algebra gives

A+ = A× =




0 −2 1 −3
2 0 3 −1
−1 −3 0 −4
2 0 3 0


 , A∗ =




−2 −3
0 −1
−3 −4
0 0


 .
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Figure 2: An activity network with Start-to-Start precedence relations

Note that, since A+ and A× coincide, one should define A∗ = A+.
However, considering that the first three columns are proportional, we take
only one of them.

The solution to the equation is given by

x = A∗v =




−2 −3
0 −1
−3 −4
0 0


v, v ∈ R2

max,+.

Consider the case with the vector b2 and the equation taking the form
Ax⊕ b2 = x. Now we have

A+b2 =




3
5
2
5


 , x =




3
5
2
5


⊕




−2 −3
0 −1
−3 −4
0 0


v, v ∈ R2

max,+.

4.3 Mixed Precedence Relations

Consider a project that has both Start-to-Finish and Start-to-Start con-
straints. Let A1 be a given Start-to-Finish constraint matrix, d a vector of
due dates, and x an unknown vector of activity initiation time. To meet
the constraints, the vector x must satisfy the inequality

A1x ≤ d.

Furthermore, there are also Start-to-Start constraints defined by a con-
straint matrix A2. This leads to the equation in x

A2x = x.
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Suppose that the equation has a solution x = A∗
2v. Substitution of the

solution into the above inequality gives

A1A
∗
2v ≤ d.

Since the maximum solution to the last inequality is v = (d−A1A
∗
2)

−,
the solution to the whole problem is written in the form

x = A∗
2(d

−A1A
∗
2)

−.

As an illustration, we evaluate the solution to the problem under the
conditions

A1 =




8 10 0 0

0 5 4 8
6 12 11 7
0 0 0 12


 , A2 =




0 −2 0 0

0 0 3 −1
−1 0 0 −4
2 0 0 0


 ,

and
d = (13, 11, 15, 15)T .

By using results of previous examples, we successively get

A1A
∗
2 =




10 9
8 8
12 11
12 12


 , (d−A1A

∗
2)

− =

(
3
3

)
.

Finally, we have

x = A∗
2(d

−A1A
∗
2)

− = (1, 3, 0, 3)T .

4.4 Minimization of the Maximum Flow Time

Assume that a project operates under Start-to-Finish constraints. For each
activity in the project, consider the time interval between its initiation
and completion, which is usually referred to as the flow time and also as
turnaround time or processing time.

In practice, one can be interested in constructing a schedule that min-
imizes the maximum flow time over all activities in the project. With x

standing for a vector of initiation time, and A for a constraint matrix, we
arrive at a problem formulated in terms of Rmax,+ to find

min
x∈Rn

ρ(Ax,x).
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It follows from Lemma 5 that the above minimum is equal to the ̺⊕̺−1,
where ̺ is the spectral radius of A, and it is achieved at the vector given
by x = A∗

̺v for any vector v.

Suppose a vector d is given to represent activity due dates. Consider
a problem of evaluating the latest initiation time for all activities so as to
provide both the due date constraints and the minimum flow time condition.

By combining the due date constraints represented in the form

Ax ≤ d

with the solution of the minimization problem, we have the inequality

AA∗
ρv ≤ d.

With the maximum solution to the inequality v = (d−AA∗
ρ)

−, we get
the solution of the whole problem

x = A∗
ρ(d

−AA∗
ρ)

−.

Let us evaluate the solution with the constraint matrix and due date
vector defined as

A =




2 4 4
2 3 5
3 2 3


 , d =




9
8
9


 .

First we get ρ = 4, and define the matrix

Aρ =



−2 0 0
−2 −1 1
−1 −2 −1


 .

Furthermore, we have the matrices

A+
ρ = A∗

ρ =




0 0 1
0 0 1
−1 −1 0


 , A∗

ρ =




1
1
0


 .

Finally, we arrive at the solution

x = A∗
ρ(d

−AA∗
ρ)

− =




4
4
3


 .
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5 Conclusion

We have presented an approach that exploits idempotent algebra to solve
computational problems in project scheduling. It is shown how to reformu-
late the problems in an algebraic setting, and then find related solutions
based on appropriate results in the idempotent algebra theory. The so-
lutions are given in a compact vector form that provides a basis for the
development of efficient computation algorithms and software applications,
including those intended for parallel implementation.

6 Acknowledgments

The work was supported in part by the Russian Foundation for Basic Re-
search Grant #09-01-00808.

Bibliography

[1] A Guide to the Project Management Body of Knowledge: PMBOK
Guide. Newtown Square, PA: Project Management Institute, 2008.
459 p.

[2] K. Neumann, C. Schwindt, J. Zimmermann, Project Scheduling with
Time Windows and Scarce Resources. Berlin, Springer, 2003. 385 p.

[3] R. Cuninghame-Green, Minimax Algebra. Berlin, Springer, 1979.
258 p. (Lecture Notes in Economics and Mathematical Systems,
vol. 166)

[4] F. Baccelli, G. Cohen, G. J. Olsder, J.-P. Quadrat, Synchronization
and Linearity: An Algebra for Discrete Event Systems. Chichester,
Wiley, 1993. 514 p.

[5] V. N. Kolokoltsov, V. P. Maslov, Idempotent Analysis and Its Appli-
cations. N. Y., Springer, 1997. 324 p.

[6] J. S. Golan, Semirings and Affine Equations Over Them: Theory and
Applications. N. Y., Springer, 2003. 256 p.

[7] B. Heidergott, G. J. Olsder, J. van der Woude, Max-Plus at Work:
Modeling and Analysis of Synchronized Systems. Princeton, Princeton
Univ. Press, 2005. 226 p.



Algebraic Solutions to Scheduling Problems in Project Management 29

[8] N. K. Krivulin, Solution of Generalized Linear Vector Equations in
Idempotent Algebra Vestnik St. Petersburg Univ. Math., 39 (1), 2006.
pp. 16–26.

[9] N. K. Krivulin, Eigenvalues and Eigenvectors of Matrices in Idempo-
tent Algebra Vestnik St. Petersburg Univ. Math., 39 (2), 2006. pp. 72–
83.

[10] N. K. Krivulin, Idempotent Algebra Methods for Problems in Modeling
and Analysis of Complex Systems. St. Petersburg, St. Petersburg Univ.
Press, 2009. 256 p. (in Russian)



30 Prof. Evsei V. Morozov, Alexander S. Rumyantsev



AMICT’2010-2011. pp. 31–38 31

Moment properties and long-range

dependence of queueing processes

Prof. Evsei V. Morozov, Alexander S. Rumyantsev

Institute of Applied Mathematical Research,
Karelian Research Centre, RAS

E-mail: {emorozov, ar0}@krc.karelia.ru

Abstract

The aim of this study is to empirically extend known results on long range
dependence for a separated system to 2-station tandem system. More
exactly, we study connection of a long range dependence effect at the
second station in a tandem network with moment properties of the input
and service times in both stations. Simulation results are presented, and
some related difficulties are discussed.

1 Introduction

The main motivation of this study is to empirically verify results obtained
in the paper [4]. This verification for a separate system has been presented
in [2].

We briefly recall related definitions and results. Consider a single-server
queueing system GI/G/1 with a renewal input with arrival epochs {ti} and
the i.i.d. interarrival times {Ti = ti+1−ti} with distribution A(x) = P (T ≤
x) (T denotes generic interarrival). It is assumed that service times {Si} are
i.i.d with distribution B(x) = P (S ≤ x). Denote by Wi the waiting time of
customer i in queue. Recall famous Lindley’s recursion which defines the
sequence {Wi}:

Wi+1 = (Wi + Si − Ti)
+,

where (·)+ = max(0, ·). Let the stability condition holds, i.e. ES/ET < 1,
or, equivalently, E(S − T ) < 0. Then the sequence {Wi} has a weak limit
Wi ⇒ W, i → ∞. Moreover, the following stochastic equality connects
this stationary limit and supremum of the associated random walk with
negative drift:

W = sup
i>1

(Si − Ti).

c© Prof. Evsei V. Morozov, Alexander S. Rumyantsev, 2010
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The stationary waiting time (or delay) W is widely used as a QoS para-
meter. In particular, it is important to know the properties of the delay for
delay-sensitive systems, such as real-time voice and video traffic. We give
the following well known result from [4] defining long range dependence of
the sequence of delays in a GI/G/1 system. More exactly, provided that
ET <∞, ES3 <∞ and ES4 =∞,

∞∑

i=1

corr(W0,Wi) =∞. (1.1)

In practice the result (1.1) means that the waiting time process stays above
or below it’s mean value unexpectedly long. It makes difficult the use of
sample mean based estimator to estimate required parameter with a given
accuracy in reasonable simulation time [9]. An extended discussion of this
topic is in the work [8]

It is obvious that ti + Wi + Si is the departure instant of customer i.
Hence, these instants define an inter-departure process,

Di = ti+1 +Wi+1 + Si+1 − ti −Wi − Si

= Si+1 + (Ti −Wi − Si) +Wi+1 = Si+1 + (Ti −Wi − Si)
+, i ≥ 1.

Consider a two-station tandem, where after being served in the first
single-server queue, the customer (task) enters the second system. Thus,
the output from first system is an input to the second one. For node j,

denote by {T (j)
i } interarrival times, by {S(j)

i } service times and by {W (j)
i }

waiting times, j = 1, 2, and note that T
(2)
i = D

(1)
i . It is interesting to

estimate the impact of characteristics of the first station on the delay at
the second one. The main difference from first station, is that the inter-
arrival times for second station form not a renewal but rather a regenerative
process. Results on the output process can be found in [3].

The stability condition for the whole network is [12],

ET (1) > max(ES(1), ES(2)),

while condition
max(ET (1), ES(1)) > ES(2),

implies stability of the second station solely, W
(2)
i ⇒ W (2) (with proper

limit W (2)), leaving a possibility of instability of first station, W (1) → ∞
(in probability of with probability 1).

In a stable system, the knowledge of moment properties of delay may
be useful for instance, to approximate the tail of the delay via Chebyshev’s
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inequality. A well-known (for separated station) result that the finiteness
of r + 1-th moment of service time implies finiteness of the r-th moment
of waiting time is extended to a tandem network in [12]. More exactly,
for a two-station case, if ES(1) > ES(2), then (similar to one station case)
sufficient stability condition holds:

E
(
S(2)

)r+1
<∞ ⇒ E

(
W (2)

)r
<∞.

However, if ES(1) 6 ES(2), then an additional condition is placed on mo-
ments of service times at the first station:

E
(
S(j)

)r+1
<∞ ⇒ E

(
W (2)

)r
<∞, j = 1, 2.

It turns out to be that the latter assumption is not only technical one
caused by the method of the proof (as it has been conjectured in [12]), but
as has been shown in [10], violation of the assumption may lead to infinite
mean stationary delay at the second node.

Even more surprising dependence of moment properties at a given sta-
tion on the properties of other stations in tandem-like networks is found
in [7] for the so-called heavy-tailed case. First recall that a random vari-
able (r.v.) X with distribution F is called subexponential if asymptotic
equivalence holds P (X1+X2 > x) ∼ 2(1−F (x)) := 2F̄ (x), where X1,2 are
i.i.d. copies of X. A particular case is Pareto r.v. with tail distribution
(for x > x0 > 0)

F (x) = x−α, α > 0. (1.2)

If B(x) is the tail distribution of service time S, then an integrated tail
distribution (of a stationary remaining service time Se) is defined as

Be(x) := P (Se > x) =
1

ES

∫ ∞

x
B(x) dx, x ≥ 0.

When both B(x) and Be(x) are subexponential, then we call that distri-
bution B belongs to a useful subclass S∗.

The crucial result of [7] (for two-station tandem) is as follows. Assume
stability, that is ρi := ES(i)/ET (1) < 1 for i = 1, 2, and let the service
time distribution at the second station belong to S∗. Also assume that
P (S(1) > x) = o(P (S(2) > x)) and that service time at the first station also
belongs to S∗ or is light-tailed [7]). Then

P (W (2) > x) ∼ ρ2
1− ρ2

P (S(2)
e > x).
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In other words, if service time at first station has lighter tail then the tail of
delay asymptotically behaves like in a single station, and previous station
does not matter.

Note that some of given above results hold for some more general net-
works.

2 Long range dependence in tandem

In this section we discuss some difficulties which arise when we try to em-
pirically verify the theoretical results mentioned in the previous section.

2.1 Pareto tail modeling

To simulate the i.i.d r.v. X1, . . . , Xn with a given distribution F , we sample
i.i.d. pseudo-random numbers U1, . . . , Un and then use inverse transform.
More exactly, we use the inverse function F−1(Ui) to get the sample values
Xi:

Xi = F
−1

(Ui), i = 1, . . . , n.

