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Joint Source-Channel Decoding

In practice, due to the constraint of system complexity, the source
encoder is almost always suboptimal in the sense that it fails to
remove all the redundancy from the source.

This residue redundancy makes it possible for the decoder to detect
and correct channel errors, even in the absence of channel code.

Consider a Markov source sequence {Xi} compressed by Huffman
code that only approaches the self-entropy H(Xi). The residue
redundancy H(Xi+1|Xi) = H(Xi, Xi+1) − H(Xi) can be use to
combat channel noise.

MAP decoding is to estimate the channel input that maximizes the a
posterior probability of the channel output. In other words, the
decoder examines all the possible channel input sequences and finds
the one with the maximal a posterior probability.
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Channel Model

• error-and-erasure memoryless channel (EEC) of inversion and
erasure errors.

• input b = b1b2 · · · bk ∈ {0, 1}k.

• output b′ = b′1b
′
2 · · · b′k ∈ {0, 1, $}k

• probability of receiving b′ when b is sent:

Pe(b′|b) =
k∏

i=1

Pe(b′i|bi). (1)

This probability can be computed given the channel transition
matrix.
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Markov Sequence Coded by a VLC

• VLC codebook: C = {c1, c2, . . . , cN}.
• first order Markov source with conditional probabilities P (cj |ck),

1 ≤ j, k ≤ N .

• for an arbitrary sequence x = x1x2 · · ·xI ∈ CI , we have:

P (x) = P (x1)
I∏

i=2

P (xi|xi−1). (2)

• The Markov sequence is coded by VLC C.
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Markov Sequence Sent through the EEC

• the Markov sequence x = x1x2 · · ·xI ∈ CI is sent through the
EEC.

• channel output: y = y1y2 · · · yM ∈ {0, 1, $}M , where M equals
the number of bits of the VLC-coded input sequence.

• a unique parsing of y exists s.t. the parsed i-th word is the
output corresponding to the i-th codeword in the input sequence:

ym0+1..ym1 , ym1+1..ym2 , ..., ymI−1+1..ymI
, (3)

where m0 = 0 and mi − mi−1 = |xi| for all 1 ≤ i ≤ I. Let
subsequence ymi−1+1..ymi

be y(mi−1, mi], then

Pe(y|x) =
I∏

i=1

Pe(y(mi−1, mi]|xi). (4)
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Objective of MAP Decoding

• given an output ternary sequence produced by the EEC channel,

y = y1y2 · · · yM ∈ {0, 1, $}M

infer the channel input sequence

x = x1x2 · · ·xI ∈ CI

such that |x| = M and the a posteriori probability P (x|y) is
maximized.
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Bayes’ Theorem:

P (x|y) =
P (x)Pe(y|x)

P (y)
.

Since P (y) is fixed

P (x)Pe(y|x) = P (x1)Pe(y(m0, m1]|x1) ·
I∏

i=2

P (xi|xi−1)Pe(y(mi−1, mi]|xi)

Optimization Problem:

x̂ = arg max
x∈C∗,|x|=|y|

{(log P (x1) + log Pe(y(m0, m1]|x1)

+
∑I

i=2(log P (xi|xi−1) + log Pe(y(mi−1, mi]|xi))}.
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Graph Representation

• weighted directed acyclic graph G with NM + 1 vertices,
M = |y|.

• a unique starting node s,

• other vertices grouped into M layers.

• each layer corresponds to a bit location in the received sequence
y.

• the nodes at the M -th (last) layer are so-called final nodes.
Denote by F the set of all final nodes.

• nm
i labels the i-th node at layer m, 1 ≤ i ≤ N , which corresponds

to codeword ci parsed out of y at the mth bit of y.

• From nm
j to n

m+|ci|
i , 1 ≤ m ≤ M − |ci|, 1 ≤ i, j ≤ N , there is an

edge corresponding to decoding y(m, m + |ci|] as codeword ci,
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given that the previously decoded codeword is cj .

• The weight of this edge is log P (ci|cj)+ log Pe(y(m, m + |ci|]|ci).

