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Abstract. The Uni¯ed Modeling Language (UML) is a standardized
notation for describing software systems. The behavior of the system
is captured by statechart diagrams, a visual variant of state machines
allowing hierarchy and parallelism on states and transitions. The o±cial
document [13] speci¯es the dynamic semantics of UML only informally.
In this paper we use tools provided by classical automata theory to create
a foundation for a formal semantics of UML statecharts. Our work is
partially based on the ideas presented earlier by [9] and [12].

1 Introduction

To model concurrent, distributed, real-time, reactive and/or embedded (soft-
ware) systems is an important issue of contemporary software engineering and
computer science. (Semi-)formal modeling languages such as UML ([1], [2], [5],[13])
and STATEMATE toolset ([6], [7], [8]) are created for this purpose. These lan-
guages share the following characteristics:

1. They are graphical allowing an 'easy-to-start' approach to modeling.
2. The target system can be described from several viewpoints; di®erent dia-

grams are applied for the description of views.
3. A gradual sharpening of the model is possible; developing can start from an

simple system and then in a stepwise manner more rigorous structures can
be achieved.

In the core of these visual modeling languages are statecharts, by which the most
important property of the target system, the behaviour of it can be characterized.
The statechart diagrams possess important features; the states can

1. be orthogonal (concurrent, parallel),
2. have a multi-level (hierarchical) structure.

Statechart languages were originally designed for everyday industrial use. De¯n-
ing statechart semantics proved to be more complicated than was expected. An
e®ort to de¯ne a rigorous semantics for UML statecharts is made in [3], [4], [9],
[11], [10], and [15]. For Harel statecharts over twenty di®erent semantics have

been proposed ([14], [7]). The most important of them, the STATEMATE se-
mantics, is applying hierarchical automata, sharply formalized in [12]. The main
di®erences between classical statecharts and UML statecharts are the following.
In UML

² only one input event chosen by the dispatcher is processsed at each point of
time;

² interlevel transitions are allowed;
² the trigger part of the transition contains at most one event, negations of

events are not allowed;
² if the input event does not enable any transitions, it anyway is consumed;
² in the case of con°icting transitions, the lower level transition has the priority

over the upper level one; and
² entry/exit transitions are associated to states.

In UML statechart semantics research modularity and compositionality are
often emphasized ([3], [9], [15], [10]). However, since UML allows interlevel tran-
sitions, full modularity in UML statecharts and in its semantics is impossible to
obtained. On the other hand strong structurality and compositionality in seman-
tic rules easily add unnecessary redundancy, a fact which in concurrent systems
easily leads to state explosion.

By combining elements of traditional automata theory we introduce a struc-
ture called hierarchical transition system and apply it to model UML state dia-
grams. Through de¯ning the concept of computation of a hierarchial transition
system, we obtain a formal operational semantics for UML statecharts. As be-
comes clear of the previous, the emphasis is on UML statecharts, with some
changes also the STATEMATE semantics can be produced. Our approach is
partially based on ideas presented in [9], [10], [12]. The present formalization
catches only basic properties of UML statecharts; to model all existing features
of this versatile speci¯cation language it has to be developed further.

Our contribution compared to earlier research in this area
² the hierarchial transition system is straighforward to construct from the

corresponding state diagram;
² a gradual sharpening of the hierarchial transition system can be carried

out simultaneously with the stepwise development of the respective state
diagram ;

² the interlevel transitions are not transferred to local ones;
² di®erent priority schemes (other than in UML or classical statecharts can be

supported); and
² e±ciency: fast algorithms exist to determine the maximal priority respecting

subsets of transitions
² the semantics at present is easy to understand.

The rest of the paper is organized as follows. In Section 2 the concept of
hierarchial digraph and certain important state relations as well as their prop-
erties are introduced. In the third section we give a structure to a hierarchial
transition system, an automata-theoretic model for UML statechart diagrams.
The fourth section is devoted to conluding remarks and topics of further work.



2 Preliminaries

In the following some preliminaries, de¯nitions and basic results are given.
A digraph is an ordered pair D = (V; R), where

² V is a nonempty set, the vertices of D
² R µ V £ V is a binary relation of V , the edges of D

An (n-layer) hierarchical digraph, abbreviated as (n-)higraph, is de¯ned as
follows.

Let m 2 IN+ and D1; D2; : : : ; Dm be digraphs with pairwise disjoint vertex
sets. Then fD1; D2; : : : Dmg is a 1-layer hierarchical digraph with m parallel
components.

