Overview

v of Helsink

- Discovery and utilization of patterns in the human genome
 - Shared patterns \rightarrow family relationships, population history
 - Patterns associated with a disease \rightarrow gene mapping
- Two kinds of challenges
 - 1. Obtaining the patterns
 - 2. Utilizing them, e.g., for gene mapping
- The focus of this talk will be on the first topic

Prof. Hannu Toivonen Methods for gene mapping and haplotype analysis - p.1/51 28.5.2004	Prof. Hannu Toivonen Methods for gene mapping and haplotype analysis - p.2/51 28.5 2004
University of Helsinki Department of Computer Science	University of Helsinki Department of Computer Science
Outline	Haplotypes
 Part I Haplotypes: the key data type Gene mapping I: a major application Genotypes: the data available in reality Gene mapping II: using genotype data Part II Haplotyping: reconstructing haplotypes from genotypes Novel Markovian methods Experiments 	 markers acatactacatacatacatagat Inherited from father aaatactacotaacotacaagagat Inherited from mother Marker: a polymorphic locus in dna Allele: a particular variant in a marker (e.g. a/c or 1/2) Haplotype = string of alleles along a single chromosome: H_{father} = (c, a, a, t), H_{mother} = (a, c, c, g) Economic but informative representation of dna

Methods for gene mapping and

haplotype analysis

Prof. Hannu Toivonen

hannu.toivonen@cs.helsinki.fi

University of Helsinki - Department of Computer Science

- 1.8 million SNP (single nucleotide) polymorphisms known to date
- Over 10 million SNPs anticipated in the human genome

Department of Co

Department of Co

- Average distance between SNPs appr. 300 bases
- Figures in a typical gene mapping study
 - some markers in the area of interest
 - 20 100.000 markers
 - distance between markers 1.000 5.000.000 bases

Methods for gene mapping and haplotype analysis - p.5/51

• 100 – 1.000 individuals

Haplotypes

- Haplotypes are fragmented by recombination (in meiosis)
 - A haplotype is a unique mosaic of fragments from the ancestors
- For a geneticist, recombination is an enemy and a friend
 - Haplotypes are stochastic and fragmented
 - + Fragmentation allows analysis of local patterns

Methods for gene mapping and haplotype analysis - p.6/51

- For us: *pattern* \approx haplotype fragment
- Haplotype fragments are potentially inherited for generations

			~	
	-			_

lannu Toivoner

Gene mapping I

- The gene mapping problem: given a set of haplotypes from people who have a hereditary disease (the cases), predict the locus of a disease susceptibility gene
- Usually also a set haplotypes from healthy controls is given
- Outline of a solution:
 - search for haplotype patterns shared by (or over-represented in) the cases
 - predict the gene to be close to the best patterns
 - (this approach is known as association analysis)

- This works in population isolates (such as Finland :-) where individuals carrying the mutated gene have potentially inherited it from a relatively recent common ancestor → they share common haplotype patterns around the gene
- Issues:

lannu Toivoner

- weak effects of genes
- diagnostic problems
- gene-gene interactions
- gene-environment interactions
- small data sets

Methods for gene

Department of C

Haplotypes and genotypes

- Haplotype = string of alleles along a single chromosome: $H_{father} = (c, a, a, t), H_{mother} = (a, c, c, g)$
- *Genotype* = list of unordered allele pairs along the pair of chromosomes: *G* = ({*a*, *c*}, {*a*, *c*}, {*a*, *c*}, {*g*, *t*})
- Current laboratory techniques produce genotypes, not haplotypes!

Methods for gene mapping and haplotype analysis - p.9/51

Gene mapping II

lannu Toivonen

ity of Helsink

Given genotype data, how to do gene mapping?

