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1. Case of two free-riders and one contributor

Player I’s payoff if players make contributions x1 and x2 and con-

tributor’s contribution a is uniformly distributed in [0,1].
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∫ x1

0
ada − cx1 =

x2
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2
− cx1, for x1 < x2

∫ x1

x2

ada − cx1 =
x2
1 − x2

2

2
− cx1, for x1 > x2



Let player II uses the mixed strategy with propability density func-

tion g(x2) in [b,1] in such a way as to H1(x1, g(x2)) = v, where v is

a game value. In these conditions player I’s payoff is:

H1(x1, g(x2)) =
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∫ x1

b
x2
2g(x2)dx2, for x1 > b

∂H1(x1, g(x2))

∂x1
= x1 − c −

x2
1

2
g(x1) = 0.

and

g(x1) =
2

x1
−

2c

x2
1

.



G(x) =
∫

g(x)dx = 2 ln x +
2c

x
(1 − x) + 1 (1.1)

G(b) = 0 ⇒ 2 ln b +
2c

b
(1 − b) + 1 = 0. (1.2)

The strategy G(x) is optimal if

H1(x1, g(x2)) = x2
1/2 − cx1 < b2/2 − cb ∀x1 < b. (1.3)



Using b = 2c in (1.2) we get condition for c:

ln (2c) + 1 − c = 0 ⇒ c∗ ≈ 0.23196. (1.4)



Since game is symmetric we have prove

Theorem 1: Let c ∈ [0, c∗] where c∗ is a root of (1.4). Then the

optimal strategies of players are coincide and have form
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0, for x < b

2 lnx +
2c

x
(1 − x) + 1, for x ∈ [b,1]

,

where b satisfies

2 ln b +
2c

b
(1 − b) + 1 = 0

Hi(g, g) = b2/2 − cb.



2. Case of two players and n contributors

H1(x1, x2) =


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n
∫ x1

0
ada − cx1 = n

x2
1

2
− cx1, for x1 < x2

n
∫ x1

x2

ada − cx1 = n
x2
1 − x2

2

2
− cx1, for x1 > x2

Let player II uses the mixed strategy with propability density func-
tion g(x2) in [b,1] in such a way as to H1(x1, g(x2)) = v, where v is
a game value. In these conditions player I’s payoff is:

H1(x1, g(x2)) =
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x2
1

2
− cx1, for x1 < b

n
x2
1

2
− cx1 − n
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∫ x1

b
x2
2g(x2)dx2, for x1 > b



∂H1(x1, g(x2))

∂x1
= nx1 − c − n

x2
1

2
g(x1) = 0.

and

g(x1) =
2

x1
−

2c

nx2
1

.

G(x) =

∫

g(x)dx = 2 ln x +
2c

nx
(1 − x) + 1 (2.1)

G(b) = 0 ⇒ 2 ln b +
2c

nb
(1 − b) + 1 = 0. (2.2)

The strategy (2.1) is optimal if

H1(x1, g(x2)) = nx2
1/2 − cx1 < nb2/2 − cb ∀x1 < b. (2.3)



Using b = 2c/n in (2.2) we get condition for c:

ln (2c/n) + 1 − c/n = 0. (2.4)

Since game is symmetric we have prove

Theorem 2: Let c ∈ [0, c∗] where c∗ is a root of (2.4). Then the

optimal strategies of players are coincide and have form

G(x) =


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0, for x < b

2 lnx +
2c(1 − x)

nx
+ 1, for x ∈ [b,1]

,

where b satisfies

2 ln b +
2c(1 − b)

nb
+ 1 = 0.

Hi(g, g) = nb2/2 − cb.



3. Case of m players and n contributors

for x < b:

H1(x, g, . . . , g) = n
x2

2
− cx

for x ∈ [b,1]:

H1(x, g, . . . , g) = −cx + n
x2

2
(G(x))m−1

+n
m−1
∑

k=1

(m − 1

k

)

k(G(x))m−1−k
∫ x

b
g(t)(G(t))k−1(x2 − t2)

2
dt,

(3.1)



After some simplification we can rewrite (3.1) as

H1(x, g, . . . , g) = −cx + n
x2

2
(G(x))m−1

+n
m−1
∑

k=1

(m − 1

k

)

(G(x))m−1−k
∫ x

b
t(G(t))kdt,

(3.2)

Since players use optimal strategies game value v = H1(x, g, . . . , g)

for x ∈ [b,1]. From ∂H1(x,g,...,g)
∂x = 0 we obtain

for b < x < 1 and ∀m ≥ 2:

nx − c

g(x)n(m − 1)
=

b2

2
(G(x))m−2 +

∫ x

b
t(G(x) + G(t))m−2dt. (3.3)



Consider the sequence of functions

sk(x) =
2

x2

[b2

2
(G(x))k +

∫ x

b
t(G(x) + G(t))kdt

]

, ∀k = 1,2, . . . , m−2,

(3.4)
which clearly satisfies

1 ≡ s0(x) ≥ s1(x) ≥ s2(x) ≥ . . . ≥ sm−2(x) ≥ 0, ∀x ∈ [b,1].

Multiplying x2/2 on the both side of (3.4) and differentiating we
get recurrential differential equation

2

x
(1 − sk(x)) − s′k(x) = kg(x)sk−1(x), ∀k = 1,2, . . . , m − 2 (3.5)

with boundary conditions

sk(b) = 0, ∀k = 1,2, . . . , m − 2.

By (3.3)-(3.4) we see

sm−2(x) =
2(nx − c)

nx2(m − 1)g(x)
.



From above we obtain g(x)

g(x) =
2(nx − c)

nx2(m − 1)sm−2(x)
≥

2(nx − c)

nx2(m − 1)
.

We get b from
∫ 1

b
g(x)dx = 1. (3.6)

For optimality it is nesessary that nx2
1/2−cx1 < nb2/2−cb ∀x1 < b

or equivalent b > 2c/n. Using b = 2c/n in (3.6) we get condition for

c:

∫ 1

2c/n
g(x)dx = 1. (3.7)

Hence we have prove



Theorem 3: Let c ∈ [0, c∗] where c∗ is a root of
∫ 1

2c/n
g(x)dx = 1.

Also let {s1, . . . , sm−2} is a solution of the system of differential

equations

2

x
(1 − sk(x)) − s′k(x) = kg(x)sk−1(x), ∀k = 1,2, . . . , m − 2

with boundary conditions

sk(b) = 0, ∀k = 1,2, . . . , m − 2.

and

g(x) =
2(nx − c)

nx2(m − 1)sm−2(x)
.

Let us choose b from condition
∫ 1
b g(x)dx = 1. Then g(x) is an

optimal strategy.

Hi(g, g, . . . , g) = nb2/2 − cb.


