Equilibrium in a P2P-system
V.V.Mazalov, I.A.Falko, A.V.Gurtov, A.A.Pechnikov

1. Case of two free-riders and one contributor

Player I's payoff if players make contributions x_{1} and x_{2} and contributor's contribution a is uniformly distributed in [0, 1].

$$
H_{1}\left(x_{1}, x_{2}\right)= \begin{cases}\int_{0}^{x_{1}} a d a-c x_{1}=\frac{x_{1}^{2}}{2}-c x_{1}, & \text { for } x_{1}<x_{2} \\ \int_{x_{2}}^{x_{1}} a d a-c x_{1}=\frac{x_{1}^{2}-x_{2}^{2}}{2}-c x_{1}, & \text { for } x_{1}>x_{2}\end{cases}
$$

Let player II uses the mixed strategy with propability density function $g\left(x_{2}\right)$ in $[b, 1]$ in such a way as to $H_{1}\left(x_{1}, g\left(x_{2}\right)\right)=v$, where v is a game value. In these conditions player I's payoff is:

$$
\begin{gathered}
H_{1}\left(x_{1}, g\left(x_{2}\right)\right)= \begin{cases}\frac{x_{1}^{2}}{2}-c x_{1}, & \text { for } x_{1}<b \\
\frac{x_{1}^{2}}{2}-c x_{1}-\frac{1}{2} \int_{b}^{x_{1}} x_{2}^{2} g\left(x_{2}\right) d x_{2}, & \text { for } x_{1}>b\end{cases} \\
\frac{\partial H_{1}\left(x_{1}, g\left(x_{2}\right)\right)}{\partial x_{1}}=x_{1}-c-\frac{x_{1}^{2}}{2} g\left(x_{1}\right)=0
\end{gathered}
$$

and

$$
g\left(x_{1}\right)=\frac{2}{x_{1}}-\frac{2 c}{x_{1}^{2}}
$$

$$
\begin{gather*}
G(x)=\int g(x) d x=2 \ln x+\frac{2 c}{x}(1-x)+1 \tag{1.1}\\
G(b)=0 \Rightarrow 2 \ln b+\frac{2 c}{b}(1-b)+1=0 \tag{1.2}
\end{gather*}
$$

The strategy $G(x)$ is optimal if

$$
\begin{equation*}
H_{1}\left(x_{1}, g\left(x_{2}\right)\right)=x_{1}^{2} / 2-c x_{1}<b^{2} / 2-c b \quad \forall x_{1}<b \tag{1.3}
\end{equation*}
$$

Using $b=2 c$ in (1.2) we get condition for c :

$$
\begin{equation*}
\ln (2 c)+1-c=0 \Rightarrow c^{*} \approx 0.23196 \tag{1.4}
\end{equation*}
$$

Since game is symmetric we have prove

Theorem 1: Let $c \in\left[0, c^{*}\right]$ where c^{*} is a root of (1.4). Then the optimal strategies of players are coincide and have form

$$
G(x)= \begin{cases}0, & \text { for } x<b \\ 2 \ln x+\frac{2 c}{x}(1-x)+1, & \text { for } x \in[b, 1]\end{cases}
$$

where b satisfies

$$
2 \ln b+\frac{2 c}{b}(1-b)+1=0
$$

$$
H_{i}(g, g)=b^{2} / 2-c b
$$

2. Case of two players and n contributors

$$
H_{1}\left(x_{1}, x_{2}\right)= \begin{cases}n \int_{0}^{x_{1}} a d a-c x_{1}=n \frac{x_{1}^{2}}{2}-c x_{1}, & \text { for } x_{1}<x_{2} \\ n \int_{x_{2}}^{x_{1}} a d a-c x_{1}=n \frac{x_{1}^{2}-x_{2}^{2}}{2}-c x_{1}, & \text { for } x_{1}>x_{2}\end{cases}
$$

Let player II uses the mixed strategy with propability density function $g\left(x_{2}\right)$ in $[b, 1]$ in such a way as to $H_{1}\left(x_{1}, g\left(x_{2}\right)\right)=v$, where v is a game value. In these conditions player I's payoff is:

$$
H_{1}\left(x_{1}, g\left(x_{2}\right)\right)= \begin{cases}n \frac{x_{1}^{2}}{2}-c x_{1}, & \text { for } x_{1}<b \\ n \frac{x_{1}^{2}}{2}-c x_{1}-n \frac{1}{2} \int_{b}^{x_{1}} x_{2}^{2} g\left(x_{2}\right) d x_{2}, & \text { for } x_{1}>b\end{cases}
$$

$$
\frac{\partial H_{1}\left(x_{1}, g\left(x_{2}\right)\right)}{\partial x_{1}}=n x_{1}-c-n \frac{x_{1}^{2}}{2} g\left(x_{1}\right)=0
$$

and

$$
\begin{gather*}
g\left(x_{1}\right)=\frac{2}{x_{1}}-\frac{2 c}{n x_{1}^{2}} \\
G(x)=\int g(x) d x=2 \ln x+\frac{2 c}{n x}(1-x)+1 \tag{2.1}\\
G(b)=0 \Rightarrow 2 \ln b+\frac{2 c}{n b}(1-b)+1=0 \tag{2.2}
\end{gather*}
$$

The strategy (2.1) is optimal if

$$
\begin{equation*}
H_{1}\left(x_{1}, g\left(x_{2}\right)\right)=n x_{1}^{2} / 2-c x_{1}<n b^{2} / 2-c b \quad \forall x_{1}<b \tag{2.3}
\end{equation*}
$$