- Haplotypes are potentially inherited with the disease, not genotypes
- Idea: keep on working with haplotype patterns, just modify how their frequencies are counted
- A slight modification to the previous solution:
 - the frequency of a haplotype pattern is the fraction of genotypes that possibly contain the pattern
- This is an optimistic approach, and more complex weighting schemes are possible
- Experimental result: this really works

Methods for gene mapping and haplotype analysis - p.11/51

28.5.2004

Department of Co

Department of Co

Haplotypes vs. genotypes

of Helein

annu Toivone

- Haplotypes are a key to most genetic studies
- We will discuss two problems
- 1. How to reconstruct haplotypes from genotypes?
- 2. How to do gene mapping using genotypes?
- The first problem will consitute the main body of this talk

Methods for gene mapping and haplotype analysis - p.10/51

Haplotyping

University of Helsinki Department of Computer Science	University of Helsinki Department of Computer Science
Haplotyping	Haplotyping
 Genotype: ({1, 2}{3, 3}{2, 4}{2, 4}) Possible haplotype configurations: (¹³²²/₂₃₄₄), (¹³²⁴/₂₃₄₂), (¹³⁴²/₂₃₂₄), (¹³⁴⁴/₂₃₂₂) 	 Genotype: ({1,2}{3,3}{2,4}{2,4}) Possible haplotype configurations: (¹³²²/₂₃₄₄), (¹³²⁴/₂₃₄₂), (¹³⁴²/₁₃₂₄), (¹³⁴⁴/₂₃₂₂) For a genotype G with k heterozygous markers there are 2^{k-1} different haplotype configurations.
University of Helsinki Department of Computer Science Haplotyping	University of Helsinki Department of Computer Science Statistical assumptions
 The haplotyping problem: Input: a set <i>G</i> of genotypes Output: the most probable haplotype configuration for each genotype <i>G</i> ∈ <i>G</i> Haplotypes of subjects from same population tend to be similar to each other ⇒ statistical inference can be used to deduce the underlying haplotypes (this is the population-based variant of the problem) 	 haplotype configuration genotype set of genotypes P({H₁, H₂} G; G) =? argmax_{H₁,H₂}P({H₁, H₂} G; G) =? (We keep on conditioning on G, but do not explicitly mention it anymore)

of. Hannu Toivonen

Statistical assumptions

 $P(\{H_1, H_2\} \mid G) \propto$ $P(\{H_1, H_2\})$ if $\{H_1, H_2\}$ compatible with G; 0 otherwise.

Department of Co

Department of Co

Assume Hardy-Weinberg equilibrium and random mating ⇒ haplotypes of an invidual are independent of each other:

$$P(\{H_1, H_2\}) = \begin{cases} 2P(H_1)P(H_2) & \text{if } H_1 \neq H_2 \\ P(H_1)^2 & \text{if } H_1 = H_2 \end{cases}$$

• The problem reduces to modeling the distribution P(H)

Prof. Hannu Toivonen

Methods for gene mapping and haplotype analysis – Haplotyping – p.21/51

niversity of Helsinki

Our relaxed assumptions

- Markers can be sparsely located
- Many recombinations within the haplotypes ⇒ large number of different haplotypes
- Most or all haplotypes can be unique
- Possibly only weak statistical dependencies ("LD") between markers

Statistical assumptions

v of Helsink

annu Toivoner

- The standard model assumes haplotypes are inherited as a whole
- The model is just a list of haplotype probabilities, for example:
 P(ABCDE) = 0.6
 P(abCDE) = 0.2
 - P(AbCdD) = 0.1
- P(ABcde) = 0.1
- This is done practically in all previous work

Haplotyping: solutions

• We will next look at solutions to the haplotyping problem

Methods for gene mapping and haplotype analysis – Haplotyping – p.22/51

- Components:
 - Defining models for distribution P(H)
 - Finding the pair {*H*₁, *H*₂} that approximately maximizes *P*(*H*₁)*P*(*H*₂)
- Three increasingly complex Markov models
- An outline of algorithms for using them