(It ie easy to check that obtained r.v. indeed have distribution F .) In
particular, for Pareto (tail) distribution (1.2),

Xi = U
−1/α
i , i = 1, . . . , n.

The problem which arises in practice is that the values of Ui have limited
accuracy, say, Ui > 10−β for some β > 1. Then the maximum value xmax

obtained by inverse transform sampling is

xmax 6 10β/α.

(Note that in this case the sample size has to be approximately 10β .) Thus,
instead of sampling from Pareto distribution we in fact obtain truncated
Pareto distribution [5], that is

F (x) =
(x0xmax)

α

xαmax − xα0
(x−α − x−α

max), x0 6 x 6 xmax <∞,

with F (x) = 0 for x ≥ xmax and F (x) = 1 for x ≤ x0. (We mention an
asymptotic level-q test in [1] to verify the hypothesis about the truncated
Pareto distribution.) We recall that for classical Pareto (1.2) EXn = ∞
for n > α. However, in our case,

EXn =

∫ xmax

x0

xn
α(x0xmax)

α

xαmax − xα0
x−α−1 dx =

α(x0xmax)
α

n− α

xn−α
max − xn−α

0

xαmax − xα0
.
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Hence, if xmax = 10β/α and x0 = 1 (for standard Pareto),

EXn =
α10β

n− α

10(n−α)β/α − 1

10β − 1
≈ α

n− α
10β·(n−α)/α. (2.1)

For instance, let β = 16 (the double precision accuracy of C language
defined variable), α = 3.5 and n = 4. Substitution this in (2.1) implies

EXn ≈ 7 · 102.2857.

This value is far from being infinite. Moreover, for our case, to have EXn

at least an order of 1010, one needs β ≈ 70, see from (2.1). (The so-called
long arithmetics provides an arbitrary order of accuracy but sample size
1070 hard to get in a reasonable simulation time.)

Nevertheless, note that if n > α and α approaches zero, then (n−α)/α
increases. Thus, for 0 < α < 2 one may get reasonable results for the value
of EXn.

2.2 Numerical results

The experiments were carried out on a High-Performance cluster [6]. The
autocorrelation coefficients were calculated by formulae

ρ̂i =
M
∑M

j=1W0(j)Wi(j)−
∑M

j=1W0(j)
∑M

j=1Wi(j)

M
∑M

j=1 (W0(j))
2 −

(∑M
j=1W0(j)

)2 ,

where Wi(j) corresponds to the waiting time for task i in the independent
run j. Note that independent runs are preferable than a single long run in
the presence of long-range dependence [11].

The problem discussed in the previous subsection means that if in dis-
tribution (1.2) α < 4, we in fact obtain empirically finite forth moment
implying convergence of autocorrelation series. A possibility to obtain
(quasi)divergence in simulation is to take coefficient α < 2, in which case
the variance of stationary delay is (theoretically) infinite. Thus the main
conclusion is that it is difficult to verify long-range dependence of the work-
load (delay) process neither in single-server, nor in tandem case, applying
divergence of the autocovariance series stated in [4].

Nevertheless, an interesting case that leads to the divergence of auto-
correlation series is an instability of a station. Consider an M/Pareto/1
→ /Pareto/1 tandem system renewal input with interarrival time T and
with (corresponding) Pareto service time (in more convenient for simulation
form)

P (S(i) > x) = (1 + x)−αi , x ≥ 0, i = 1, 2.
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Figure 1: Convergence of autocorrelations, λ = 3, µ1 = 3.5, µ2 = 4.2.

Then the mean service time is ES(i) = (αi − 1)−1, i = 1, 2. Denote λ =
1/ET , µi = 1/ES(i) and assume that µ1 < λ < µ2. Then first station
becomes overloaded (because ρ1 = λ/µ1 > 1) and in the limit has the
output with rate µ1. But because µ1/µ2 < 1, then the second station is
stable (in limit) and we do not observe divergence of autocorrelations of
waiting times, as Fig. 1 shows. If µ2 < λ < µ1, then the first station
is stable, but the second station is unstable (since ρ2 > 1). In this case
the delays on the second station may become arbitrary high implying the
divergence of autocorrelation series, see Fig. 2.

3 Conclusion

Detection of the long-range dependence in the networking traffic is ex-
tremely important to estimate QoS provided in the network. In this note,
we verify by simulation this (second-order) property of the workload pro-
cess in the second station of a two-station tandem network. We discuss
the difficulties (caused by technical limitations) which arise when we apply
simulation to establish (under appropriate moment conditions) divergence
of the autocorrelation series, indicating theoretically the long-range depen-
dence.



Moment properties and long-range dependence of queueing processes 37

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

S
um

 o
f a

ut
oc

or
re

la
tio

n

Number of tasks

Partial sum of delay autocorrelations for 5000 tasks

’2.txt’

Figure 2: Divergence of autocorrelations, λ = 3, µ1 = 4.2, µ2 = 3.5.
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Abstract

This article gives short introduction to key-value storage called Redis. In
addition a pattern to persist simple objects is provided. The pattern
focuses on the consistency of objects under race and failure conditions.
Proposed pattern is useful for cloud storage implementations that require
speed and scalability. This approach can optionally be implemented with
schemaless data model. Implementation can be done with any language,
although the examples are presented with Ruby.

1 Introduction

Recent beginning of ”NoSQL movement” has brought a lot of attention to
key-value databases or stores (from now on KVS ). Cloud web applications
require fast requests and the use of a relational database (from now on
RDBMS ) can sometimes be major bottleneck in the architecture [10]. This
does not however imply that RDBMSes should be avoided. The problem
is that they are being used as a generic building block for every problem.
Simplified KVS brings speed, but also provides very little. This leads to
major shift of responsibility from data persistence layer to developers.

NoSQL is easily understood as anti-SQL, but it should be understood as
”Not Only SQL”. KVS are not suitable for replacing relational databases,
but to provide better approach in meeting non-functional requirements es-
pecially in cloud architectures. These databases or stores can not provide
ACID style transactions. However, object persistence needs to be consis-
tent nevertheless. This can be achieved with good design patterns that are
implemented both in the architectural and component level. In this paper
an example pattern for storing objects in KVS is given and at some level
compared to RDBMS persistence.

c© Matti Paksula, 2010
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The rest of this paper is organized as follows: First some background on
cloud application architectures and key concepts of KVS are given. Some
comparison of KVS against RDBMS is also done. Then introduction for
object persistence in KVS is given. After these main principles of object
persistence, different KVS implementations are shortly compared and then
the key concepts of Redis KVS are explained. A Redis specific implemen-
tation of object persistence is illustrated with pseudocode like examples.

2 Architectural motivation

Web application needs to serve requests as quickly as possible. Most of
the requests consist mainly of reads from the database. Brewers CAP
theorem says that in distributed environment, like cloud, we have three
requirements: Consistency, Availability and Partition Tolerance, but we
can only have two out of these three. What this means is that system
operations on data need to be consistent, it has to be available for the user
and data has to be stored in multiple locations. In order to satisfy all three,
we can select two and solve the third requirement by a workaround [1, 2].

Instead of writing our application to satisfy ACID requirements
(Atomicity, Consistency, Durability and Isolation) we write our architec-
ture using BASE approach ((Basically Available, Soft-state and Eventually
consistent) [3]. This means that we do our best to keep data available, but
for example if some network link goes down, we still serve that data we have
access to. Modifications to the data are guaranteed to perform eventually
for example by deferring write operations to a job queue. Due the nature
of web applications where requests are independent and have some time
between them, this approach can be very successfull.

Dropping ACID on architectural level gives us also the opportunity to
drop it in the database level also. This is where the KVS option becomes
interesting. Usually most of the operations are reads and scaling web ap-
plication means scaling up the reads.

3 KVS vs RDBMS

RDBMS has to satisfy ACID requirements when modifying the data. This
makes partitioning data accross different physical locations hard as data
needs to be written in all the locations before OK can be returned. Also
the write operations tend to be as hard disk IO becomes the bottleneck.
RDBMS also have fixed schema and this can for example lead to bloated
table designs with lot of unused columns.
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KVS are really simple by design. A value can be saved with a unique
key. That value can later be loaded by that same key. This is more gener-
ally known as hash addressing described already in 1968 by R.Morris [6].
KVS do not natively support relations or full text queries, but can be a
better match to some situations. Examples of such situations are storing
operational data, metadata, logging, message queues, caching and serving
pre-computed data. One approach to implement a KVS is to store keys
in-memory and persist the dataset to file asynchronously. When the KVS
server is restarted, all the data is loaded into memory from that file.

RDBMS have serious advantages over KVS: they are well tested, have
good management tools and programming patterns available. Key-values
on the other hand are fairly new, each of them have different approach and
excel only in a very narrow segment [10].

Sometimes the difference between RDBMS and a KVS is almost non-
existing. For example when using MySQL by indexed primary keys it
can perform really well and depending on the needs can also be easier to
partition than current KVS implementations. Also some operations, like
sorting can be faster to do at the application level when data is suitable for
that. There is no single technology to implement a scalable system. Such
system has to be crafted with a combination of different technologies and
architectural designs.

Developers existing familarity with RDBMS and the fact that as ma-
tured systems they are easier to understand, might be good enough reason
for not to consider KVS option. On the other hand scalability requirements
might force to consider it.

4 Persisting objects in KVS

Objects are traditionally peristed in RDBMS with Object-Relational map-
per (ORM). While KVS implementations differ, there are some common
requirements for persistence.

4.1 Objects

Objects are instances of classes implemented in host language. As structure
for object and methods etc. is in the code, the entity itself is defined by its
unique identifier and attribute values. Simple attribute types like strings,
integers, booleans and floats are suitable for storing in KVS.

A collection of objects can be defined as a collection of unique identi-
fiers. From these identifiers we can get all the attributes from the database
required to create these objects.
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An objects attribute can be stored with following key-value pair Class-
Name:Identifier:AttributeName ⇒ Value.

Example 1. A car with two attributes as separate keys
Car:34:color ⇒ green
Car:34:speed ⇒ 120

This approach can be problematic as descibed in the next section.

4.2 Consistency of objects

Concurrency of reads and writes makes previous approach problematic as
KVS does not provide same kind of transactions that we are used to in the
RDBMS world. If this is not considered, it can lead to potential inconsis-
tencies. For example during attribute read operation, a concurrent update
operation can be modifying the same object. When object is returned to
application, it can have some old and some new values. Also, when deleting
an object it is possible that execution is terminated for example by power
failure and only some of the attributes were deleted.

4.3 Schemaless data model

It is common that not all of the instances have exactly the same attributes
than others. Some might have attributes that exist only in the minority of
all objects. Schemaless data model is useful during the development phase,
but also interesting for the production. For example, an administrator could
add attributes on the fly for certain instances and the application could be
designed to show only those attributes that are present in the instance.
Schemaless approach does not necesary equal chaos if the architecture is
designed to support it. Simple example of this is provided in the evaluation
chapter.

5 Key-value storages

There are different implementions of KVS and most of them have not yet
fully matured. Cloud services have defined a new set of problems what
pioneers like Facebook and Amazon are addressing these problems with
their own distributed implementations like Cassandra [4] and Dynamo [5].
These distributed large scale KVS have proven to work well for them, but
for smaller scale (not massively big) web application they might be too
heavy. Things we get for granted with RDBMS like indexing data, provid-
ing query language and views are currently under research [7, 10, 11].
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Smaller scale KVS implementations include for example CouchDB,
MongoDB and Redis. They differ from each other and are suitable for dif-
ferent kind of tasks. For example MongoDB provides a relational database
like query language and is essentially a document database. All of these
three support partitioning and replication of the data at some level. Mostly
experimental object persistence adapters are available for all implementa-
tions.

6 Redis introduction

Redis does not support complex queries or indexing, but has support for
data structures as values. Being very simple it is also fastest KVS im-
plementations for many basic operations. Speed and data structures are
interesting combination that can be used for simple object persistence.

Data structures in Redis are more generally called Redis Datatypes.
These include strings, lists, sets, sorted sets and hashes. Redis provides
commands that can be used to modify these types. For example list sup-
ports normal list operations, like push and pop.

The whole dataset is kept in-memory and therefore can not exceed
the amount of physical RAM. Redis server writes entire dataset to disk at
configurable intervals. This can also be configured so that each modification
is always written on the disk before returning OK. Master-Slave replication
is also available and clustering is currently under development [9].

Atomic commands and Redis Transactions

Every Redis command is executed atomically. For example the INCR com-
mand increments integer value of key atomically. Two separate commands
are not atomical without combining them with Redis Transactions.

Transactions in Redis are actually queued commands that are executed
atomically in sequence. If one command raises an error, all the other com-
mands in the queue are still processed. Redis starts queuing commands
after command MULTI and executes those in one atomic transaction with
EXEC.

