Mobile objects and distributed references
in open T-System

Konev I. M.

Department of Mathematics and Mechanics
Moscow State University

kim@mail333.com

2005
T-variable

* T-variable is a reference to a special internal
object (T-object) that contains data

* Different references can point to the same object

* Data can contain T-variables inside (references
on other T-objects)

Open T-System — method of parallelizaition
of programs

* TC++ is C++ language enhanced with some new
keywords for writing parallel programs

® T-variables are special variables that can contain
data located on remote node

* T-functions are special functions used for
distribution of computational work between
cluster nodes

All objects and references to them can be represented
as a distributed graph

Node 1 Node 2 Node 3

B

e

user references




T-objects features

* All T-objects are created automatically

* User gets access to T-objects through
dereferencing references

* When all the references to T-object are
eliminated, it becomes unreachable to user

As a result, the problem of automatic
garbage collection arises. all unreachable
T-objects need to be removed.

Main components of garbage collection
system

* Acyclic garbage collector
* Local cyclic garbage collector

* Global garbage collector

Main goal of garbage collection

Node 1 Node 2 Node 3

‘\

(o) [\

Speed and functional requirements

* Garbage collection system must not slow down
user application

* All components should be able to work
concurrently with user application

* Global garbage collector should not need
synchronization between cluster nodes



Acyclic garbage collector (AGC)

AGC removes all objects
that have no references to
them.

AGC does not eliminate
cyclic garbage.

AGC is based on the ‘“reference counting”
technique.

Reference counting in
distributed system

Node 1 Node 2

/ copying
A |
N

A message (increase CNT) need to be sent after copying the
reference on the remote node.

This is unacceptable, because such messages cause essential
load of communication channels and extra overhead for
message processing.

Reference counting

Every object stores a positive number in its
variable CNT. CNT holds total amount of
references, pointed to the object. CNT is changed
after any modification of the object.

* Object creation: CNT = 0
* Making a new reference to the object: CNT++
* Reference copying: CNT++

* Assignment of 2 references, pointing to different
objects (A=B): object, corresponding to the
reference A — CNT++, object, corresponding to the
reference B — CNT--

* Deleting the reference: CNT--

Weighted reference counting

* Every reference has certain weight (a positive
integer number)

* T-object contains total weight, stored in all
references

* When the reference is copied, its weight is
divided in certain way

>




Weighted reference counting:
problems

* What should we do if the weight in the reference
can not be divided (weight = 1)?

* What ratio is optimal for division of the weight?

* How can we avoid sending a message when the
reference is eliminated?

Typical patterns for division of references

x copying
recursion No2 -
s —

Nel

No2

B
creating of a large -

quantity of copies

from one reference -
(g —
—_— 2

Possible solutions of the first problem

* Additional object is created. It takes all the

weight remaining in the reference. The reference
and its copy begin to refer on the just created
object.

Request for additional weight is sended to the
node containing the object. Functioning of the
system is suspended until local node recieves the
answer.

Techniques of the weight dividing
when copying the reference

Copy takes 1 unit of weight. It does not work with
recursive copying.

Copy takes a half of the weight in the reference. It
does not work when certain reference is copied
many times.

Copy takes sqrt(X), where X is the weight in the
reference.



Deleting the references

Every node stores a special counter for
every object, located on the remote node.
This counter keeps total number of
references pointing to the object, and

Iocﬁted on the local node.

Node 1 Node 2 Node 3
counter = 2 counter = 1

Local cyclic garbage collector (LGC)

LGC does not allow to collect cyclic garbage,
distributed among several nodes.

Node 2 Node 3

LGC collects all garbage, located on a single
node.

Deleting the references(2)

If a node has N references pointing to the same
object on the remote node, and deletes them one by
one, the message with the weight will be sent only

once.

As a result, overhead caused by sending N-1 extra
messages is totally eliminated.

Local cyclic garbage collector(2)

* The LGC is based on “mark-and-sweep”
technique. Basic mark-and-sweep collection was

adapted to the features of T-system.

* LGC requires cooperation with acyclic garbage
collector.



Mark-and-sweep collection

* Mark-phase. All objects, accessible to user, are
marked.

* Sweep-phase. All inaccessible to user objects are
eliminated.

At first, a set of objects, accessible by user in any
case (so-called root set), is determined. Then all the
objects from the root set are marked.

A M B f

e‘e )

SES I
Mark-and-sweep collection(3)

Final state.

see -

All unmarked objects need to be eliminated.

Mark-and-sweep collection(2)

Futher, all the references, contained in marked
objects, are examined, objects, corresponding to
these references are marked. This process lasts
until all marked objects contains references to the
marked objects.

State after first pass.

T

Mark-and-sweep collection in
distributed case

* Determining the root set causes big truoble,
because the objects located on remote nodes

can contain references to the objects on the
local node.

Two ways to determine root set

* Every node keeps a list of objects, accessible
by reference from remote nodes. The list is
updated when reference is deleted or moved.

* Root set is determined by means of information
necessary for acyclic garbage collector.



Determining the root set

Total weight of the local references is
calculated for every object, located on a
node. If this computed value is not equal

to the weight in the object, then the object
belongs to the root set.

Node 1 Node 2

pats

user references

Global garbage collector (GGC)

* GGC is based on a distributed mark-and-sweep
collection algorithm

* [t collects all garbage
* Does not require synchronization between nodes

* May work concurrently with user application

Local cyclic garbage collector: stages

* Determining the root set with the help of
information about weight

* Mark-phase: marking all the objects accessible to
user

* Sweep-phase: eliminating all unmarked objects

Global garbage collecor: stages

* Preparation: determining the set of the objects
for distributed mark-and-sweep

* Determining the root set
* Mark-phase
* Sweep-phase



Determining the set for mark-and-
sweep

1. Fixed node (node X) sends a message about the
beginning of the first stage to all the rest nodes.

2. When certain node receives the message, it stores
the state of all local objects in special repository.
After that node sends the message about the
finish of the first stage back.

3.Node X waits until the rest nodes reply.

4.Then node X sends a message about
the beginning of the second phase to the rest
nodes.

Determining the set for mark-and-
sweep (2)

5.Every node gets a message about the beginning
of the second phase. Then node checks if the
objects were changed after finishing the first
phase. All changed objects are removed from
repository. After that node sends the message
about the finishing of the second phase back.

6. Node X waits until the rest nodes reply.

7. After that the GGC begins a new collection cycle
within the objects, remaining in repository.