Let n 2 IN; n ¸ 2. An n-layer hierarchical digraph is an ordered tuple HD =
(V; D; h) where

(i) V is a ¯nite set, the vertices of HD;
(ii) D = fD11; : : : ; D1m1 ; D21; : : : ; D2m2 ; : : : ; Dn1; : : : ; Dnmng is a ¯nite set of di-

graphs Dij = (Vij ; Rij) where j = 1; 2; : : : ; mi, mi 2 IN+, and i = 1; 2; : : : ; n;
moreover, the vertice sets

V11; V12; : : : ; V1m1 ; V21; V22; : : : ; V2m2 ; : : : ; Vn1; Vn2; : : : ; Vnmn

form a partition of V , i.e., they are nonempty, pairwise disjoint and their
union is equal to V ; and

(iii) h is the re¯nement function of HD, a mapping: V ! P(D) 3 such that
a) for each i 2 f1; 2; : : : ; n ¡ 1g

mi[

j=1

[

v2Vij

h(v) = fDi+1;1; Di+1;2 : : : ; Di+1;mi+1g (1)
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c) for each distinct u and v in V we have h(u) \ h(v) = ;.

Let the set that contains all edges of the n-higraph be R =
Sn

i=1
Smn

j=1 Rij .
The hierarchical structure of a n-higraph HD = (V; D; h) is evident: the

digraphs Di1; Di2; : : : ; Dimi form ith layer of HD (i = 1; 2; : : : ; n); the vertices
of the jth layer digraphs are mapped into a (possibly empty) set of digraphs in
the (j + 1)th layer (j = 1; 2; : : : ; n ¡ 1); each vertice of any nth layer digraph
is mapped into an empty set and the sets in h(u), h(v) disjoint if u and v are
distinct vertices.

Less formally, the vertices of the ith layer the digraphs are in a more detailed
fashion characterized by (i + 1)th layer digraphs; for each v 2 V , h(v) is the
re¯nement of v. If h(v) contains more than one digraph, these are said to be
parallel to each other.
3 For each set X, we denote by P(X) the set of all subsets of X.

We make the convention that the (i+1)th layer is lower in the hierarchy than
the ith layer.

It had been quite possible to de¯ne hierarchial digraphs through the concept
of (hierarchial) digraph term (analogously to statechart term used when formaliz-
ing traditional statechart diagrams). However, the approach chosen here, while
being at the ¯rst sight maybe a bit complicated, gives a concrete hierarchial
structure to the digraph (and thus to the respective UML statechart) and is
thus well justi¯ed.

Let HD = (V; D; h) be as above. The relationships between vertices of HD
can basically be characterized by three mutually disjoint binary relations of V ,
namely by ancestor or vertical relation (¢), horizontal relation (2), and parallel
relation (k). These are constructed in the following.

The re¯nement function h splits vertices into more detailed entities, digraphs,
and produces a tree structure between corresponding vertices. Let ® µ V £ V
be a binary relation such that (u; v) 2 ® if v is a vertex of some digraph in h(u).
The relation ® is certainly irre°exive.

Let ¢ (£, resp.) be the transitive (re°exive and transitive, resp.) closure of
®. Call ¢ the ancestor relation of HD. If u ¢ v, we say that u is an ancestor of
v (or that v is a decendant of u)(in HD).

Clearly u ¢ v if and only if there exist k 2 IN+ and vertices u0; u1; : : : ; uk
such that u = u0; v = uk and ui+1 is a vertex of a digraph in h(ui) for i =
0; 1; : : : ; k ¡ 1.

Let 2 be the binary relation of V such that u 2 v if there exist i 2 f1; 2; : : : ; ng
and j 2 f1; 2; : : : ; mig and distinct vertices u1; v1 2 Vij such that u1 £u and v1 £
v. By de¯nition, 2 is certainly symmetric and irre°exive. Call 2 the horizontal
relation of HD. If u 2 v, we say that u and v are horizontal vertices.

Two vertices are horizontal, if they belong to the same digraph or if they are
decendants of two vertices that belong to the same digraph.

Finally the parallel relation k of HD is de¯ned. Let u k v if there exist vertices
u1 and v1 such that u1 £ u and v1 £ v and either

1. u1 and v1 are vertices of distinct digraphs in fD11; D12; : : : ; D1m1g; or
2. there exists a y 2 V such that u1 and v1 are vertices of distinct digraphs in

h(y).

Certainly also k is irre°exive and symmetric. If u k v, we say that u and v are
parallel vertices.