6.1 Sorted sets and Hashes

Sorted sets are similar to RDBMS indexes. Sorted sets contain members
that are sorted by a special integer value score. For example ”ZADD Foo:all
10 10” stores value 10 to key Foo:all with score of 10.



44 Matti Paksula

Hashes are key-value pairs inside a key and suitable for storing objects
attributes. For example ”HMSET Cat:2:attributes color black age 20” adds
two key-value pairs to the key Cat:2:attributes.

7 Implementation

In following implementation each persisted object has its own unique integer
identifier. Based on this identifier a key Foo:id:attributes containing the
objects attributes is created (assuming that object is named Foo). This
key stores the attributes as Redis hash. When the object is created, a
special sorted set Foo:all is updated to contain the identifier. With this
”master” set it is possible to know if object is persisted or not.

Because write operations are different atomic operations, concurrency
of writes can lead to inconsistent objects. If a delete operation is stopped
(for e.g. power outage) in the between of attribute deletion and removal
from the master set, object loses it’s attributes. Also some garbage keys
can exist in the memory if the object is removed from the master set of
Foo:all and attributes are not deleted left. To prevent these scenarior each
operation has to be designed for race conditions and process termination.

Redis specific implementation details are given in next pseudocode like
algorithms. Redis commands are written in capital letters. Only the ba-
sic operations are described as further work is needed to provide simple
relations and indexes. In the examples class named Cat is used over Foo,
because cats have names and lengths unlike foos.

7.1 Create

Create operation is shown in algorithm 1. Operation fetches new identifier
from shared sequence. Then all attributes are set in Redis hash. After this
object is added to set of all persisted objects. This is done with ZADD
command, that adds objects identifier integer with the same integer as
score in the sorted set. Command HMSET accepts many key-value pairs
(HMSET key field1 value2 ... fieldN valueN). Each attribute can also
be written separately, this approach is shown in alternative create algorithm
2.

Increasing identifier and storing attributes are done in sperate atomic
operations. This could lead to situation where identifier is increased, but
no object is persisted. This is acceptable for worst case scenario as the
dataset is still consistent. Atomic transaction guarantees that attributes
do not get written without being added to sorted set all.
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Algorithm 1 Create an object

Require: attrs
id← INCR ”Cat:sequence”

MULTI

{HMSET ”Cat:3:attributes” ”name” ”lolcat” ”age” ”3”} HMSET

”Cat:id:attributes” attrs
ZADD ”Cat:all” id id

EXEC

Algorithm 2 Alternative object creation

Require: attrs
id← INCR ”Cat:sequence”

MULTI

for all key, value in attrs do

HSET ”Cat:id:attributes” key value
end for

ZADD ”Cat:all” id id

EXEC
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7.2 Load

It is possible to get all the attributes after the object is persisted by using
unique object identifier. Returning value of ZSCORE operation against
this key is the score of the key in sorted set. If key was not found then
a special value NIL is returned. Attribute read returns an empty set also
when an object does not have any attributes. Therefore reading score and
attributes atomically is required to determine if object was stored without
any attributes. Also a race condition with delete operation is possible when
operations are not atomic.

Algorithm 3 Load an object

Require: id
MULTI

id← ZSCORE ”Cat:all” id
attrs← HGETALL ”Cat:id:attributes”

EXEC

if id is zero then

return false

else

return attrs
end if

7.3 Update

Updating an existing object is equal to the creation as shown in algo-
rithm 1. Alternative creation algorithm (algorithm 2) can provide better
performance when only some of the keys are updated. In the worst case
performance is the same as in create.

Update can also be used when adding and removing attributes to and
from an existing object. This requires a host language that supports adding
new attributes dynamically in objects or some other method.

7.4 Delete

Delete (in algorithm 4) is done by combining deletion of attributes and
removal from sorted set all into one atomic transaction.
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Algorithm 4 Delete an object

Require: id
MULTI

DEL ”Cat:id:attributes”
ZREM ”Cat:all” id
EXEC

7.5 Count

Counting (in algorithm 5) the number of persisted objects is the cardinality
of sorted set all. Time complexity is O(1).

Algorithm 5 Count objects

i← ZCARD ”Cat:all”
return i

8 Conclusion

Using novel database techniques is still pretty experimental. A quote from
the Redis mailing list summarises it all:

”However, I have to admit, I’ve definitely had sleepless nights.
Redis is a new technology. We explored new territory and had
little experience (internal or otherwise) to rely upon. We’ve
had to debug and patch the driver, write our own query layer,
backups, data injection scripts, all sorts of stuff you take for
granted from the SQL world, and we’re still tweaking it, and
wishing for pre-made solutions.” [8]

Key-value databases have not yet fully matured, but do give interesting
options for developing distributed and scalable web applications. Each
of different implementations are good for a set of problems, but not for
every problem. Therefore well defined architectural design patterns and
adapters for storing objects are needed to provide a tested approach for
developing stable software. Relational databases are still good for handling
relations and supporting strong consistency requirements. The future of
web databases is moving from homogeneous to heterogeneous collection of
different application specific database systems.
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Abstract

In this article we research methods of n FIFO-queues allocation in the
memory of size m units. The problem of optimal memory partition be-
tween queues in the case of consecutive circular implementation and the
problem of the analysis of linked list implementation are investigated. As
mathematical models we proposed random walks into different areas of
n-measured space.

1 Introduction

In many applications there is a problem of allocation of multiple queues
in single-level memory. There are two fundamentally different ways of or-
ganizing work with dynamic data structures – consecutive and linked list
allocation. This paper is the extension of [1]. For queues with sequential
presentation all the memory is splitted into several parts and each queue is
allocated in separate section of memory. In this case we will have losses of
memory when any queue overflows and other queues don’t overflow.

The linked list implementation is the second method. In this view the
data structure is stored as a list. In this case any number of elements of the
lists can coexist in the memory area until the free memory is exhausted.
But on the other hand, this approach requires an additional link field for
each element.

In this article we considered the system where memory overflow is not
an emergency situation. If free memory is exausted then all attempts to
include an element into queue will lead to it loss until the appearance of free

c© Prof. A.V. Sokolov, A.V. Drac, 2010
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memory i.e. until the deletion of an element from the tail of queue. Such
scheme is used for example in the routers and such behaviour of queues is
name ”reset tail”. As the optimality criterion we considered the minimal
part of time which the system is situated in the state of reset tail. It is
reasonably to minimize this value in order to minimize the part of lost
elements. In this paper we considered linked and sequential presentation
of queues and calculated in symbolic form the average part of time which
the system is situated in the state of ”reset tail”.

2 The problem

Consider n queues in single level memory size m. Assume that the time is
discrete and only one of the following operations can happen during each
time step:

• insertion of element into j-th data stucture with the probability pj
(1 ≤ j ≤ n),

• deletion of element from j-th data stucture with the probability qj
(1 ≤ j ≤ n),

• access the element with the probability r (Data structures don’t
change their lengths).

p1 + · · ·+ pn + q1 + · · ·+ qn + r = 1.
Values pj , qj , r are constants. They don’t depend on the current lengths
of queues and on the operations on the previous steps. All elements have
the same lengths. The length of queue is the number of elements that it
contains. Denote ij is the lengths of data structure with number j.

Consider the memory overflow and transition into the states of ”reset
tail” in different cases:

1. Linked list implementation.
Denote l is the ratio of the size of element to the size of a pointer (for
the linked presentation). Denote m(1 − 1/l) = M . An overflow will
occur (and, hence, the system will move to the state of ”reset tail”)
when the queues will occupy all memory (i.e. i1 + · · ·+ in = M) and
an element to any of them will be attempted to include.

2. Consecutive presentation.
Each queue is allocated in its own part of memory. kj is the size of
allocated memory for j-th queue. An overflow will occur when j-th
queue occupy all allocated memory (its length will be equal to kj)
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and an element to this queue will be attempted to include. The free
memory allocated to other queues will not be redistributed.

We suppose, that the process starts from the state, when data structures
are empty, and in the case of deletion from an empty data structure there
is no shutdown. The problem is to find the average part of time when the
system is situated in the state of reset tail in both cases of representation
and compare them. To solve this problem we used apparatus of regular
markov’s chains.

3 Consecutive allocation of the queues

3.1 The problem

Consider k1, . . . , kn is the fixed partition of the memory.
As the mathematical model we consider the random walk on an integer

lattice space inside n-dimensional parallelepiped with vertex at the origin,
edges parallel to the axes and the lengths of edges k1, . . . , kn. Number
of states is equal to

∏n
i=1(ki + 1). (i1, . . . , in) is the state of the system.

0 ≤ i1 ≤ k1 + 1, . . . , 0 ≤ in ≤ kn + 1. ij = kj + 1 are the states of ”reset
tail”. αi1...in is the limit probability which system is situated in the state
(i1, . . . , in).

Conversion of the system from state (i1, . . . , in) to state (i′1, . . . , i
′
n)

occurs in according to the following rules (fig. 1):

(. . . , is, . . . , it, . . . ) ps
−−−−−→















(. . . , is + 1, . . . , it, . . . ) 0 ≤ is ≤ ks, it ≤ kt
(. . . , is + 1, . . . , it − 1, . . . ) 0 ≤ is ≤ ks, it = kt + 1
(. . . , is, . . . , it, . . . ) is = ks + 1, it ≤ kt
(. . . , is, . . . , it − 1, . . . ) is = ks + 1, it = kt + 1

(. . . , is, . . . , it, . . . ) qs
−−−−−→



























(. . . , is, . . . , it, . . . ) is = 0, xj ≤ kt
(. . . , is, . . . , it − 1, . . . ) is = 0, xj = kt + 1
(. . . , is − 1, . . . , it, . . . ) 1 ≤ is ≤ ks, it ≤ kt
(. . . , is − 1, . . . , it − 1, . . . ) 1 ≤ is ≤ ks, it = kt + 1
(. . . , is − 2, . . . , it, . . . ) is = ks + 1, it ≤ kt
(. . . , is − 2, . . . , it − 1, . . . ) is = ks + 1, it = kt + 1

(. . . , is, . . . , it, . . . ) r
−−−−−→















(. . . , is, . . . , it, . . . ) 0 ≤ is ≤ ks, it ≤ kt
(. . . , is, . . . , it − 1, . . . ) 0 ≤ is ≤ ks, it = kt + 1
(. . . , is − 1, . . . , it, . . . ) is = ks + 1, it ≤ kt
(. . . , is − 1, . . . , it − 1, . . . ) is = ks + 1, it = kt + 1

1 ≤ s ≤ n, 1 ≤ t ≤ n, s 6= t
Construct the balance equation αi =

∑
i
αjPji. For our system it will

be the following (for internal states):
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Figure 1: Transition between states in the case of consecutive presentation

1. αi1i2...in = p1αi1−1,i2...in + q1αi1+1,i2...in + · · ·+ pnαi1i2...in−1 +
qnαi1i2...in+1 + rαi1i2...in

(1 ≤ ij ≤ kj − 2, 1 ≤ j ≤ n)

2. α0i2...in = q1α1,i2...in + · · ·+ pnα0i2...in−1 + qnα0i2...in+1 +
(r + q1)α0i2...in

(i1 = 0, 1 ≤ ij ≤ kj − 2, 2 ≤ j ≤ n)

3. αk1−1i2...in = p1αk1−2,i2...in + q1αk1,i2...in + q1αk1+1,i2...in + · · ·+
pnαi1i2...in−1 + qnαi1i2...in+1 + rαk1−1,i2...in

(i1 = k1 − 1, 1 ≤ ij ≤ kj − 2, 2 ≤ j ≤ n)

4. αk1i2...in = p1αk1−1,i2...in + rαk1+1,i2...in + · · · + pnαi1i2...in−1 +
qnαi1i2...in+1 + rαk1i2...in

(i1 = k1, 1 ≤ ij ≤ kj − 2, 2 ≤ j ≤ n)

5. αk1+1i2...in = p1αk1,i2...in + p1αk1+1,i2...in

(i1 = k1, 1 ≤ ij ≤ kj − 2, 2 ≤ j ≤ n)

Split the set of indexes I = {1, . . . , n} into the subsets:
I1 = {j : ij = 0}
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I2 = {j : 1 ≤ ij ≤ kj − 2}
I3 = {j : ij = kj − 1}
I4 = {j : ij = kj}
I5 = {j : ij = kj + 1}

Since only one of queues can be into the state of ”reset tail” then |I5| = 0
or |I5| = 1.

