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1. Case of two free-riders and one contributor
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Player I's payoff if players make contributions x1 and x5 and con-
tributor’'s contribution a is uniformly distributed in [O, 1].

( 2
i ada — cx1 = *1_ for
5 1 = > CcI1, r1 < I
Hi(z1,z0) = 4
o da — cox _@f -5 £
1 = CcI1, or r1 > xo
L L2 2



et player II uses the mixed strategy with propability density func-
tion g(xo) in [b,1] in such a way as to Hy(x1,g9(x>)) = v, where v is
a game value. In these conditions player I's payoff is:
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G(x) =/g(w)dw=2lnx+%(1—x)—l—1 (1.1)

G(b):O:>2lnb—|—%(1—b)—|—1=O. (1.2)

The strategy G(z) is optimal if

Hi(x1,9(x2)) = :c%/Q —cxr1 < b2/2 —cb Vxq <b. (1.3)



Using b = 2c¢ in (1.2) we get condition for ¢:

IN(2¢) +1—c=0= c* ~ 0.23196. (1.4)



Since game is symmetric we have prove

Theorem 1: Let c € [0,c*] where ¢* is a root of (1.4). Then the
optimal strategies of players are coincide and have form
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2. Case of two players and n contributors
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et player II uses the mixed strategy with propability density func-
tion g(xo) in [b,1] in such a way as to Hy(x1,g9(x>)) = v, where v is
a game value. In these conditions player I's payoff is:
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The strategy (2.1) is optimal if

Hqy(x1,9(x2)) = nx%/Q —cx1 <nb’/2 —cb Vi <b.
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Using b = 2¢/n in (2.2) we get condition for c:

In(2¢/n) +1—c¢/n=0. (2.4)

Since game is symmetric we have prove

Theorem 2: Let c € [0,c*] where c* is a root of (2.4). Then the
optimal strategies of players are coincide and have form

G(x) =«

where b satisfies
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3. Case of m players and n contributors

for x < b:
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After some simplification we can rewrite (3.1) as
2
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Since players use optimal strategies game value v = Hy(x,g9,...,9)

for z € [b,1]. From aHl(g’g""’g) = 0 we obtain

forb<xz <1 and Vm > 2:
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Consider the sequence of functions
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sk(2) = 5[5 (G(@)) +/b (G (2) + G)kat], VeE=1,2,...,m-2,
(3.4)

which clearly satisfies

1 =sg(x) > s1(x) > so(x) >...>s,_o(x) >0, Vzclbl].

Multiplying z2/2 on the both side of (3.4) and differentiating we
get recurrential differential equation
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“(1 - sp(x)) — sp.(z) = kg(x)sp_1(z), VE=1,2,....m—2 (3.5)
x
with boundary conditions
sp(0) =0, Vk=1,2,....m—2.

By (3.3)-(3.4) we see
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nz?(m —1)g(z)

sm—2(x) =



From above we obtain g(x)

2(nx — ¢) S 2(nx — ¢)

9(x) = nx2(m — 1)s,,_>(z) — nz?(m —1)

We get b from

/bl g(x)dxr = 1. (3.6)

For optimality it is nesessary that nz%/2—cxy < nb?/2—cb Vz1 <b

or equivalent b > 2¢/n. Using b = 2¢/n in (3.6) we get condition for
c:

/21 g(z)dz = 1. (3.7)
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Hence we have prove



Theorem 3: Let c € [0,c*] where c* is a root of

/21 g(x)dxr = 1.

c/n

Also let {s1,...,8m_2} is a solution of the system of differential
equations
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sp(b) =0, Vk=1,2,...,m—2.
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Let us choose b from condition fblg(a:)d:c = 1. Then g(x) is an
optimal strategy.

Hi(g,9,-..,9) =nb?/2 — cb.