Using $b=2 c / n$ in (2.2) we get condition for c :

$$
\begin{equation*}
\ln (2 c / n)+1-c / n=0 \tag{2.4}
\end{equation*}
$$

Since game is symmetric we have prove

Theorem 2: Let $c \in\left[0, c^{*}\right]$ where c^{*} is a root of (2.4). Then the optimal strategies of players are coincide and have form

$$
G(x)= \begin{cases}0, & \text { for } x<b \\ 2 \ln x+\frac{2 c(1-x)}{n x}+1, & \text { for } x \in[b, 1]\end{cases}
$$

where b satisfies

$$
2 \ln b+\frac{2 c(1-b)}{n b}+1=0
$$

$$
H_{i}(g, g)=n b^{2} / 2-c b
$$

3. Case of m players and n contributors

for $x<b$:

$$
H_{1}(x, g, \ldots, g)=n \frac{x^{2}}{2}-c x
$$

for $x \in[b, 1]$:

$$
\begin{align*}
H_{1}(x, g, \ldots, g) & =-c x+n \frac{x^{2}}{2}(\bar{G}(x))^{m-1} \\
& +n \sum_{k=1}^{m-1}\binom{m-1}{k} k(\bar{G}(x))^{m-1-k} \int_{b}^{x} g(t)(G(t))^{k-1} \frac{\left(x^{2}-t^{2}\right)}{2} d t \tag{3.1}
\end{align*}
$$

After some simplification we can rewrite (3.1) as

$$
\begin{align*}
H_{1}(x, g, \ldots, g) & =-c x+n \frac{x^{2}}{2}(\bar{G}(x))^{m-1} \\
& +n \sum_{k=1}^{m-1}\binom{m-1}{k}(\bar{G}(x))^{m-1-k} \int_{b}^{x} t(G(t))^{k} d t \tag{3.2}
\end{align*}
$$

Since players use optimal strategies game value $v=H_{1}(x, g, \ldots, g)$ for $x \in[b, 1]$. From $\frac{\partial H_{1}(x, g, \ldots, g)}{\partial x}=0$ we obtain
for $b<x<1$ and $\forall m \geq 2$:

$$
\begin{equation*}
\frac{n x-c}{g(x) n(m-1)}=\frac{b^{2}}{2}(\bar{G}(x))^{m-2}+\int_{b}^{x} t(\bar{G}(x)+G(t))^{m-2} d t \tag{3.3}
\end{equation*}
$$

Consider the sequence of functions
$s_{k}(x)=\frac{2}{x^{2}}\left[\frac{b^{2}}{2}(\bar{G}(x))^{k}+\int_{b}^{x} t(\bar{G}(x)+G(t))^{k} d t\right], \quad \forall k=1,2, \ldots, m-2$,
which clearly satisfies

$$
1 \equiv s_{0}(x) \geq s_{1}(x) \geq s_{2}(x) \geq \ldots \geq s_{m-2}(x) \geq 0, \quad \forall x \in[b, 1]
$$

Multiplying $x^{2} / 2$ on the both side of (3.4) and differentiating we get recurrential differential equation

$$
\begin{equation*}
\frac{2}{x}\left(1-s_{k}(x)\right)-s_{k}^{\prime}(x)=k g(x) s_{k-1}(x), \quad \forall k=1,2, \ldots, m-2 \tag{3.5}
\end{equation*}
$$

with boundary conditions

$$
s_{k}(b)=0, \quad \forall k=1,2, \ldots, m-2
$$

By (3.3)-(3.4) we see

$$
s_{m-2}(x)=\frac{2(n x-c)}{n x^{2}(m-1) g(x)}
$$

From above we obtain $g(x)$

$$
g(x)=\frac{2(n x-c)}{n x^{2}(m-1) s_{m-2}(x)} \geq \frac{2(n x-c)}{n x^{2}(m-1)}
$$

We get b from

$$
\begin{equation*}
\int_{b}^{1} g(x) d x=1 \tag{3.6}
\end{equation*}
$$

For optimality it is nesessary that $n x_{1}^{2} / 2-c x_{1}<n b^{2} / 2-c b \quad \forall x_{1}<b$ or equivalent $b>2 c / n$. Using $b=2 c / n$ in (3.6) we get condition for c :

$$
\begin{equation*}
\int_{2 c / n}^{1} g(x) d x=1 \tag{3.7}
\end{equation*}
$$

Hence we have prove

Theorem 3: Let $c \in\left[0, c^{*}\right]$ where c^{*} is a root of

$$
\int_{2 c / n}^{1} g(x) d x=1 .
$$

Also let $\left\{s_{1}, \ldots, s_{m-2}\right\}$ is a solution of the system of differential equations

$$
\frac{2}{x}\left(1-s_{k}(x)\right)-s_{k}^{\prime}(x)=k g(x) s_{k-1}(x), \quad \forall k=1,2, \ldots, m-2
$$

with boundary conditions

$$
s_{k}(b)=0, \quad \forall k=1,2, \ldots, m-2 .
$$

and

$$
g(x)=\frac{2(n x-c)}{n x^{2}(m-1) s_{m-2}(x)} .
$$

Let us choose b from condition $\int_{b}^{1} g(x) d x=1$. Then $g(x)$ is an optimal strategy.

$$
H_{i}(g, g, \ldots, g)=n b^{2} / 2-c b .
$$