1. For usual states (equations 1–4 in common view, i.e. when I5 = ∅):
αi1...in = (r +

∑

j∈I1

qj)αi1...in +
∑

j∈I1

qjαi1...ij+1...in +
∑

j∈I2+I3

(pjαi1...ij−1...in + qjαi1...ij+1...in) +
∑

j∈I3

qjαi1...ij+2...in +

∑

j∈I4

(

rαi1...ij+1...in + pjαi1...ij−1...in +
∑

l∈I2+I3

(plαi1...il−1...ij+1...in + qlαi1...il+1...ij+1...in) +

∑

l∈I1

ql(αi1...il...ij+1...in + αi1...il+1...ij+1...in)

)

2. For the states of ”reset tail” (equation 5):
αi1...kj+1...in = pj(αi1...kj ...in + αi1...kj+1...in)

The system has the following solution:

αi1...in = C

(
p1
q1

)i1

. . .

(
pn
qn

)in


1−

∑

j∈I4

pj


 I5 = ∅

αi1...ij ...in = C

(
p1
q1

)i1

. . .

(
pj
qj

)ij−1

. . .

(
pn
qn

)in

pj I5 = {j}

Denote pi/qi = xi, i = 1, . . . , n. Let for queues with numbers 1, . . . , s
xi 6= 1, i.e. pi 6= qi, and for queues with number s + 1, . . . , n xi = 1, i.e.
pi = qi. Find the constant C from the normalizatin equation:

1
C =

k1∑
i1=0
· · ·

kn∑
in=0

xi11 . . . xknn =
k1∑

i1=0
xi11 · · ·

kn∑
in=0

xknn =

=
s∏

i=1

xki+1
i − 1

xi − 1

n∏
i=s+1

(ki + 1)

Summarise all αi1...in which the states of ”reset tail”. For queue with
number 1 it will be the states with the condition i1 = k1, 0 ≤ ij ≤ in,
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2 ≤ j ≤ n.

p∗1 = p1x
k1

1

1

C

k2
∑

i2=0

· · ·
kn
∑

in=0

x
i2
2 . . . xkn

n = p1x
k1

1

1

C

k2
∑

i2=0

x
i2
2 · · ·

kn
∑

in=0

xkn
n =

p1x
k1

1

1

C

s
∏

i=1

x
ki+1

i − 1

xi − 1

n
∏

i=s+1

(ki + 1) = p1x
k1

1

x1 − 1

x
k1+1

1 − 1
=

p1

(

p1

q1

)k1
(

p1

q1
− 1

)

(

p1

q1

)k1+1

− 1

=
p1(p

k1+1

1 − p
k1

1 q)

p
k1+1

1 − q
k1+1

1

=
p1 − q1

1−

(

q1

p1

)k1+1
=

q1 − p1
(

q1

p1

)k1+1

− 1

Similarly for the queues with numbers 2, . . . , s.
For the queue with number s+ 1:

p∗s+1 =
ps+1

ks+1 + 1

Similarly for the queues with numbers s+ 2, . . . , n.
Then the summary part of time which the system is situated in the

state of ”reset tail” is equal to:

P ∗
c =

n∑

i=1

p∗i =

s∑

i=1

qi − pi(
qi
pi

)ki+1

− 1

+

n∑

i=s+1

pi
ki + 1

The problem of optimal division of memory was solved in [1].

4 Linked list presentation of queues

As the mathematical model we consider the random walk on an integer
lattice space inside n-dimensional pyramid with edges 0 ≤ x1 ≤ M , 0 ≤
x2 ≤M , . . . , 0 ≤ xn ≤M and base x1 + x2 + · · ·+ xn = M .

For each state in the face x1 + x2 + · · · + xn = M , i.e. when all the
memory is exausted, define the corresponding state of ”reset tail”. Denote
it as (x̄1, . . . , x̄n). It can be reached in case of inserting of an element into
any of queues. Conversion of the system from state (x1, . . . , xn) to state
(x′1, . . . , x

′
n) occurs in according to the following rules (fig. 2):

(. . . , is, . . . , it, . . . ) ps
−−−−−→

{

(. . . , is + 1, . . . , it, . . . ) 0 ≤ i1 + · · ·+ in < M
(. . . , x̄s, . . . , x̄j , . . . ) i1 + · · ·+ in = M

(. . . , is, . . . , it, . . . ) qs
−−−−−→

{

(. . . , is − 1, . . . , it, . . . ) is > 0
(. . . , is, . . . , it, . . . ) is = 0

(. . . , is, . . . , it, . . . ) r
−−−−−→ (. . . , is, . . . , it, . . . )



The optimal implementation of n FIFO-queues in single-level memory 57

Figure 2: Transition between states in the case of linked list presentation

(. . . , īs, . . . , īt, . . . ) ps
−−−−−→ (. . . , īs, . . . , īt, . . . )

(. . . , īs, . . . , īt, . . . ) qt
−−−−−→

{

(. . . , is − 1, . . . , it, . . . ) is > 0
(. . . , is, . . . , it, . . . ) is = 0

(. . . , īs, . . . , īt, . . . ) r
−−−−−→ (. . . , is, . . . , it, . . . )

Split the set of indexes I = {1, . . . , n} into the subsets:

I1 = {j : ij = 0}
I2 = {j : ij > 0}

Construct the balance equation αi =
∑
i
αjPji. For our system it will

be the following:

1. αi1...in =
∑
j∈I1

(qjαi1...ij ...in + qjαi1...ij+1...in) +
∑
j∈I2

(pjαi1...ij−1+in +

qjαi1,...ij+1...in) + rαi1...in

(0 ≤ i1 + · · ·+ in ≤M − 2)
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2. αi1...in =
∑
j∈I1

(qjαi1,...ij+in + qj(αi1,...ij+1...in + αi1...ij ...in)) +
∑
j∈I2

(pjαi1...ij−1+in + qj(αi1,...ij+1...in + αi1...ij ...in)) + rαi1...in

(i1 + · · ·+ in = M − 1)

3. αi1...in = p1αi1−1,i2...in + · · ·+ pnαi1i2...in−1 + r(αi1i2...in + αi1,i2...in)
(i1 + · · ·+ in = M)

4. αi1...in = (p1 + · · ·+ pn)(αi1i2...in + αi1i2...in)
(i1 + · · ·+ in = M)

The system has the following solution:

αi1i2...in = C

(
p1
q1

)i1

. . .

(
pn
qn

)in

0 ≤ i1 + · · ·+ in ≤M − 1

αi1i2...in = C(1− p1 − · · · − pn)

(
p1
q1

)i1

. . .

(
pn
qn

)in

i1 + · · ·+ in = M

αi1i2...in = C(p1 + · · ·+ pn)

(
p1
q1

)i1

. . .

(
pn
qn

)in

i1 + · · ·+ in = M

Find the constant C from the normalizatin equation:

1

C
=

M∑

in=0

M−in∑

in−1=0

· · ·
M−i2−···−in∑

i1=0

xi11 . . . xinn

Find the summary part of time which system situated in the state of
”reset tail”.

4.1 Statement

Let a1, . . . , ak are the distinct numbers, 0 ≤ s ≤ k − 1, then:
as
1

(a1 − a2)(a1 − a3) . . . (a1 − ak)
+

as
2

(a2 − a1)(a2 − a3) . . . (a2 − ak)
+ · · ·+

+
as
k

(ak − a1)(ak − a2) . . . (ak − ak−1)
= 0

Proof:

Lead the left part to the common denominator. p-th summand will have
p−1 changes of sign. All brackets without ap will be into the p-th summand
ap

1∏
1≤i<j≤k

(ai − aj)

(
as1

∏
2≤i<j≤k

(ai−aj)+· · ·+(−1)p+1asp
∏

1≤i<j≤k
i 6=p 6=j

(ai−aj)+

· · ·+
+ ask

∏
1≤i<j≤k−1

(ai − aj)

)
=
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Represent the sum in brackets in the form of a determinant. In every
summand the procuct will be the value of Vandermond’s determinant (p−
1)-th order.

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

as
1 as

2 as
3 . . . as

k

1 1 1 . . . 1
a1 a2 a3 . . . ak

a2
1 a2

2 a2
3 . . . a2

k

...
...

...
. . .

...

ak−1

1 ak−1

2 ak−1

3 . . . ak−1

k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0

Determinant is equal to 0, because it has 2 equal rows

4.2 Case of different values of probabilities

Consider the case when xi 6= 1 ∀i and xi 6= xj when i 6= j:

1

C
=

xM+n
1

(x1 − 1)(x1 − x2) . . . (x1 − xn)
+ · · · +

xM+n
n

(xn − 1)(xn − x1) . . . (xn − xn−1)
+

1

(1− x1) . . . (1− xn)
= fn(X,M)

Method of mathematical induction:

1) Base n = 2:

M∑
i2=0

M−i2∑
i1=0

xi11 x
i2
2 =

M∑
i2=0

xi22
M−i2∑
i1=0

xi22 =
M∑

i2=0
xi22

xM−i2+1
1 − 1

x1 − 1
=

=
M∑

i2=0

xM−i2+1
1 xi22
x1 − 1

−
M∑

i2=0

xi22
x1 − 1

=
x1

x1 − 1

xM+1
2 − xM+1

1

x2 − x1
− xM+1

2 − 1

(x1 − 1)(x2 − 1)
=

=
xM+2
1

(x1 − 1)(x1 − x2)
+

1

(1− x1)(1− x2)
− x2

(
x1

(x1 − 1)(x1 − x2)
+

1

(1− x1)(1− x2)

)
=

xM+2
1

(x1 − 1)(x1 − x2)
+

xM+2
2

(x2 − 1)(x2 − x1)
+

1

(1− x1)(1− x2)

2) Suppose it is true for (n− 1)-th queue.
3) Proof for n:

fn(X,M) =
M∑

in=0
xinn

M−in∑
in−1=0

· · ·
M−i2−···−in∑

i1=0
xi11 . . . x

in−1

n−1 =

n∑
j=0

xjn(fn−1(M))n−j

Simplify summands:
M∑
j=0

xjn =
xM+1
n − 1

xn − 1
M∑
j=0

xjnx
M−j+n−1
i =

xn−1
i (xM+1

n )− xM+1
i

xn − xi
=

xM+n
i

xi − xn
− xM+1

n xn−1
i

xi − xn
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(1 ≤ i ≤ n− 1)
Then:

fn(X,M) =
xM+n
1

(x1 − 1)(x1 − x2) . . . (x1 − xn)
+ · · ·+

xM+n
n−1

(xn−1 − 1)(xn−1 − x1) . . . (xn−1 − xn)
+

1

(1− x1) . . . (1− xn)
− xM+1

n

(

xn−1

1

(x1 − 1)(x1 − x2) . . . (x1 − xn)
+ · · ·+

xn−1

n−1

(xn−1 − 1)(xn−1 − x1) . . . (xn−1 − xn)
+

1

(1− x1) . . . (1− xn)

)

=

=
xM+n
1

(x1 − 1)(x1 − x2) . . . (x1 − xn)
+ · · ·+

xM+n
n

(xn − 1)(xn − x1) . . . (xn − xn−1)
+

1

(1− x1) . . . (1− xn)

Then C =
1

fn(X,M)
. Summarise αi1...in , which corresponds to the

states of ”reset tail” :

(p1 + · · · + pn)
M∑

in=0

M−in∑
in−1=0

· · ·
M−i3−···−in∑

i2=0
xM−i2−···−in
1 xi22 . . . xinn =

gn(X,M)
Proof that

gn(X,M) = (p1 + · · · + pn)
xM+n−1
1

(x1 − x2) . . . (x1 − xn)
+ · · · +

xM+n−1
n

(xn − x1) . . . (xn − xn−1)
Method of mathematical induction:

1) Base n = 2:

(p1 + p2)
M∑
i=0

xi1x
M−i
2 = (p1 + p2)

xM+1
1 − xM+1

2

x1 − x2
= (p1 +

p2)

(
xM+1
1

x1 − x2
+

xM+1
2

x2 − x1

)

Steps 2) and 3) are the same as in calculating constant C

P ∗ = (p1 + · · ·+ pn)
gn(X,M)

fn(X,M)

4.3 Common case

Suppose that there are k0 queues that have the probabilities:
pi
qi

= x0 = 1,

k1 queues, that:
pi1
qi1

= · · · =
pik1
qik1

= x1
. . .
ks queues, that:

pj1
qj1

= · · · = pjks
qjks

= xs

k0 + k1 + · · ·+ ks = n
Find the constant C:
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1

C
=

M
∑

is=0

M−is
∑

is−1=0

· · ·
M−i2−···−is

∑

i1=0

M−i1−···−is
∑

i0=0
(

ks+is−1

ks

)

xis
s

(

ks−1+is−1−1

ks−1

)

x
is−1

s−1 . . .
(

k1+i1−1

k1

)

x
i1
1

(

k0+i0
k0

)

=

= f∗

s (X,M)

Proof that

f∗(X,M) =
∂n−s

∂k0x0∂k1−1x1 . . . ∂ks−1xs

{

1

k0!(k1 − 1)! . . . (ks − 1)!
(

xM+n
0

(x0 − x1) . . . (x0 − xs)
+ · · ·+

xM+n
s

(xs − x0) . . . (xs − xs−1)

)}

Method of mathematical induction:

1) Base s = 1:
M
∑

j=0

(

k1+j−1

j

)

x
j
1

(

M+k0−j

M−j

)

=
M
∑

j=0

(k1 + j − 1)!

j!(k1 − 1)!
x
j
1

(M + k0 − j)!

