
Introduction The main ideas Implementation GRID

T-system — a high-performance automatic
parallelization tool

A. Vodomerov

14th May 2005

Introduction The main ideas Implementation GRID

1 Introduction

2 The main ideas

3 Implementation

4 GRID

Introduction The main ideas Implementation GRID

Distributed computing

Our goal is to create high-performance large-scale distributed
applications.

GRID gives the appropriate middleware.

The Globus toolkit connects many different computational
resources and make it available through the single interface.

But how can we write applications for this?

At the moment, only simple statical MPI-oriented applications is
supported. User writes RSL and send it to the job manager that
schedules application.

Introduction The main ideas Implementation GRID

Static parallelization

The tradional approach for parallel programming is a static
parallelization based on MPI (Message-Passing-Interface).

The main properties:

the course of computation;

time needed for different parts of the program;

the location of all data in the program

are all assumed to be known before computation.

All nodes have the same hardware, performance.

The set of working nodes is set at start and cannot be
changed later.

Introduction The main ideas Implementation GRID

The disadvantages of static parallelization

Use of MPI for modern challenges raises some problems:

The order of calculations is not known apriori in programs with
complicated logic (e.g. games, modelling)

Working nodes can broke up, new nodes can be added

CPUs with different speed cause inefficient work distribution

Very low performance in loosely-coupled configurations (e.g.
GRID)

Introduction The main ideas Implementation GRID

Dynamic parallelization

Dynamic parallelization distribute computational work beetween
nodes in run-time.

The system has a feedback: if some node becomes overloaded or
underloaded, the tasks can be easily rebalanced.

This approach allows to avoid idle times, results in very high
utilization. It solves the most problems of static parallelization.

Introduction The main ideas Implementation GRID

T-functions

T-functions are functions that can be delayed and migrated
between nodes.

An example:

x = f(a);

y = g(b);

z = x + y;

The value of x is not needed in the process of calculating g(b). So
f and g can be computed at the same time. Having that, f can be
“moved” to different node and computed in parallel.

How programs are written with T-system:

1 the program is divided into parts that can work in parallel (the
ones without data dependencies);

2 these parts of code are separated as T-functions.

Introduction The main ideas Implementation GRID

Not-ready values

Let’s have a closer look at the example:

x = f(a); // line 1

y = g(b); // line 2

The C/C++ programs are executed in line-by-line manner. First,
line 1 is performed, than, line 2 is performed.

Question: What value does variable x hold just before 2nd line?

On the one hand, there is no value — it is not computed yet.

On the other hand, there is some value — it is in some way
related with function f, and after some time the value will
appear.

This is a so-called not-ready value.

Introduction The main ideas Implementation GRID

T-variables

Usual C/C++ variables cannot hold such values. Special
T-variables are used instead.

T-variable of type A (where A can be int, double, ...) is a variable,
that can hold either a value of type A, or a not-ready value (but
not both).

In current openTS version not-ready values are implemented as
references to another T-variables.

Introduction The main ideas Implementation GRID

TC syntax

C/C++ language has been extended with special modifiers (tval,
tfun etc) for writing parallel programs. The result language got
name TC.

The simplest program on TC:

tfun int fib(int n)

{

if (n < 2) return n;

tval int x = fib(n-1);

tval int y = fib(n-2);

return x + y;

}

Introduction The main ideas Implementation GRID

Correctness

First of all, any automatic parallelization system should work
correctly.

A parallelized program must yield the same result as the
original one.

TC language is as close to C++ as possible. After adding tval, tfun
modifiers to working C++ program it’s result doesn’t change.

It is not true in all programs, but all violations have very good
reasons. E.g. precise implementation would be much less efficient.

Introduction The main ideas Implementation GRID

New keywords implementation

The support for new keywords is implemented in the following way:

for each modifier, the corresponding template class is defined,
e.g TVar<type> for tval type and TFun<type> for
T-functions whose return value type is type.

special preprocessor openT++ parses full C/C++ syntax and
expand modifiers into their template counterparts;

the implementation of this template classes, as well as some
supporting mechanisms (scheduler, transport layer etc) are
defined in T-system kernel

Introduction The main ideas Implementation GRID

T-program compilation

How T-programs get compiled?

file.tcc file.cpp file.o

file

libtrt.aT-system kernel (tss)

openT++ c++ compiler

#incl
ude

<....h
>

Introduction The main ideas Implementation GRID

T-functions implementation

Goals that must be met:

transparent access by name to all function arguments;

ability to control T-function activation;

migration between nodes.

T-functions is implemented as C++ object, that inherits abstract
base class TFun and overrides pure virtual method work(), which,
in fact, does all the computations. It is also inherited from a
structure, containing all arguments.

From the therotical point of view, T-functions is a closure.

Introduction The main ideas Implementation GRID

T-functions implementation (example)

Consider example:

tfun double func(int x)

{

return sqrt(x);

}

After openT++ preprocessing:

struct func_TFunArgs {

int x;

};

class func_TFunImpl : public TFun<double>,

public func_TFunArgs {

virtual TVar<double> work();

};

TVar<double> func_TFunImpl::work() {

return sqrt(x);

}

Introduction The main ideas Implementation GRID

T-function call

When program call T-function it really execute a “stub”, that create
new T-function and put it into task queue. The reference to
function return value (which is not ready yet) is returned.

TVar<double> func(int x) {

func_TFunImpl *f = new func_TFunImpl(x);

taskqueue.put(f);

return f->retval;

}

Access to non-ready data results in “sleep” (current task is put into
the queue tail, and a next one is popped out).

Introduction The main ideas Implementation GRID

T-variables implementation

Main goal:
Provide transparent access to data from all nodes. T-variable can
be created on one node and used from many others.

