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Problem setup

Computation consists of

• processor processing data

• data in processor or in storage

• communicating data between processor and storage

Possible problem: How to move data for processing without too
much delay.
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Monoprocessor and Multiprocessor
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Real world facts

By laws of Nature

• Speed of electrons/light is limited: 1 GHz = 30 cm

• When the number p of processors grows, the network
diameter grows by factor Ω( 3

√
p)

• In practise communication is much slower

• A node in a network is connected to a bounded number d of
other nodes
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Structure of network

We consider networks consisting of the following elements:

• Processor-Memory nodes connected with d neighbors

• Instead of Processor-Memory node there may be a Router
node, also connected with d neighbors

• Connecting links for a node to its neighbors.

De�nition. If the number of routers is higher than the
number of processors, the network is sparse.
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Properties of network

Consider a network of

• n nodes (processors or routers) of degree d

• p processors sending packets every k'th step of computation

• diameter of φ hops (from node to node)

Capacity requirement condition:

pφ/k ≤ dn
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A fundamental observation

Due to φ ∈ Ω( 3
√

p), either network must be sparse, or data
communication must be sparse, i.e. k is not a constant.
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Example 1. Mesh

Consider an s-sided mesh of processors:
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In mesh, n = s2, d = 2, p = s2, φ = 2s.
Thus, pφ = 2s3, and dn = 2s2.
Hence pφ/k ≤ dn is satis�ed only for sparse communication.
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Example 2. Sparse mesh/torus

Consider an s-sided sparse torus:

In sparse torus, n = s2, d = 2, p = s, φ = s.
Thus, pφ = s2, and dn = 2s2.
Hence pφ/k ≤ dn is satis�ed.
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Example 3. Coated mesh

Consider an s-sided coated torus:
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In coated mesh, n = s2, d = 2, p = 4s− 2, φ = 2s.
Thus, pφ = 8s2 − 4s, and dn = 2s2.
Hence pφ/k ≤ dn is satis�ed for k ≥ 4.
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E�cient routing

If communication is dense, the network must be sparse. Even
then, is e�cient communication possible?

We present a scheduled, hot-potato routing algorithm for sparse
torus that routes in time O(1) per prosessor.
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Slackness principle

In a multiprocessor network latency necessarily grows. It can
still use resources e�ciently.

Bicycle mechanist's problem. One never knows
beforehand, what parts are required. They are ordered when
needed. What to do while waiting for the parts? Answer: Start
to repair another bike.

Parallel slackness. Assume a parallel algorithm on sp
�virtual� processors. When the algorithm is run on a computer
of p �real� processors, there is parallel slackness s.

Application of slackness. When sp �virtual� processes
are distributed to the p �real�processors, each processor gets s
processes. When these are run in turn, there is a gap of s− 1
steps between two successive steps of computation in a virtual
process. This time can be used for fetchin data.

Martti Penttonen: Sparce Optical Torus 11



Hot potato routing

In Hot potato routing

• routers do not have memory

• all incoming data must be forwarded immediately, to �right�
or �wrong� direction

• protocol determines which data packets go to �right�
direction and which go to �wrong� direction

Hot-potato routing is useful in optical communication, because
it is di�cult to build optical memory.
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Scheduled routing

Routing decision at each node and at every moment depends
on the time moment only.

Scheduled routing is useful in optical communication, because
there is no obvious way for optical addressing and electrical
control would require electro-optical transformation, which is
slow and costly.
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Optical router

dim i to

dim i+1

(mod d)

direct state crossing state general crossing
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2-dimensional sparse optical torus
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Routing in 2-dimensional case

• Let all routers of ST (2, n) be in crossing state at moments
0, n, 2n, . . .

• Processor (x1, n−x1) sends a packet for (x2, n−x2) along
x-axis at moment n− x2 + x1.

• It can send another packet along y-axis respectively.
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Multidimensional sparse torus ST(d,n)

Nodes at coordinates {0, 1, . . . , n− 1}d

A node is a processor or a router.

Processors at postitions (x0, x1, . . . , xd−1), where

x0 + x1 + . . . + xd−1 = 0 ( mod n)
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Sparse torus 4**3

z=0 z=1 z=2

Processors: x+y+z=0 (mod 4)

1 proc at level 0,  12 proc at level 4,  3 proc at level 8

z=3
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Basic properties of sparse tori

Lemma 1. For ST (d, n),

(i) The number of processors is nd−1.

(ii) Processors, when projected to the surfaces of ST (d, n),
cover the whole surface.

(iii) Average distance from processors to the origin (0, 0, . . . , 0)
is d(n− 1)/2
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Level sizes

Level Ld,n(k): nodes at distance k from the origin.

Unfortunately levels are not of equal size.

Lemma 2. (i) |Ld,n(0)| = 1,

(ii) |Ld,n(k)| = (
k+d−1

d−1

)−∑bk/nc
i=1

(
d−1+i
d−1

)× |Ld,n(k − i · n)|
when 0 < k < d · n.
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Scheduled routing

In scheduled routing, routing of packets bases on the moment
of sending. Thus, packets need no address information on the
route.

Routers follow a certain time dependent pattern, a boolean
function fr(t) that for each time moment t determines, whether
router r is in direct or crossing state.

Some observations:

• For symmetry, we can consider sending packets from the
processor at the origin, to the other processors.

• At each moment, packets at level l move to level l + 1.
Hence, packets that were sent at the same time, cannot
collide with each others.

• If processors that were sent at the same time, arrive at
crossing routers at the same time, they do not collide.
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Path patterns

Paths from processor to processor can be expressed by path
patterns (D0, D1, . . . , Dd−1), where 0 ≤ Di < n, and D1 +
D2 + . . . + Dd−1 = 0 ( mod n).

For a path pattern (D0, D1, . . . , Dd−1), its associated path
patterns are (Dk, Dk+1 mod d, . . . , D(k+d−1) mod d) .

Note that all associated path patterns are not necessarily
di�erent: For example (3,2,3,2), (2,3,2,3), (3,2,3,2), (2,3,2,3)
has duplicates.
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Routing in ST (d, n)

Consider a routing task, where each processor has exactly one
packet to route to all processors. We call this a strict h-relation.
How can we route a strict h-relation?

Main idea. Each processor is reached from the origin by a
path pattern. Divide processors (or packets) to groups that
have associated path patterns. At every moment, send to d
dimensions, packets of associated path patterns. They do not
collide with each others!

A minor problem. In some rare cases, there are not d associated
path patterns.
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Example. Schedule for sparse torus 34
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Scheduling

• Note that scheduling is preprocessing that is done once
before the packets are moved. As the result of scheduling,
routers get their control function. During routing, the state
of a router depends on its control function and time moment,
only.

• Packets have di�erent distances to pass: 0, n, 2n, . . . or
(d− 1)n. The average distance is about dn/2

• By greedy principle, send the long distance packets �rst.
(Another way to handle long distance packets is to split a
long path to subpaths of length n. During routing phase the
processor needs to decide whether it has reached the target
or needs to be forwarded at suitable time.)

• A packet needs dn/2 link time on the average. Each
of the nd−1 processors has nd−1 packets. Altogether,
nd−1 × nd−1 × dn/2 link time is needed. There are dnd

links in the network, hence total time is nd−1/2. Thus,
about 1/2 time per packet is needed.
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Result

Theorem 1. A strict all-to-all routing task can be routed in
time 0.5 + o(1/p), where p is the number of processors.
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