(M − j)!k0!
x
M−j
0 =

=
1

k0!(k1 − 1)!

M
∑

j=0

(M − j + 1) . . . (M − j + k0)x
M−j
0 (j + 1) . . . (j + k1 − 1)xj

1 =

=
∂k0+k1−1

∂k0x0∂k1−1x1

{

1

k0!(k1 − 1)!

M
∑

j=0

x
M−j+k0

0 x
j+k1−1

1

}

=

=
∂k0+k1−1

∂k0x0∂k1−1x1

{

1

k0!(k1 − 1)!

M+k0
∑

j=−k1+1

x
M−j+k0

0 x
j+k1−1

1

}

=

=
∂k0+k1−1

∂k0x0∂k1−1x1

{

1

k0!(k1 − 1)!

x
M+k0+k1

0 − x
M+k0+k1

1

x0 − x1

}

=

=
∂n−s

∂k0x0∂k1−1x1

{

1

k0!(k1 − 1)!

(

xM+n
0

x0 − x1

+
xM+n
1

x1 − x0

)}

2) It is true for 0, . . . , s− 1
3) Proof for s:

f∗
s (X,M) =

M∑
is=0

(
ks+is−1

ks

)
xiss

M−is∑
is−1=0

· · ·
M−i2−···−is∑

i1=0

M−i1−···−is∑
i0=0(ks−1+is−1−1

ks−1

)
x
is−1

s−1 . . .
(
k1+i1−1

k1

)
xi11
(
k0+i0
k0

)
=

=
M∑
j=0

(
ks+is−1

ks

)
xiss f

∗
s−1(X,M − j)

Simplify the summand:
M
∑

j=0

(

ks+j−1

ks

)

xj
sx

M−j+k0+···+ks−1

i =
1

ks!

M
∑

j=0

(ks + 1) . . . (ks + is −

1)xj
sx

M−j+k0+···+ks−1

i =

∂ks−1

∂ks−1xs

{

1

(ks − 1)!

M
∑

j=0

xj+ks−1
s x

M−j+k0+···+ks−1

i

}

=

∂ks−1

∂ks−1xs

{

1

(ks − 1)!

M
∑

j=−ks+1

xj+ks−1
s x

M−j+k0+···+ks−1

i

}

=
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∂ks−1

∂ks−1xs

{

1

(ks − 1)!

(

M+k1+···+ks−1
∑

j=−ks+1

xj+ks−1
s x

M−j+k0+···+ks−1

i −

M+k0+···+ks−1
∑

j=M+1

xj+ks−1
s x

M−j+k0+···+ks−1

i

)}

=

∂ks−1

∂ks−1xs

{

1

(ks − 1)!

(

xM+k0+···+ks
s − x

M+k0+···+ks

i

xs − xi

− (x
k0+···+ks−1−1

i xM+ks
s + · · · +

xM+n−1
s )

)}

=

∂ks−1

∂ks−1xs

{

1

(ks − 1)!

(

−
xM+n
s

xi − xs

+
xM+n
i

xi − xs

− (x
k0+···+ks−1−1

i xM+ks
s + · · · +

xM+n−1
s )

)}

(∗)

(1 ≤ i ≤ s− 1)
Summarise the last expression for i from 1 to s− 1 and simplify it:
From the Lemma:
0 ≤ p ≤ s− 1:

xp0
(x0 − x1) . . . (x0 − xs−1)

+
xp1

(x1 − x0) . . . (x1 − xs−1)
+ · · ·+

+
xps−1

(xs−1 − x0) . . . (xs−1 − xs−2)
= 0

Apply the formula from the consecutive representation in reverse order:
s ≤ p ≤ k0 + · · ·+ ks−1 − 1:

x
p
0

(x0 − x1) . . . (x0 − xs−1)
+

x
p
1

(x1 − x0) . . . (x1 − xs−1)
+ · · · +

x
p
s−1

(xs−1 − x0) . . . (xs−1 − xs−2)
=

=
p−s+1
∑

i0=0

p−s+1−i0
∑

i1=0

· · ·
p−s+1−i0−···−is−2

∑

is−1=0

x
i0
0 x

i1
1 . . . x

is−1

s−1

∂n−s

∂k0x0∂k1−1x1 . . . ∂ks−1−1xs−1
{

p−s+1
∑

i0=0

p−s+1−i0
∑

i1=0

· · ·
p−s+1−i0−···−is−2

∑

is−1=0

x
i0
0 x

i1
1 . . . x

is−1

s−1

}

= 0

As all the summands have the total power not more than
p− s+ 1 ≤ k0 + · · ·+ ks−1 − 1− s+ 1 = k0 + · · ·+ ks−1 − s,
and the order of the partial derivative is
k0 + (k1 − 1) + · · ·+ (ks−1 − 1) = k0 + · · ·+ ks − s+ 1,
i.e. at least one less the total power of each summand.
Hence, while summaring in (*) the derivative of sum the following
summands will be equal to 0

∂n−s

∂k0x0∂k1−1x1 . . . ∂ks−1−1xs−1{
s−1∑
i=0

x
k0+···+ks−1−1
i xM+ks

s + · · ·+ xM+n−1
s

(xi − x0) . . . (xi − xs−1)
= 0

}
1 ≤ i ≤ s− 1
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From the Lemma:
1

(x0 − x1) . . . (x0 − xs−1)(x0 − xs)
+ · · · +

1

(xs−1 − x0) . . . (xs−1 − xs−2)(xs−1 − xs)
=

1

(xs − x0) . . . (xs − xs−1)
Finally obtain:
1

C
= f∗

s (X,M) =
∂n−s

∂k0x0∂k1−1x1 . . . ∂ks−1xs

{
1

k0!(k1 − 1)! . . . (ks − 1)!(
xM+n
0

(x0 − x1) . . . (x0 − xs)
+ · · ·+ xM+n

s

(xs − x0) . . . (xs − xs−1)

)}

5 Comparison between consecutive and linked list

presentations

In previous sections we obtain the formulas which express the average
part of time which the system is situated in the state of ”reset tail”. In
this section we will compare consecutive and linked list presentations.
Our results were obtained when m → ∞, but they are correct in prelimit
form when the size of memory is rather small about 10-20 units. To check
results we used system of vector algebra maxima.
We will distinguish several cases of dependences between probabilities:

1. p1 > q1 and
p1
q1

>
pi
qi

for i = 2, . . . , n.

Consecutive implementation:

lim
m→∞

qi − pi(
qi
pi

)ki+1

− 1

=

{
pi − qi, pi > qi

0, pi < qi

lim
m→∞

pi
ki + 1

= 0

Hence, P ∗
N →

n∑
i=1

max(pi − qi, 0)

Linked list implementation:

P ∗
l = (p1 + · · ·+ pn)

n∑
i=1

xM+n−1
i

n∏
j=1
j 6=i

(xi − xj)

n∑
i=1

xM+n
i

(xi − 1)
n∏

j=1
j 6=i

(xi − xj)

+
1

n∏
j=1

(1− xj)

→

(p1 + · · ·+ pn)

(
xi − 1

xi

)
= (p1 + · · ·+ pn)

(
1− q1

p1

)
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pi(1−
q1
p1

) > 0 2 ≤ i ≤ n, because p1 > q1

pi(1−
q1
p1

) = pi − pi
q1
p1

> pi − qi

Hence, pi(1−
q1
p1

) > max(pi − qi, 0)

Summarise the last inequality for i from 2 to n and add pi − qi:

lim
m→∞

P ∗
c =

n∑
i=1

max(pi − qi, 0) < (p1 + · · ·+ pn)

(
1− q1

p1

)
= lim

m→∞
P ∗
l

P ∗
c < P ∗

l even when the size of memory is rather small.

2. pi = qi =
1

2n
for i = 1, . . . , n.

P ∗
c =

n∑
i=1

pi
ki + 1

=
n∑

i=1

1
2n

m
n + 1

=
n

m+ n
P ∗
c ≤

n

m+ n

P ∗
l =

n

M + n
P ∗
c < P ∗

l

3. pi < qi for i = 1, . . . , n. and
p1
q1

>
pi
qi

In [1] we found the optimal partition of memory in the case of consecutive
presentation using the method of dynamic programming. All the queues
will spend roughly the same part of time in the state of ”reset tail”. I.e.

qi − pi(
qi
pi

)ki+1

− 1

≈ qj − pj(
qj
pj

)kj+1

− 1

∀i 6= j

Using this equations and condition k1 + · · · + kn we can find the roughly
values of variables k1, . . . , kn:

P ∗
c ≈

1

exp

(
m− n

n∑
i=1

1

log( qipi )

− log n

) = O

(
exp

(
− m

n∑
i=1

1

log( qipi )

))

The behaviour of the function P ∗
l (M) will be determined by the value

n∑
i=1

xM+n−1
i

n∏
j=1
j 6=i

(xi − xj)

because in the denominator
n∑

i=1

xM+n
i

(xi − 1)
n∏

j=1
j 6=i

(xi − xj)

→ 0
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and value
1

n∏
j=1

(1− xj)

is a constant. Thus

P ∗
l = O

((
q1
p1

)M)
= O

(
exp
(
−m(1− 1

l
) log

q1
p1

))

In this case the part of time which the system is situated in the state
of ”reset tail” exponentially tends to 0 in both cases of presentation. To
choose best of them we need to compare the exponents and choose minimal
of them.
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Abstract
This article is devoted to certain aspects of optimizing the performance
of a single-server queue with heavy-tailed service time distribution, three
case-studies are presented: choosing an optimal queueing policy, switching
to multi-server system, choosing a task assignment policy. We discuss
main statistical properties of heavy-tailed distributions and some practice
examples, which illustrate evidence of heavy tails in systems. The main
goal of the work is to find and describe ways, which can minimize the effect
of heavy tails on system performance.

1 Introduction

The most recent advances in computer systems design show the trend of
switching to multiple cores and many cores from the former single-core
machine types [1, 2]. While taking into account the thermal effects and
frequency limits, one may also consider the differences in the workload
processes of this two types of machines. One of the goals of this work is
to illustrate the advantages of using multi-core architecture instead of a
single-core one.

In modern computer systems analysis one of the challenges one could
face are the heavy-tailed distributions of stochastic processes involved. Re-
cent research has highlighted that this kind of distributions can describe a
behavior of some real network process better than others (e.g. exponential
distribution). One could find empirical evidence and some discussion about
the subject in works [3, 4, 5] and the most recent work [6]. Among the most
used distributions in practice is Pareto distribution with tail

P (X > x) = x−α, x > 1, α > 1.

Consider some key properties of heavy tailed distributions:

c© Alexander S. Rumyantsev, Luybov V. Potakhina, 2011
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• the so-called Pareto law, or mass-count disparity: provided heavy-
tailed service time, a small fraction of tasks requires a large part of
capacity and vice-versa, vast majority of small tasks requires only a
little bandwidth (CPU time, traffic etc.).

• heavy-tailed distributed random values may have infinite variance
(and moreover, if α < 1, even infinite mean).

• under heavy-tailed service time, a jobs waiting time process has
burstiness: the process has some bursts, which are much bigger than
“normal” values of the process. Besides, an infinite second moment
of service time leads to an infinite mean waiting time in a classical
single-server system.

This effects have negative influence on system characteristics: perfor-
mance, reliability, quality of service. In this paper we discuss some practical
recommendations how to minimize this effect.

This paper is organized as follows. Section 2 describes the influence of
a service discipline on a single-server system delays, section 3 highlights
the differences in workloads of a single-server and multi-server systems.
Section 4 evaluates the effect of a task assignment policy in multi-server
queue, and the conclusion goes in section 5.

2 Choosing a service discipline

For a non-negative random variable X we introduce the distribution func-
tion F (x) = P (X 6 x), x > 0, the tail distribution F (x) = P (X > x) and
the equilibrium distribution (stationary residual lifetime distribution)

Fr(x) =
1

EX

∫ x

0
F (y)dy, x > 0.

Consider a M/G/1 system with heavy-tailed (Pareto) distribution of a typ-
ical task service time S:

B(x) := P (S > x) = x−α, x > 1, α > 1.

One should note a well-known result connecting the moment properties of
random variable X and it’s equilibrium version Xr:

EXα <∞ iff EXα−1
r <∞.