Parallel vertices belong to the di®erent digraphs in the ¯rst level or belong
to the di®erent digraphs in a re¯nement of their common ancestor. Decendants
of parallel vertices are also parallel, hence if u k z and u £ u1 and z £ z1, then
u1 k z1.

The following theorem expresses formally the fact that two distinct vertices
in a higraph are exclusively either in a ancestor-decendant relation or horizontal
or parallel: they form a partition of the set V £ V .

Theorem 1. Let HD = (V; D; h) be a higraph. The binary relations £, ¢¡1, 2
and k are pairwise disjoint and V £ V = £ [ ¢¡1 [ 2 [ k.



Proof. The proof follows directly from the de¯nitions of the relations.

3 Constructing the hierarchical transition system

Now we introduce the concept of a hierarchical transition system. Informally it
is a hierarchical digraph enriched with (interlevel) transitons between sets of
vertices.

An (n-layer) hierarchical transition system (n-hts) can be presented as an
eighttuple HT S = (HD; I; E; F; T; sel; join) where

(i) HD = (V; D; h) is an n-higraph; the hierarchical digraph of HT S; V is the
set of states;

(ii) I is a ¯nite set of enter states, it is a subset of V such that I contains exactly
one vertex s from each D in D; s is a enter state of D;

(iii) E is a ¯nite set of events;
(iv) F is a ¯nite set of guard functions;
(v) T is a ¯nite set of transitions;
(vi) sel is the selection relation; and
(vii) join is the join relation.

As can be seen in the characterization above, the set of states of HT S is
exactly the set of vertices of the underlying hierarchial digraph. We make the
convention that all the concepts and relations concerning the vertices of a higraph
are directly generalized to involve the states of an hts. We can thus talk, for
instance, about horizontal, vertical or parallel states of an hts.

Before giving a detailed description of each of the entities in the de¯nition of
a hierarchial transition system HT S, let us have a general overview of its func-
tioning. One step of HT S consists of the following instantaneous phases: HT S is
in one of its global states; using the selection relation a (trigger) event is picked
up from the environment and o®ered to HT S which reacts by running a max-
imal set of acceptable transitions; the global state changes; the aforementioned
transitions induce a bunch of new events that are stored to the environment.

The more rigorous description of enter state, event, guard function, transi-
tion, selection relation and join relation is as follows.

Let V , D, R and h in HD = (V; D; h) be exactly as in the de¯nition of n-layer
hierarchical digraph.

The Enter States. The enter state, as its very name declares, is the default
initial state of a digraph, a state ¯rst entered when the digraph takes an active
role in a computation of HT S. Thus the set

I = fs11; s12; : : : ; s1m1 ; s21; s22; : : : ; s2m2 ; : : : ; sn1; sn2 : : : ; snmng

is such that sij is in the vertice set Vij of the digraph Dij 2 D for each j =
1; 2; : : : ; mi, i = 1; 2; : : : ; n. Naturally sij is called the enter state of the digraph
Dij .

The Events. Events are the activating entities of HT S. Let E = fe1; e2; : : : ; erg
where r 2 IN+.

In UML the trigger event is picked from the environment; neither how this
picking happens nor the (data) structure of the environment is rigorously spec-
i¯ed. We de¯ne an environment of HT S to be any element in the set E¤ 4.
Denote by E be the set of all environments of HT S; thus E = E¤.

The status quo of the hierarchial transition system has to be registered at
each point of time. The concept of a con¯guration (or a global state) of HT S is
thus necessary. A con¯guration contains all the active states of the system in a
certain phase of the computation. A subset C of V is a con¯guration of HT S if
it has the following properties:

1. C contains a unique vertex from each digraph in fD11; D12; : : : ; D1m1g
2. for each s 2 C, such that h(s) is nonempty, the set C contains exactly one

vertex from each digraph in h(s).

Let C be the set of con¯gurations of the HT S. Informally, a con¯guration
contains a thread of states from each parallel component of the hierarchial tran-
sition system. The initial con¯guration CI of HT S is the unique con¯guration
containing only enter states of digraphs.

The Guard Functions. In general each guard function in F is a mapping
from the set C £E into the set f0; 1g. Each transition t contains a guard function
f and the transition can be ¯red only if f(C; x) = 1 where C is the current
con¯guration and x is the current environment. In our considerations the guard
functions are interpreted to be Boolean expressions concerning state sets and en-
vironments of HT S, i.e., expressions where statements of the form s 2 S (where
s is some state variable and S some state set variable) and certain statements
concerning the environment are combined together using negation, conjunction
and/or disjunction. Whether the Boolean expression reaches the value 1 (true)
or 0 (false) can be evaluated in each con¯guration and environment.