• Generally, for a node nm
i , there are N incoming edges, one from

each of the N nodes on layer m− |ci|; there are N outgoing edges
emitted from nm

i , one to each of the nodes n
m+|cj |
j , 1 ≤ j ≤ N .

• Any input sequence x of |y| bits, can be mapped to a distinct
path from s to F such that the weight of the path equals the
value of the objective function in x. Moreover, this mapping is
one-to-one.

• The problem of MAP decoding is thus converted to finding the
single-source longest path in the weighted directed acyclic graph
G, from s to F .
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Computing the Longest Path in G

• Let ω(m, i) be the weight of the longest path from s to the node
nm

i , then

ω(m, i) = max
1≤j≤N

{ω(m − |ci|, j) + log P (ci|cj) +

log Pe(y(m − |ci|, m]|ci)} (5)

for all 1 ≤ i ≤ N and |ci| ≤ m ≤ M ,

• with initial values

ω(|ci|, i) = log P (ci) + log Pe(y(0, |ci|]|ci) (6)

and ω(m, i) = −∞ if m < |ci|, 1 ≤ i ≤ N .

• The MAP decoding is determined by

ω̃(M) = max
1≤i≤N

ω(M, i). (7)
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Dynamic Programming solution

• At each stage m, 1 ≤ m ≤ M , weights ω(m, i) are computed for
1 ≤ i ≤ N , using (5).

• log P (ci|cj) and log Pe(y(m − |ci|, m]|ci) in (5) can be
precomputed and stored in look-up tables so that they will be
available to DP process in O(1) time.

• The search in (5) takes O(N) time for fixed m and i. Each stage
is completed in O(N2) time and all the M stages in O(N2M)
time. The step of (7) clearly takes O(N) time. Therefore, the
time complexity of this algorithm is O(N2M).
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Complexity Reduction by Matrix Search

• Organize the computations in a different way: at each stage m

compute the weights ω(m + |ci|, i) for all i, 1 ≤ i ≤ N :

ω(m + |ci|, i) = max
1≤j≤N

{ω(m, j) + log P (ci|cj) +

log Pe(y(m, m + |ci|]|ci)}, (8)

for all 1 ≤ i ≤ N and 1 ≤ m ≤ M − |ci|.
• For each 1 ≤ m ≤ M − maxi,1≤i≤N |ci|, consider the matrix Gm

of dimension N × N , with elements Gm(i, j)

Gm(i, j) = ω(m, j) + log P (ci|cj) +

log Pe(y(m, m + |ci|]|ci). (9)
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• Then relation (8) is equivalent to

ω(m + |ci|, i) = max
1≤j≤N

Gm(i, j). (10)

• Computing all ω(m + |ci|, i) for given m and all 1 ≤ i ≤ N , is
equivalent to finding all row maxima of the matrix Gm.

• Straightforward solution: O(N2) time.

• If the matrix Gm is so-called totally monotone then the problem
of row maxima can be solved in O(N) time by a fast matrix
search technique introduced by Aggarwal et al. in 1987
(Algorithm SMAWK).
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Total monotonicity

• The matrix Gm is said to be totally monotone with respect to
row maxima if the following relation holds:

Gm(i, j) ≤ Gm(i, j′) ⇒ Gm(i′, j) ≤ Gm(i′, j′),

i < i′, j < j′. (11)

• If all the matrices Gm are totally monotone, then the MAP
decoding problem can be solved in O(NM) time.
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Algorithm SMAWK

• If a k × n matrix A with k ≤ n, is totally monotone then the
column index j(i) corresponding to the maximum entry of row i,
increases with i.

• If the maxima of all even rows are known, then the maxima of
remaining odd rows can be computed in O(n) time since for each
odd row 2i + 1 the search is restricted to the interval between
j(2i) and j(2i + 2) and

∑
1≤i<k/2(j(2i + 2) − j(2i)) = O(n).

• The elegant technique introduced by Aggarwal et al. in 1987
(SMAWK) can delete n − k columns containing no row maxima
of a k × n totally monotone matrix with k < n, in O(n) time.