Basically this means that a random variable Xr having residual lifetime
distribution has moment properties one moment worse than X. Due to the
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basic properties of Pareto random variables (among other regularly varying
r.v.), one may conclude that asymptotically

P (X +Xr > x)

P (Xr > x)
→ 1, x→∞. (2.1)

Here we highlight recent theoretic results of the tail asymptotics of
the typical waiting time W and (which is needed in case of a preemptive
discipline) sojourn time V distributions for six key service disciplines. An
interested reader can find the details of the analysis in the work [7].

1. In First Come First Served (FCFS) queue the tasks are served in the
order of their arrival. If an arrival finds the server busy, it has to
wait at least the residual service time Sr for the task being served
to complete it’s request. Then, due to the property (2.1) the tail of
residual service time dominates. One may prove that waiting time
is asymptotically equivalent to residual service time (the details are
provided in [7]).

P{W > x} ∼ ρ

1− ρ
Br(x), x→∞

2. If there are n tasks in queue with Processor Sharing (PS) discipline,
they are simultaneously served with equal part of server capacity. So,
the influence of long tasks on the short tasks sojourn time is limited.
Then the tail of sojourn time distribution is described asymptotically
as

P{V > x} ∼ B
(
(1− ρ)x

)
, x→∞

3. For a Last Come First Served Preemptive-Resume (LCFS-PR) dis-
cipline, an arriving task is immediately taken into service. However,
this service is interrupted when another task arrives, and it is only
resumed when all tasks who have arrived after it have left the system.
The tail asymptotics of sojourn time in this case is as follows:

P{V > x} ∼ 1

1− ρ
B
(
(1− ρ)x

)
, x→∞

4. On the contrary, for the Last Come First Served Non-Preemptive
(LCFS-NP) queue, if an arriving task finds a busy server, it doesn’t
interrupt the service. So, the tail of it’s waiting time is determined
by the tail of a residual service time:

P{W > x} ∼ ρBr

(
(1− ρ)x

)
, x→∞
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5. The Foreground-Background Processor Sharing (FBPS) discipline as-
signs an equal part of the service capacity to the customers, which
have received the least amount of service. The tail of sojourn time is
the same as for the PS discipline:

P{V > x} ∼ B
(
(1− ρ)x

)
, x→∞

6. For the Shortest Remaining Processing Time First (SRPTF) disci-
pline the total service capacity is assigned to the task with shortest
remaining processing time. This discipline is preemptive and the tail
of sojourn time is the same as for the PS discipline:

P{V > x} ∼ B
(
(1− ρ)x

)
, x→∞

Summarizing the cases above, one may conclude that for a single-server
system the PS, FBPS and SRPTF disciplines have asymptotically the best
moment properties for the waiting/sojourn time, while the most often used
FIFO discipline is not optimal. Hence, one may consider optimizing the
quality of service in such a system by changing the queueing discipline.

3 Choosing a server architecture

One of the trends in modern computer design is to use the low-cost power-
efficient low-frequency multiple cores on a single processor instead of high-
frequency systems with single core on chip. As an example one may consider
the BlueGene/P systems with a PowerPC 450 cores at 850 Mhz. One of
the questions arising in this regard is: which type of architecture is asymp-
totically best? More exactly, one may compare the moment properties of
the waiting times in these two types of systems.

Consider an M/G/1 system with Pareto service times and a fast single
server. Then increase the number of servers in a system with a lower speed
so as to keep it’s performance. (E.g. one server with a 4 GHz core, two
servers with 2 GHz cores, four with 1 GHz ones, etc. One could find more
details in the work [8].) For the M/G/s system one may find the following
result [9]: denote ρ = ES/ET the load of the system (where S and T are
typical service and interarrival times respectively). Let ρ < 1, then one has
the following moment conditions:

ESβ <∞ provides EW s(β−1) <∞.

For a single server case (s = 1) this gives classical result. In general, these
results mean that s slow servers provide better moment conditions for the
mean waiting time than one fast server.
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Table 1: Simulation results for waiting times in 1-, 2-, 4- and 8-core system
(top-left to bottom-right).
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In the numerical results below we take α = 1.5, the total quantity of
tasks is 100 000, service discipline is FIFO, and traffic intensity is ρ = 0.3 <
1.

At top-left picture in table 1 one can see waiting times in a simulated
M/G/1 system. The maximum burst is near 3 500 time units. It is much
bigger than ”normal” values of the process. At the top-right the figure
depicts waiting times in a system which has 2 cores. These cores are twice
slower than core from 1st slide. (The identical tasks on a twice slower core
in this system give service times Ŝ doubled compared to the service times
S of the original system, Ŝ = 2S). And one can note, that the maximum
value is near 350 time units, that is an order smaller than burst at 1st
slide. Bottom-left is connected with a system with 4 cores (each one with
a quarter speed of the single-core server), Bottom-right is connected with
system with 8 cores.

We may conclude that the increasing of core quantity can reduce mean
waiting time in a system and decrease the system workload. Possibly, this
is one of the results that motivates the computer system makers to use
multi-core processors design.
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4 Choosing a task assignment policy

Consider a system with n servers and a single queue for tasks. The queue
manager (or dispatcher) should use special policy in order to assign tasks
from this queue to servers, each having it’s own queue. One may argue
which task assignment policy is best applicable to our heavy-tailed system.

A common practical situation is when the task service times are upper
and lower bounded. This leads to definition of a truncated Pareto distri-
bution (widely used in modeling), with the density

f(x) =
αkα

1− (k/p)α
x−α−1, where k 6 x 6 p

This distribution has all the moments finite. Nevertheless, as p→∞, this
distribution approaches a standard Pareto one, which may have unbounded
moments.

We assume that the dispatcher knows the size S of task. The tasks
assigned to each server are served in FCFS (non-preemptive) discipline.
Consider 4 key policies (the examples are based on the work [10]):

1. Random: an arriving task is sent to selected server with equal prob-
ability 1/n.

2. Round-Robin: tasks are assigned to servers in cyclical order: i-th task
being assigned to server i mod n.

3. Dynamic: Incoming task is assigned to the server with the smallest
amount of remaining work time, which is the sum of the sizes of the
tasks in the server’s queue plus work remaining on that task currently
being served.

4. Size-based: so-called SITA-E (Size Interval Task Assignment with
Equal Load) algorithm. The idea is to define the size range associated
with each server such that the total work of each server is the same.
Balancing the load this way minimizes the mean waiting time.

Let the distribution function of task sizes be B(x). Define ”cutoff
points” xi, i = 0..n, x0 = k, xn = p by the following rule:

∫ x1

x0

xdB(x) = ... =

∫ xn

xn−1

xdB(x) =
ES

n

and assign to the i-th core all tasks with size in the range S ∈ [xi−1, xi]
(ties defined arbitrary).
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Table 2: Mean waiting time (left) and standard deviation (right) for differ-
ent task assignment policies

This policies were compared via simulation in the work [10]. We con-
sider values α from 1.1 (high variability) to 1.9 (lower variability). The
figures in table 2 show mean waiting time and standard deviation for the
described policies as function of parameter α.

As one can see, the mean waiting time in the system with Random
and Round-Robin policies are quite similar and larger than the other two.
For a large α Dynamic policy shows the best results, but if the variability
of service time increases, Dynamic policy shows worse performance. In
contrast, the SITA-E behavior remains quite stable, even if α tends to 1,
or in other words, if the variability of service times increases.

5 Conclusion

We can conclude that a negative influence of heavy tails on system perfor-
mance may be reduced in different ways. We have reviewed three practical
examples on how one can decrease workload in system with heavy tailed in
service times.
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Abstract

We discuss the estimation of the loss probability in a queueing system
with finite buffer. We apply regenerative technique combined with the
so-called Delta-method to construct confidence interval for the stationary
loss probability. This work is supported by Russian Foundation for Basic
research, project No 10-07-00017.

1 Introduction

We consider a single server queue with finite buffer of size b, constant
service rate C and input process A(t) = mt + N(0, tσ2), consisting of
deterministic linear process mt with positive drift m > 0, and Brownian
motion N(0, tσ2). The workload process in this system is described by the
well-known (discrete time) Lindley recursion:

Qn = min((Qn−1 − C +Xn)
+, b), n = 1, 2, . . . , (1.1)

where
Xn := A(n+ 1)−A(n) =st m+N(0, σ2)

are the i.i.d increments of the input process at instants n = 1, 2, .... We
denote this system as Bi/D/1/b system. A motivation of this model can
be found in [3]. Denote by Lb(T ), the total lost workload in interval [0, T ],
that is

Lb(T ) :=
T∑

k=1

(Qk−1 − C +Xk − b)+, T = 1, 2, . . .

c© O. V. Lukashenko, R. S. Nekrasova, E. V. Morozov, M. Pagano, 2011
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The time average loss ¶ℓ(b, T ) in this system during (discrete-time) interval
[0, T ], is defined as the ratio of the amount of lost workload and the total
arrived workload, during this interval, that is

¶ℓ(b, T ) :=
Lb(T )

A(T )
. (1.2)

Because the buffer is finite, the system is stable and the loss ratio, as
T →∞, converges to a stationary loss probability ¶ℓ(b), that is

¶ℓ(b) := lim
T→∞

¶ℓ(b, T ) =
E(Q+X − C − b)+

m
, (1.3)

where Q is the stationary workload and X is a generic element of Xn. The
following heuristic expression given in [4]

¶ℓ(b) ≈
¶ℓ(0)
¶(Q > 0)

¶(Q > b), (1.4)

allows to calculate the loss probability provided there is an explicit formula
(or a satisfactory approximation) for the overflow probability ¶(Q > x) in
the associated infinite buffer system. In our case, it is possible to use the
following continious-time approximation (see [5]):

¶(Q > x) ≈ exp

(
−2 · C −m

σ
· x
)
. (1.5)

Moreover, it is easy to calculate ¶ℓ(0), namely,

¶ℓ(0) =
E(X − C)+

m

=
1

mσ
√
2π

∫ ∞

c
(x− c)e−(x−m)2/2σ2

dx. (1.6)

Thus results (1.4), (1.5), (1.6) allow to find an approximation of the overflow
probability ¶ℓ(b) (in the following it will be denoted as ¶ℓ ) in our model.

2 Regenerative approach

In this section, we show how to estimate the steady-state loss probability
Pℓ using the regenerative approach. First we construct regeneration points
for the content process. (More details can be found in [3].) Let β0 = 0 and

βk+1 = min{n > βk : Qn−1 > 0, Qn = 0}, k ≥ 1, (2.1)
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where, Qn is defined in (1.1). Denote by Li and Ai the workload lost and
arrived per the ith regeneration cycle, respectively, with the corresponding
generic elements L and A. It follows from the regenerative method, that

Pℓ =
EL

EA
.

To apply the regenerative confidence estimation, we generate i.i.d. replica-
tions L1, .., Ln, A1, ..., An, to estimate the unknown means EL, EA and the
probability ¶ℓ as

L̂ :=
1

n

n∑

i=1

Li, Â :=
1

n

n∑

i=1

Ai, ¶̂ℓ :=
L̂

Â
, (2.2)

respectively. Using Delta-method, it is possible to show that

√
n
(
¶̂ℓ − ¶ℓ

)
⇒ N(0, η2), n→∞, (2.3)

where ⇒ stands for weak convergence and

η2 =
E [L−A · ¶ℓ]2

(EA)2
.

(See [1, 2] for more detail on Delta-method.) In turn, to estimate η2 we
apply standard sample estimation

η̂2 :=

1
n−1

n∑
i=1

(Li − ¶̂ℓAi)
2

(
1
n

n∑
i=1

Ai

)2 (2.4)

Based on (2.3) one can obtain the following (1− γ/2)% asymptotical con-
fidence interval for ¶ℓ:

[
¶̂ℓ −

zγ√
n
, ¶̂ℓ +

zγ√
n

]
, (2.5)

where zγ = η̂Φ−1
(γ
2

)
, Φ−1(x) is the inverse of Laplace function and γ is a

given confidence probability.

3 Numerical examples

In this section, we present a few numerical results on confidence estimation
of stationary loss probability in the above considered system Bi/D/1/b.
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Figure 1: 95% Confidence interval for Pℓ in Bi/D/1/4

First of all regeneration points are constructed as in (2.1). Then we cal-
culate the confidence interval for the probability ¶ℓ according to expression
(2.5).

First we analyze a dependence the simulation results on the step of dig-
itization h := hN = 1/N where N = 1, 2, . . . Figure 1 shows 95% confidence
interval as a function of N for the model with parameters m = 0.8, service
rate C = 1, buffer size b = 4 for a fixed simulation length of T time slots
and T = 105. It is seen that confidence interval width is rather insensitive
to the selection of the concrete value of step digitization h in a wide range
of values of N . This remark may be useful to simplify simulation procedure
and, in particular, to save simulation time.

Figure 2 compares the simulation results (based on the regenerative
approach described above) with the approximation (1.4), where the follow-
ing parameters are used: C = 1; m = 0.7; T = 106, and the confidence
probability is 1− γ = 0.95.