The Transitions. The set T of transitions is a ¯nite subset of P(V ) £ F £
(E [ f²g) £ E¤ £ P(V ). For each t = (X; f; d; w; Y ) 2 T the following conditions
hold.

(i) X is nonempty and it consists of pairwise parallel states; X is the set of
source states.

(ii) Y is nonempty and it consists of pairwise parallel states, Y is the set of target
states.

(iii) There exists u; v 2 V such that
a) (u; v) is an edge of some digraph in D;
b) for each x 2 X : u £ x; and

4 For any set X, let X¤ be the set of all ¯nite sequences (words) x1x2 : : : xk such that
k 2 IN and xi 2 X for each i 2 f1; 2; : : : ; kg. If in the sequence x = x1x2 : : : xk we
have k = 0, then x is the empty word, denoted by ². If X = fag, we write a¤ instead
of fag¤.



c) for each y 2 Y : v £ y.
Call u the principal source, v the principal target and (u; v) the principal
edge of the transition t. Moreover, t is a re¯nement transition of the edge
(u; v).

(iv) f is the guard function of t.
(v) d is the trigger (event) of t; it is possible that e = ² in which case no event

of E is needed to ¯re t.
(vi) w 2 E¤ is the event sequence induced by t; w = ² indicates the situation that

no events are induced by t.

We assume that for each edge (u; v) 2 R there exists at least one re¯nement
transition t. Hence jRj · jT j. The re¯nement transitions more rigorously specify
the functioning of the corresponding edge. Just as the lower layer digraphs re¯ne
the higher level states, one can think that the transitions are a re¯nement of their
principal edges. An edge between states tells that an access exists from the source
state to the target state; the properties of the re¯nement transitions characterize
in a more accurate manner how the status change is performed.

The Selection Relation. Informally, by using the selection relation the
trigger event is chosen from the current environment and o®ered to the hierar-
chial transition system HT S; the environment is then changed accordingly. If the
environment is empty (i.e., it equals empty word), then it certainly does not con-
tain any events and nothing is o®ered. Thus we assume that sel µ E¤ £(E £E¤)
is a relation between the sets E¤ and E £ E¤ such that

² for each x; e1; e2; y1; y2, if (x; (e1; y1)) and (x; (e1; y1)) are both in sel, then
(e1; y1) = (e2; y2); and

² for all e 2 E and y 2 E¤, the element (²; (e; x)) is not in sel.

For (x; (e; y)) 2 sel our interpretation is the following: from the environment x
the event e is picked and the environment x is changed to y.

The Join Relation. The environment is updated with the (possibly empty)
set of event sequences induced by the simultaneous ¯ring of a (maximal) set of
(noncon°icting) transitions. So join µ (E¤ £ PF IN (E¤)) £ E¤. 5 is a relation
between the sets E¤ £ PF IN (E¤) and E¤ such that for each (x; X) 2 E¤ £
PF IN (E¤), there exists at most one y 2 E¤ such that ((x; X); y) 2 join. For
((x; X); y) 2 join the interpretation is that the environment x and the ¯nite set
of event sequences X are joined together to form the environment y.

Informally, the transition (X; f; e; w; Y ) can be ¯red (i.e., it is enabled) if X
is a subset of the current con¯guration of HT S, the value of f with the current
con¯guration as its argument is 1 (i.e., true) and the trigger e is either ² or the
event chosen by the trigger function. If (X; f; e; w; Y ) is ¯red then it produces
the sequence of events w which is added to the end of the environment. The
current con¯guration changes along rules de¯ned later.
5 For each set X, we denote by PF IN (X) the set of all ¯nite subsets of X.

Let t1 and t2 be distinct transitions of HT S with principal sources u1 and
u2. Then t1 and t2 are

1. parallel if u1 and u2 are parallel,
2. horizontal if u1 and u2 are horizontal,
3. con°icting if either u1 £ u2 or u2 £ u1.

Remark 1. Two transitions t1 2 T and t2 2 T are exclusively either parallel,
horizontal or con°icting.

We can model a UML statechart diagram with a hierarchial transition sys-
tem. The procedure how the hts is constructed from the corresponding UML
statechart is not described in this paper. Certainly all the numerous features of
the UML statecharts cannot yet be caught by our present hts; e®orts to develop
a more developed model are continued in the future.

4 Future work

A formal operational semantics for hierarchial transition systems and thus for
a large subset of UML statecharts can be derived on basis of the constructions
above. How e±ciently it can be implemented with software tools and exactly how
does it di®er from the existing UML statechart semantics are topics of further
research.
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