• The size of the matrix search problem can be reduced from k × n

to k × k in O(n) time. Then the k × k problem is reduced to
k/2 × k/2 in O(k) time. The size of the new problem is further
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reduced to k/4 × k/4 in O(k/2) time and so on.

• Let T (k) be the time for solving the k × k problem and ck be the
cost of the size reduction from k × k to k/2 × k/2, then the
following recurrence holds: T (k) = T (k/2) + ck, which clearly
implies T (k) = O(k).

• The solution of the k × n problem is obtained in O(n) time.
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Condition for total monotonicity

A sufficient condition for total monotonicity) is the Monge condition:

Gm(i, j′) + Gm(i′, j) ≤ Gm(i′, j′) + Gm(i, j),

i < i′, j < j′. (12)

which is equivalent to

log P (ci|cj′) + log P (ci′ |cj) ≤ log P (ci′ |cj′) +

log P (ci|cj), i < i′, j < j′. (13)

This condition does not depend either on the channel statistics or on
the output sequence, but only on the source statistics. Therefore, the
decoder can check if the condition holds before deciding whether to
use the fast matrix search algorithm or the standard dynamic
programming algorithm for MAP decoding.

Checking the Monge condition takes only O(N2) time. Indeed, in
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order for (13) to hold, we only need the inequality

log P (ci|cj+1) + log P (ci+1|cj) ≤
log P (ci+1|cj+1) + log P (ci|cj) (14)

to be valid for each pair i, j, 1 ≤ i, j ≤ N .

The fast matrix search approach can still be applied if there are two
permutations φ and ψ on the integers between 1 and N , such that

log P (cφ(i)|cψ(j′)) + log P (cφ(i′)|cψ(j)) ≤
log P (cφ(i′)|cψ(j′)) + log P (cφ(i)|cψ(j)),

i < i′, j < j′.

In this case the rows and columns of each matrix Gm have to be
permuted by using φ, respectively ψ.

O(N2) time suffices to check if such permutations exist [Burkard et
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al. 1996].
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Markov Sources Satisfying the Monge Condition

Assume that the codewords ci are the output of a scalar quantizer
applied to a continuous Markov source.

Monge condition (13) is equivalent to

P (ci|cj′)P (ci′ |cj) ≤ P (ci′ |cj′)P (ci|cj)

i < i′, j < j′. (15)

Multiplying both sides by P (cj)P (cj′), we have

P (cj′ , ci)P (cj , ci′) ≤ P (cj′ , ci′)P (cj , ci)

i < i′, j < j′. (16)

For each i, 1 ≤ i ≤ N , let Si denote the quantization cell (interval)
represented by the codeword ci. Assume that for all i < i′ we have
u < v for all u ∈ Si and all v ∈ Si′ .
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Relation (16) is equivalent to
∫

Sj′

∫
Si

f(v′, u)dudv′ ∫
Sj

∫
Si′

f(v, u′)du′dv ≤
∫

Sj′

∫
Si′

f(v′, u′)du′dv′ ∫
Sj

∫
Si

f(v, u)dudv, (17)

further equivalent to
∫

Sj′

∫
Si

∫
Sj

∫
Si′

f(v′, u)f(v, u′)du′dvdudv′ ≤
∫

Sj′

∫
Si

∫
Sj

∫
Si′

f(v′, u′)f(v, u)du′dvdudv′. (18)

A sufficient condition for (18)

f(v′, u)f(v, u′) ≤ f(v′, u′)f(v, u), (19)

or equivalently

log f(v′, u) + log f(v, u′) ≤
log f(v′, u′) + log f(v, u), (20)
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for any real values u < u′ and v < v′.

If the second partial derivative ∂2(log f)/∂u∂v exists, then (20) holds
iff ∂2(log f)/∂u∂v ≥ 0 [Burkard et al. 1996].

Clearly ∂2(log f)/∂u∂v ≥ 0 holds when the joint pdf f(·, ·) is
Gaussian.
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MAP Decoding with Length Constraint

• Assume that the number K of symbols of the input Markov
sequence is known (transmitted reliably as side information).