Finally, we study the dependence of the simulation results on the choice
of regeneration points. Namely, we form the subsequences of regeneration
points {βs

k} of (2.1) for arbitrary (fixed) s as βs
i = βsi where s = 1, 2, . . .

and i = 0, 1, ... Figure 3 shows the 95% confidence interval width (for the
loss probability ¶ℓ) vs. the parameter s. The following parameters are
used in simulation: b = 4; C = 1; m = 0.8; T = 105. Again, simulation
demonstrates an insensitivity to the choice of the parameter s, and, in our
opinion, it can be exploit to speed-up estimation.



Some analytical aspects of regenerative simulation of fluid models 79

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 0  2  4  6  8  10  12  14

Lo
ss

 P
ro

ba
bi

lit
y

(lo
g 

sc
al

e)

Buffer Size

Regenerative Simulation
Continuous Time Approximation

Figure 2: Estimate of Pℓ in Bi/D/1/b: regenerative method vs. approxi-
mation (1.4)
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4 Conclusion

The estimation of the stationary loss probability in a single-server fluid
queue with a Gaussian input using the regeneration approach is considered.
A known approximation of the loss probability via the overflow probabil-
ity is used to verify an accuracy the estimation based on the regenerative
simulation. Some numerical results are presented.
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Abstract

We discuss the application of the simulation to estimate the loss or overflow
probability in a queuing system with a finite or infinite buffer, which is fed
by a Gaussian input. We mainly consider fractional Brownian input (FBI)
because it satisfies some properties such as self-similarity and long-range
dependence that network traffic sometimes obeys. This work is supported
by Russian Foundation for Basic research, project No 10-07-00017.

1 Introduction

We consider the so-called fluid queue with a constant service rate and a
Gaussian input process. The work focuses on the estimation of the over-
flow probability P (Q > b), that is the probability that the workload process
exceed a threshold level b (in the infinite buffer case) and the loss probabil-
ity Pℓ, or the buffer overflow probability (in the finite buffer queue). Such
probabilities can be useful for the QoS analysis of telecommunication sys-
tems. At the present time, for the queues with general Gaussian input (in
particular, for the most important models with fractional Brownian input
(FBI)) there are no explicit results, and only some asymptotics for the over-
flow probability are found. Thus, in general, only simulation remains an
available and the most adequate way to estimate the required probability.

Finite buffer systems, being more realistic models of real-life networks,
are more difficult to be analyzed, and by this reason explicit (and asymp-
totic) expressions for Pℓ in such systems are much less available.

c© Oleg V. Lukashenko, Mikhail Nasadkin, 2011
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2 Queue with long-range dependent input

In this section we describe a single server queue with deterministic service
rate C. Denote by A(t) the amount of data (input traffic) arrived into
a communication node within time interval [0, t], t ≥ 0. Let consider the
following definition of the input [4]:

A(t) = mt+ σBH(t)

where {BH(t), t ≥ 0, } is a fractional Brownian motion (fBm), which de-
scribes random fluctuations of the input around its linearly increasing mean,
H ∈ (1/2, 1), σ > 0 is some scaling parameter. Let r = C−m, to guarantee
stability of such a system we assume that r > 0.

Firstly consider system with infinite buffer (FBI/D/1). Denote by
B∗

H(n) = BH(n + 1) − BH(n) the increments of fBm. Accorging to Lind-
ley recursion (in discrete time) we have following expression for workload
(queue content):

Q(t) = (Q(t− 1)− r + σB∗
H(t))+ , t = 1, 2, . . . (2.1)

where (x)+ = max(0, x). The overflow probability (queue tail probability)
is defined as the amount of time the queue spends above some level b divided
by the total time:

¶(Q > b) = lim
T→∞

1

T

T∑

k=1

I(Q(k) > b), (2.2)

where I means indicator. Recursion (2.1) can be extended to the queue
content Qb(t) in a system with buffer size b <∞ (FBI/D/1/b) as follows:

Qb(t) = min
(
(Qb(t− 1)− r + σB∗

H(t))+, b
)
, t = 1, 2, .... (2.3)

The time average loss ¶ℓ(b, T ) in this system during (discrete-time)
interval [0, T ], is naturally defined as the ratio of the amount of loss to the
total amount of input during this interval.

¶ℓ(b, T ) =
∑T

k=1(Qb(k − 1)− r + σB∗
H(k)− b)+

A(T )
.

Under stability assumption, one can expect that stationary loss ratio con-
verges to stationary loss probability ¶ℓ(b), that is

¶ℓ(b) = lim
T→∞

¶ℓ(b, T ) =
E(Qn−1 + σB∗

H(k)− r − b)+

m
. (2.4)
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Unfortunatelly, so far there are no explicit results for (2.2), (2.4) in case
FBI. But there are some asymptotic results. For example, for sufficiently
large b there is continious-time approximation

¶(Q > b) ≈ exp
(
−θb2−2H

)
, (2.5)

where constant θ depends on initial parameters as:

θ =
r2H

2σ2
· 1

H2H(1−H)2(1−H)
.

Actually, expression (2.5) means that for sufficiently large b queue tail dis-
tribution ¶(Q > b) is Weibullian.

Kim and Shroff have established the relationship between overflow and
loss probability [2]:

log¶(Q > b)− log¶ℓ(b) = O(log b), as b→∞. (2.6)

Let rewrite (2.6) as

¶ℓ(b) = ¶(Q > b)bO(1), b→∞ (2.7)

Using the last expression, it is possible to derive approximation for the loss
probability ¶ℓ(b) via the corresponding overflow probability. But existence
of unknown function O(1) in (2.7) makes it difficult in practice.

Let conider the boundary case H = 1. Obviously, B1(t) = t ·N(0, 1) is
a random line (the increments are the same). So there are two alternatives:
first, when the system can complite all work and there are no losses; second,
when the system can not complete work and after several steps the buffer
is full and all subsequent work will be lost. It follows from above given
arguments that there is explicit formula for ¶ℓ(b):

¶ℓ(b) =
E(N(0, σ2)− r)+

m

=
1

mσ
√
2π

∫ ∞

r
(x− r)e−x2/2σ2

dx. (2.8)

3 Simulation

However, all given above results are asymptotic. So simulation is often the
only way to calculate the overflow/loss probability for small or moderate
values of b.
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let describe in brief the procedure of simulation. Firstly we should
generate sufficiently large number N of fBm traces (sample paths). For
generating fBm traces we use RMD-method (Random Midpoint Displace-
ment) [3]. Each sample path should include sufficienly large number of
observations T . After that based on (2.1), (2.3) we calculate sample paths
{Q̂i(k), k = 1, ..., T}, {Q̂i

b(k), k = 1, ..., T}, i = 1, ..., N . Estimate for
P (Q > b) has following form:

¶̂b =
1

T

T∑

k=1

I
(
Q̂(k) > b

)
.

Let Ln be the total amount of losses for the sample path Q̂n
b . Then the

estimate of ¶ℓ(b) is defined as folllows:

¶̂ℓ(b) ≈
EL

mT
, EL =

1

N

N∑

n=1

Ln

Figure 2 shows the dependence of the estimate of the overflow prob-
ability on sample path size T . Note that the sample path size must be
sufficiently large to eliminate the influence of so-called initial period. The
following parameters are used: C = 1; m = 0.8; b = 500; N = 1000.

Figure 2 compares the simulation results for the overflow probability in
system FBI/D/1 with the approximation (2.5). The following parameters
are used: C = 1; m = 0.8; T = 216, N = 1000. As expected from the
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Figure 2: Simulation vs. approximation (2.5)

theory the difference between the simulation results and approximation
decreases when the buffer size grows.

Finally, figure 3 shows the simulation results of ¶ℓ for the finite buffer
system FBi/D/1/b with parameter H = 0.99, According to (2.5), for H
close to 1 the loss probability it is easy to calculate approximate value of
¶ℓ. For given parameters C = 1; m = 0.8 we have ¶ℓ ≈ 0.297 and it does
not depend on buffer size b.
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4 Conclusion

The results of our study can be summarised as follows:
The procedure of estimation of the overflow and loss probability is dis-

cussed. We have compared the known approximation and the estimation
using simulation technique. Numerical results are consistent with theoret-
ical formulas.
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Abstract

Plagiarism and its avoidance have gained for attention in educating stu-
dents. A lot of institutes define it using examples. General agreement is
that plain copying of existing material is definitely plagiarism. The current
information flow in the Internet and the use of computers in the writing
process makes it too easy for students to avoid the actual learning-by-
writing and just to perform cut-and-paste for their essay or report. At the
same time the information flow makes it almost impossible for teachers to
detect all of these flaws. Automatic detection tools have been developed
to help teachers in this process. However, the detection is just one part of
the story. It is much more important that the authors (students as well as
researchers) do not copy from others, but say it using their own voice and
words. We should also remember that some students have copied material
even before the current technology.

1 Introduction

Everybody agrees that plagiarism in general is unethical. The key problem
with plagiarism is that it is not black and white. There is a huge gray area,
in which one person would consider the text fragment as plagiarism while
another one could interpret the issue just as missing reference or poorly
formulated sentences.

Plagiarism is defined as ”the use of another’s thoughts, or work, without
acknowledgement or permission. In plagiarism, one author takes another’s
idea and presents it as his/her own” [9]. Similar definitions can be found
from all papers discussing this issue. For example, L. Bilic-Zulle et.al. [1]
give the definition as ”misappropriation of another person’s ideas, methods,
results or words, i.e. using the intellectual property of another person
without giving appropriate credit”.

c© Tiina Niklander, 2011
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The word plagiarism is clearly latin based, but there are at least two
latin words, that have been given as the origin. Gu and Brooks [3] claim
that the origin word is plagiaries, which means ”the theft of words as well
as slaves”. On the other hand Naveed Imran [5] gives the word plagium as
the latin origin. According to him the meaning of plagium is kidnapping.
Either way, both words contain the idea of taking something that is not
legally mine.

The modern definitions include the idea that the usage is OK if you
have permission or you give the credits. For a student this might look like
that the citations is all what the teachers require. While it is the beginning
it is not enough. This paper will mainly discuss about the tools that will
help teachers in this first step. The proper writing skills would be topic of
its own.

2 Aspects of plagiarism

Naveed Imran [5] explains the different aspects of plagiarism using taxon-
omy. He has divided the aspects into three major groups. The method
covers aspects that deal with the actual implementation. The cast covers
all kind of forms for plagiarism. Finally, the purpose explains the different
motivations behind the plagiarism. The purpose is simply either intentional
or unintentional. Naturally the intentional behaviour is more problematic
from the ethical perspective.

The methods used in plagiarism start with the most straightforward
copy-and-paste. It is the simplest to do and easiest to detect, because no
words have been changed. This is often due time limits or laziness, or lack
of writing skills. It is always an easy way out.

The inappropriate paraphrasing is not as easy to detect as copy-and-
paste, because in the paraphrasing some of the original wordings have been
changed. The key problem here is the amount of partially copied text and
the lack of the author’s own voice. A lot of scientific papers use paraphras-
ing properly in small scale with quotation marks, if direct copying, and
citation information.

Omitting quotation marks and/or citations, automatically causes oth-
erwise properly paraphrased text to be classified as plagiarism. Had the au-
thor marked the direct loans and given the credits to the original material,
it would have been accepted. Forgetting the citation is undistinguishable
from the purposeful omission and both are thus considered as the missing
was purposeful. Worse case would be faked citations, where the cited arti-
cle does not even contain the material, citation was just added to mislead
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the reader.

Plagiarism can even cover the stealing of ideas [5]. In such a case
the text is presented as if the idea was the author’s own and there is no
citation available. Even when there are no textual similarities, but the
original source of the idea has not been given credits, the author is guilty
of improper behaviour and violates the ethics of academic writing. This
could naturally happen with missing citations, but often the author has
not even thought about adding the citation there.

3 Copy detection tools

The automated detections tools should be able to find both copy-and-paste
and paraphrasing kinds of plagiarism. If they are capable of doing it, they
would find most missing citations also.

According to [8] there were several tools available already in 2007. The
paper compares tools, like Eve2, CopyCatchGold, WordCheck, Glatt, Moss,
JPlag, with the de facto standard Turnitin 1. However, in 2007, the detec-
tion tools were not that known and the Turnitin did not have such a strong
position as it has today with its easy-to-use web-based user interface. In
2002 it was claimed [4] that ”the available software tends to come and go:
new software and websites surface and then disappear”.

Most of the tools worked with plain text and tried to estimate the simi-
larity between the submitted text and some other texts. For the comparison
they used different metrics, such as N-gram, Euclidean distance, Jaccard
measure. A nice collection of different metrics is presented in [8].