Different address spaces — can not exchange pointers.

The only available communication is a message passing.

The solution:
All data are stored in global array-like distributed storage and
T-variables are just references (pointers) to its items.

Introduction The main ideas Implementation GRID

Supermemory

Supermemory is a large array of cells. Informally, each cell contains
one variable (value + state: ready-notready).

NULL
not-rd

3.0
ready

7.1
not-rd

T-variable is just a cell index in the supermemory cell array. Given
cell number, its data can be retrieved from all nodes.

Each cells reside on one node (master node). It controls cell: writes
cell data, destroys it when it’s not needed anymore.

Introduction The main ideas Implementation GRID

Scheduler

The heart of any dynamic parallelization system is a scheduler. It
determines the overall system performance.

The main scheduler’s goal is to minimize program run time, avoid
downtime.

The more precisely scheduler models program execution, the more
efficient resource usage will be.

Scheduler is implemented as T-system extension. User can easily
write his own scheduler and link his program with it.

Introduction The main ideas Implementation GRID

Scheduler algorithm

Parameters affecting schedule decision:

task complexity (flops);

processor speed (flops);

required data size (Mb);

network bandwidth, latency (Mb/s, s).

Task time approximation:

t =
flops

cpu
+

size

bandwidth
+ 2 × latency

openTS scheduler minizes time, then equalizes node load:

Tmax → min, DT =
1

N

∑
T 2

i −

(
1

N

∑
Ti

)2

→ min

Introduction The main ideas Implementation GRID

GRID

GRID will be the basis for distributed computing in future.

Key points:

Heterogeneity: different CPU, architectures, OS.

Highly different communication channles. As a rule, the
bandwidth of cluster interconnect is 100-1000 times bigger
than links between clusters.

Dynamically changed configuration: nodes are constantly
adding and removing.

Static parallelization doesn’t work anymore.

Automatic parallelization is the key to high-performance GRID
computing.

Introduction The main ideas Implementation GRID

T-system in GRID

How can T-system work in GRID?

cluster1 cluster2

SCIMyrinet

2 Mbit/s

Answer: it’s enough to use metacluster MPI (PACX-MPI,
MPICH-G2) as a transport.

Introduction The main ideas Implementation GRID

T-system over MetaMPI

The naive answer is absolutely wrong!

The reasons:

MPI doesn’t allow to remove or add nodes

Enormous traffic between clusters

Unscalable by number of nodes

The main problem: each cluster node communicates directly with
all nodes of another cluster (supermemory, DRC, scheduler).

Introduction The main ideas Implementation GRID

Message passing in metacluster

Suppose, a node from the second cluster need data from the first
one.

cluster1 cluster2

SCIMyrinet

master
slave slave

re
ad

R
q

read
R
q

readRq x 2

data x 2

re
ad

R
q

x
2

d
at
a
x
2

The size of transferring data is directly proportional to number of
nodes.

W ∼ N2

Introduction The main ideas Implementation GRID

Metacluster hierarchy

One should take into account real physical topology of metacluster
in order to achieve efficiency.

cluster1 cluster2

Myrinet

?

readRq

This approach allows to achieve greater scalability.

W = O(1)

Introduction The main ideas Implementation GRID

Supermemory in GRID

Local cache is created to reduce the traffic between clusters.

Mixed local-master cell is set up for each remote supermemory cell.

cluster1 cluster2

SCIMyrinet

master
localmaster slave

re
ad

R
q

readRq

readRq

data

re
ad

R
q

d
at
a

Introduction The main ideas Implementation GRID

Metacluster scheduling

Precise information about remote cluster load is not available (size
and transfer time ∼ N2).

Two-stage scheduling:

1 each node schedule on local nodes and remote cluster as a
whole;

2 if task is scheduled for remote cluster, the real node for it will
be choosed on remote cluster.

Logical independence of clusters is achieved.

Introduction The main ideas Implementation GRID

Data transfer in heterogenouse environment

tfun int func(int x, double y) { ... }

After preprocessor:

struct func_TFunArgs {

int x;

double y;

};

class func_TFunImpl : public TFun<double>,

public func_TFunArgs {

virtual TVar<double> work();

Such structures cannot be directly sent between different GRID
nodes:

different byte order (little-, big-endian);

different base types sizes: int, long, double;

different offset, alignment;

different compiler generate different memory layout;

pointer, classes with virtual methods.

Introduction The main ideas Implementation GRID

Serialization

The network transfers raw bytes. C/C++ object must be converted
to and from raw bytes.

This is known as (de)serialization.

All applications without any substantial changes now work
on x86 + AMD64, Linux (x86) + Win32 (x86)!

Introduction The main ideas Implementation GRID

GRID integration

Now, we have T-system efficiently running in the GRID
environment. How we can achieve flexibility?

Two additional services are added to base GRID services:

T-application monitoring service

T-application resource management service

Introduction The main ideas Implementation GRID

T-application monitoring

The first one collects information from running and queued
T-system application:

name, version, path to executable

username, priority, time of start, estimated finish time

T-function, memory and message statistics

application sensivity to network latency, bandwith

Introduction The main ideas Implementation GRID

Resource management for T-application

The second service use the information from the first one. It
distribute available resource between application. When new
resource becomes available, application to receive it is selected
according to the priority and sensitivity.

It is very important that we can give resource to and take it back
from application in run-time. The task can migrate over network,
new nodes can be immediately added to the application that
benefit from it most. When a new high-priority application arrives,
we can drawback resources from the running one.

We achieve a level of resource management flexibility and
efficiency that matches GRID distributed nature.

Introduction The main ideas Implementation GRID

The end

Thank you for your attention!

Alexander Vodomerov, MSU IMEC
alex@sectorb.msk.ru