• The objective of MAP decoding with length constraint is to find
the Markov sequence x of exactly K symbols, of maximal a
posterior probability P (x|y).

• The problem is equivalent to the maximum-weight K-link path
in the graph G.

• Dynamic programming solution: O(N2M2) time complexity
[Park, Miller’98].
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Technique Based on Parameterized Search

• For any real number τ , define a new weighted directed acyclic
graph G(τ) that is derived from the same sets of nodes and edges
as G. The weight of an edge e in G(τ) is the sum of the weight of
e in G and τ .

• The following results were proved in [Aggarwal, Schieber, and
Tokuyama’94].

• Lemma 1: If for some real τ , the maximum-weight path in G(τ)
has k edges, then this path is the maximum-weight k-link path in
G.

• Lemma 2: Denote by k(τ) the number of edges in the
maximum-weight path in G(τ). Then k(τ) is non-decreasing as τ

increases.
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Length-constrained MAP Decoding

• Find the maximum-weight path in G(τ) in conjunction with a
binary search on τ until k(τ) = K.

• No guarantee that a real value τ exists to satisfy k(τ) = K. But
in this case the algorithm will converge quickly to such a τ that
k(τ) = K + α, where α is an integer whose absolute value is very
small.

• To reduce the computational complexity, we limit the number of
iterations in the binary search to be L, then the overall time
complexity is O(LMN2).
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Complexity Reduction by Matrix Search

The fast matrix search technique can be applied to find the longest
path in G(τ) too.

The correspondent of matrix Gm is now the matrix Gm,τ :

Gm,τ (i, j) = ωτ (m, j) + log P (ci|cj) +

log Pe(y(m, m + |ci|]|ci) + τ, (21)

where ωτ (m, j) denotes the weight of the longest path from s to the
node nm

j in G(τ).

If the Monge condition:

Gm,τ (i, j′) + Gm,τ (i′, j) ≤ Gm,τ (i′, j′) + Gm,τ (i, j),

i < i′, j < j′, (22)

holds for all m, then the longest path in Gτ can be found in O(NM)

ICC’04 X. Wu

McMaster University Page 27

time, leading to an O(LMN) time algorithm for length-constrained
MAP decoding.

The Monge condition (22) is equivalent to

log P (ci|cj′) + log P (ci′ |cj) ≤
log P (ci′ |cj′) + log P (ci|cj)

i < i′, j < j′, (23)

i.e., the same condition as for MAP decoding without length
constraint.
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Experimental Results

• Measurement

– Symbol-by-symbol difference (PSNR)

– Alignment with minimum Edit distance

– Example

I : 121020010-2

Î : -2110001022

Ĩ: d--ss----i-

– Î is adjusted to Ĩ = · · · sisdsj · · · ;
∗ si and sj agree with I symbol-by-symbol;
∗ sd differs from I in all of its symbols.

• Mean error propagation length ēl;

• Number of error propagation en.

ICC’04 X. Wu

McMaster University Page 29

Experiment Configuration

• A zero-mean, unit-variance, first-order Gaussian-Markov process
of correlation coeficient 0.9;

• Uniform scalar quantizer with 9 code cells;

• Sequences of different lengths K = 50, 100, 500 generated by the
source model;

• Variable length encoded at average rate of about 3 bits per
sample;

• Binary symmetric channel of various crossover probabilities.

• Averages of 1000 simulation;

• Comparison algorithms

– M. Park and D. J. Miller - Approximate algorithm in [7];

– Z. Wang and X. Wu - MAP without length constraint in [11].
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Channel model used in the experiment
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Probability of Finding the Optimal Solution
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Mean Error Propagation Length
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Number of Error Propagations

−3 −2.5 −2 −1.5 −1 −0.5
0

2

4

6

8

10

12

14

16

18

20

log
10

(p
c
)

N
um

be
r 

of
 e

rr
or

 p
ro

pe
rg

at
io

ns

Alg. in [7]
Alg. in [11]
k−link

100 symbols 

50 symbols 

ICC’04 X. Wu