Most tools simply compare the document with its database. They do
not try to analyse the content of the text, but just do some sort of character-
based comparison. To catch also translations, the tool must be able to
support some kind of semantical matching in addition to plain text com-
parison. This would be an issue, if and when a Finnish university wants to
systematically detect the possible plagiarism in the bachelor thesis, which
are written in Finnish using mainly English references.

4 Turnitin

Turnitin has gained the position of de facto standard over the years. It
uses its own database to store the texts to be compared. It has also been
criticized about the coverage and cheating possibilities. Kaner and Fiedler

1http://www.turnitin.com
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[7] in 2008 claimed that the tool was missing articles from ACM and IEEE.
If that is still true, the usability of the tool for computer science is much
reduced.

Turnitin is a web-based tool, which has its own database of articles and
pages. All submitted papers are compared against the existing material in
the database. The tool works relatively fast and the comparation result is
available for the teacher within minutes after the submission. According
to [6] ”the software looks for matches of strings of eight to ten words”,
while ”ignoring the commonly used words”. Basically the tool counts as
similarity a sequence of identical words in identical order. The words do
not have to be in consecutive sequence, there can be some additional words
in between.

Turnitin works nicely when used exactly as the company has planned.
The tool has been designed for identical submission deadlines for the whole
class. It cannot handle nicely a situation where students have individual
deadlines, and the others should be able to see the submitted papers before
their own submission. Our department uses this model in some seminars,
where students give their presentations one by one during the weeks. They
must submit their paper a give time before their individual presentation.
The other participants are expected to read and comment the paper before
the presentation.

Using Turnitin through the web-interface is relatively easy. Teacher
creates a course and the tasks for the students. She also adds students to
the course and the students submit their papers themselves. There is also
a possibility for teacher submission, but the tool is designed for student
submission.

It is announced to be possible to integrate the Turnitin with course
platforms like blackboard or moodle. From a teacher’s perspective the
integration may mean giving up some of the features that are available
through the web-interface while gaining the more familiar environment of
the platform. Integrated version, the main interface is the course platform
and Turnitin is used only to check the originality of the submitted papers.

The author tried the web-interface based service in two separate courses.
One of them was a seminar where students wrote their papers in English.
The other one was a Bachelor thesis writing group, where the papers were
written in Finnish. With Finnish papers, the main benefit came from the
possibility of doing electronic peer reviews of the submitted papers by the
students.

The tool shows the results of the originality analyses using traffic lights
(blue, green, yellow, orange, red) with similarity percentage. The percent-
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age tells how much of the report matches with existing material. The tool
compares the submitted paper with its own database. The database con-
tains articles collected from web and directly from publishers.

For the author, best feature of the tool is the visual report of the sim-
ilarities. The tool shows the submitted student paper with colour-marked
similarity locations. Each colour represents different original paper. The
simple similarity percentage, as such, does not give any information about
what kind of text is found to be similar counterpart in the tool’s database
stored papers.

Because the similarity percentage just shows how much of the student
paper has identical short word sequences with other papers, it should not
be used automatically by bureaucrats [3] to classify papers as copied vs.
not copied. A native speaker is able to use rephrasing easier to avoid the
detection of identical word sequences. A non-native speaker has smaller
vocabulary, which makes e.g. using synonyms in rephrasing more difficult
for them.

The low-similarity-percentage papers indicated with blue or green
colour may still contain parts that fulfil the plagiarism definition. There
can be one or two paragraphs that are identical with an other paper in
the tool’s database. It is also possible to have a high-percentage student
paper with yellow or orange that does not fulfil the plagiarism definitions.
Such a paper may contain directly copied formulas and definitions with
proper citations. It is not custom to use quotation marks with formulas.
Of course such a paper might not have high quality because the amount of
student’s original text is low. Usually the red-marked papers contain too
much copied material in all cases.

5 Avoiding unintentional plagiarism

Most of the plagiarism in the student papers is not fully intentional, but
could be due to the missing skills of students. To solve such issues teach-
ing is more important than punishment. According to Smith and Wren [9]
”avoiding plagiarism does not need to be difficult or require an in-depth
knowledge of copyright law”. Very simple mechanisms are enough to avoid
unintentional plagiarism. It is enough to learn proper referencing and para-
phrasing techniques. Naturally they mean that the writer (student or re-
searcher) should summarize the referenced article content in own voice and
mark it with citation. To be able to do that she has to actually understand
the source information [5]. If the student does not understand what she is
writing the direct copying might be the only (but wrong) solution within
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the deadline.

When students were asked [2] about explanations to plagiarism, they
had quite normal explanations from bad time management and simple op-
portunity to uninterested teachers and eminently theoretical subject. The
time management included explanations like, too many assignments to be
handed in short time or personal shortcomings in preparation. A lot of
these can be solved by the institutions, when these issues gain the atten-
tion of the faculty and teachers.

6 Conclusion

The plagiarism avoidance can be done with just common sense. Ethical
behaviour is the key here. Teachers must give a good example and instruc-
tions for the students about scientific writing practises. However, it should
be clear for everyone that you are not allowed to steal ideas and you should
give credit to the right persons and papers. The credit giving is done by
using a proper citation technique.

The automatic plagiarism detection tools make the life of the teachers
a bit easier. They save time in the evaluation process. Instead of having to
manually search for excerpts of the student paper from the existing, pub-
lished papers, the tool does the similarity check automatically in seconds
or minutes. Teachers are still very much needed to evaluate the quality of
the student paper, as well as, possible similarity findings of the tool. To
improve the student’s writing skills teachers also need to explain to the
student how the writing process should be improved.
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Abstract

We discuss the application of the regenerative simulation to estimate the
loss probability in a queueing system with finite buffer which is fed by a
Brownian input (Bi). Some numerical examples are also included. This
work is supported by Russian Foundation for Basic research, project No
10-07-00017.

1 Introduction

In this work we are interested in systems with small or moderate size buffers,
because it is motivated by real network applications, which have stringent
requirements to queueing delay. So the loss rate prediction can be useful
to provide suitable level of Quality of Service.

To motivate our interest to systems fed by Bi, we note that appropri-
ately scaled superposition of large number of identically distributed (i.i.d.)
on-off sources with finite variances converges weakly to Brownian motion
(Bm) provided first, number of sources M → ∞, and then scaling factor
T →∞ (see [5, 8] for more details).

This result gives formal motivation for the following definition of Bi,
which is used below:

A(t) = mt+
√
amB(t), (1.1)

where m is the mean input rate, and Bm {B(t), t ≥ 0, } describes random
fluctuations of the input around its linearly increasing mean, a - some
constant, see [6].

c© R. S. Goricheva, O. V. Lukashenko, E. V. Morozov, M. Pagano, 2010
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2 Queue with Brownian input

It is known that the workload Q(t) can be calculated by the following
Lindley-type recursion for the finite buffer system [6]:

Q(t) = min((Q(t− 1)− C +m+
√
am(B(t)−B(t− 1)))+, b), t = 1, 2, · · · ,(2.1)

where (x)+ = max(0, x).

A typical sample path of the workload process (2.1) is presented in
Figure 1 (where C = 1, m = 0.7, b = 3).
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Figure 1: Finite buffer system with Bi sample path

3 Regenerative method

In this section, we describe in brief the method of regenerative simulation
and the weakest known condition under which the regenerative method
can be applied for the confidence estimation. A process X = {Xt, t ∈ T},
where T = [0,∞) (or T = {0, 1, . . . }) is called regenerative process if there
exists an infinite sequence of instants 0 = β0 < β1 < β2 < · · · (regeneration
points) such that the segments Gn = (Xt, βn−1 ≤ t < βn) (regeneration
cycles) are i.i.d. The cycle periods βn+1 − βn, n ≥ 0, are also i.i.d. and we
denote by β generic regeneration period.

For definiteness, we consider a discrete-time positive recurrent process
X (that is Eβ <∞) and assume that regeneration cycle length β is aperi-
odic (¶(β = 1) > 0). Then the weak limit Xn ⇒ X as n → ∞ exists such
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that P(X < ∞) = 1. Moreover, if f is a measurable function, then the
following statement holds:

lim
n→∞

1

n

n∑

i=0

f(Xi) =
E[
∑β−1

i=0 f(Xi)]

Eβ
≡ r.

It is also assumed that E[
∑β−1

i=0 |f(Xi)|] <∞. (Note that an evident analog
for continuous-time process also exists. More details can be found in [1].)

To estimate the unknown parameter r (steady-state performance mea-
sure), we group the data belonging to the same regenerative cycle to obtain
the i.i.d. enlarged variables

Yk :=

βk−1∑

n=βk−1

f(Xn), k ≥ 1.

We now define the main sample-mean ratio-type estimator as follows:

rn ≡
Y n

αn
,

where αn is the sample mean cycle period,

Y n =
1

n

n∑

i

Yi,

and n is the number of completed regeneration cycles obtained during
simulation. Let us also denote the variance of the enlarged variable as
σ2 = E(Y − rβ)2.

If the (minimal sufficient) condition

0 < E(Y − rβ)2 <∞

holds, then the following Regenerative Central Limit Theorem can be ap-
plied [2]:

n1/2αn[rn − r]⇒ σN(0, 1), n→∞.

This leads to the following 100(1− γ)% asymptotic confidence interval for
the unknown (steady-state) performance measure r:

[
rn −

zγs(n)

αn
√
n
, rn +

zγs(n)

αn
√
n

]
, (3.1)

where

¶ (N(0, 1) > zγ) =
1− γ

2
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and s2(n) is the empirical variance, which converges with probability 1 to
the variance

s2(n)→ σ2,

when the number of observed regeneration cycles n→∞.

4 Regenerative structure and simulation results

Using regenerative approach, we present the way of loss rate estimation,
which can be applied in system Bi/D/1/n. First we construct regeneration
points for the content process. (More details can be found in [3].) Let
β0 = 0 and

βk+1 = min{t > βk : Q(t− 1) = 0, Q(t) > 0, k ≥ 1}, (4.1)

where Q(t) is the queue content at the end of slot t. It is important to
stress that in continuous-time setting construction of regenerations meets
a difficulty caused by structure of the Brownian input paths [4].

Now we denote by Lb(t) the total load lost in time interval [0, t]. Denote
by EL the mean load lost per regenerative cycle and let EA be the mean load
arrived per regenerative cycle. Applying regenerative method, we obtain
the following representation for the steady-state loss probability

lim
t→∞

Lb(t)

A(t)
=

EL

EA
:= Pℓ.

To apply confidence estimation based on regenerative central limit theorem
to estimate probability Pℓ := r, we treat processes {Lb(t), t ≥ 0} and
{A(t), t ≥ 0} as cumulative processes with embedded regenerations defined
by recursion (4.1), see [7]. Then we use regenerative simulation to estimate
limit ratios

r1 := lim
t→∞

Lb(t)

t
=

EL

Eβ
, r2 := lim

t→∞

A(t)

t
=

EA

Eβ
,

separately, and then use equality r = r1/r2. Denote by Ii = [ai, bi] con-
fidence interval (with a confidence level 1 − α) for ri, i = 1, 2. Then it is
easy to see that unknown parameter r is covered by the confidence interval
I = [a1/b2, b1/a2] (provided a2 > 0) with probability

¶(r ∈ I) ≥ ¶(ri ∈ Ii, i = 1, 2)

≥ 1

2

(
¶(r1 ∈ I1) + ¶(r2 ∈ I2)− ¶(r1 6∈ I1)− ¶(r2 6∈ I2)

)

= 1− 2α.
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Figure 2: 90% Confidence interval for Pℓ in Bi/D/1/4

In our experiments we have used α = 0.05, so resulting confidence interval
has level 90%.

Figure 2 shows 90% confidence interval for the loss probability in the
system Bi/D/1/b with Brownian input (with rate m = 0.7, service rate
C = 1 and buffer size b = 4) as a function of the simulation length (in
terms of regeneration cycles).

Figure 3 shows 90% confidence interval for the loss probability as a
function of the buffer size. The following parameters are used: C = 1; m =
0.7; N = 106 (where N denotes the number of simulated time slots).

Finally, figure 4 shows 90% confidence interval for the loss probability
as a function of the service rate. The following parameters are used: b =
4; m = 0.7; N = 106.

To explain an increasing of the confidence length on Figures (3), (4), we
recall that use log scale. Moreover, shift below of the center of the intervals
caused by decreasing of the loss probability as the buffer size increases.

We note that using regenerations leads to a reliable estimation due to
the i.i.d. property of the regeneration cycles.

5 Conclusion

The results of our study can be summarised as follows:

A key observation is that Brownian process has i.i.d. increments and
it allows us to construct confidence interval for the loss probability based
on simulation of the i.i.d. regeneration cycles. Using such a simulation we
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Figure 3: Dependence of log estimate of Pℓ on buffer size b
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present a few numerical examples.
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