Department of Co

Haplotype fragments

Haplotype fragments	Markov chain
 Example haplotypes (all unique) 123241 223241 323255 144241 144221 	 Assume independence of non-neighboring markers: consider the haplotype as a (first-order) Markov chain: P(H) ≈ P(H(1)) ∏_{i=2,,ℓ} P(H(i) H(i − 1)). (1)
• Frequent fragments -232 fr=3 241 fr=3 $-2324-$ fr=2 1442 fr=2 Wethods for gene mapping and haplotype analysis - Haplotyping - p.25/51 25.204	• $P(ABCDE) = P(A) \cdot P(B A) \cdot P(C B) \cdot P(D C) \cdot P(E D)$ Prof. Hannu Toivonen Methods for gene mapping and haplotype analysis - Haplotyping - p.26/51 22.5204
Markov chain of order d (MC- d) • A neighborhood of several markers (e.g., $d = 2$) is potentially more informative: $A = P(H(1,d)) \prod_{i=d+1,,\ell} P(H(i) H(i-d,i-1)).$ (2) • $P(ABCDE) = P(AB) \cdot P(C AB) \cdot P(D BC) \cdot P(E CD)$	<text><text><image/><list-item><list-item></list-item></list-item></text></text>

ersity of Helsinki

Department of Computer

Department of Computer S

Hannu Toivonen

ity of Helsink

Variable order Markov Chain MC-VL

Goal: adjust the context for each marker of each haplotype individually to obtain flexible balance between generality and informativeness, e.g.:

Methods for gene mapping and haplotype analysis – Haplotyping – p.29/51

 $P(H) \approx P(H(1)) \prod_{i=2,\dots,\ell} P(H(i) \mid H(s_i, i-1)),$ (3)

Department of C

Department of Co

where $s_i = \min\{s \mid H(s, i) \in \mathcal{F}_{VL}\}.$

Variable order Markov Chain MC-VL

• How to select the number of markers in each context?

Department of C

Department of Con

- Solution: use the largest frequent context, where
 "frequent" means frequency of at least some constant c
- Motivation: use the longest context for which there is sufficient evidence

Methods for gene mapping and haplotype analysis – Haplotyping – p.30/51

• P(ABCDE) = $P(A) \cdot P(B|A) \cdot P(C|B) \cdot P(D|BC) \cdot P(E|D)$

Estimating conditional probabilities

- (Conditional) haplotype fragment probabilities are needed in the above models
- Probabilities are estimated by the corresponding frequencies
- Example: $P(D|ABC) \approx \frac{fr(ABCD-)}{fr(ABC--)}$
- Index state that the state of the state o

Fragment frequency estimation

genotype	#het.markers	weight
{3,4}{2,3}{3,3}	2	0.5
{3,4}{2,3}{3,4}	3	0.25
{1,3}{1,2}{1,4}	3	0.25
{3,3}{3,3}{4,4}	0	2.0

haplotype fragments

- 3 2 3 -
- 3 2 4 -
- 334 -

ty of Helsink

lannu Toivoner

Fragment frequency estimation

genotype	#het.markers	weight
{ <mark>3</mark> ,4}{ <mark>2</mark> ,3}{ <mark>3,3</mark> }	2	0.5
{ <mark>3</mark> ,4}{ <mark>2</mark> ,3}{ <mark>3</mark> ,4}	3	0.25
{1,3}{1,2}{1,4}	3	0.25
{3,3}{3,3}{4,4}	0	2.0

haplotype fragments

- 3 2 3 (freq = 0.5 + 0.25 = 0.75)
- 3 2 4 -
- 3 3 4 -

Methods for gene mapping and haplotype analysis - Haplotyping - p.33/

niversity of Helsinki

Hannu Toivonen

Fragment frequency estimation

genotype	#het.markers	weight
{3,4}{2,3}{3,3}	2	0.5
{ <mark>3</mark> ,4}{2, <mark>3</mark> }{3,4}	3	0.25
{1,3}{1,2}{1,4}	3	0.25
{ <mark>3,3</mark> }{ <mark>3,3</mark> }{4,4}	0	2.0

haplotype fragments

- 3 2 3 (freq = 0.75)
- -324 (freq =0.5)
- -334 (freq = 0.25 + 2.0 = 2.25)

Fragment frequency estimation

ty of Helsink

Hannu Toivonen

ty of Helsinki

genotype	#het.markers	weight
{3,4}{2,3}{3,3}	2	0.5
{ <mark>3</mark> ,4}{ <mark>2</mark> ,3}{3,4}	3	0.25
{1, <mark>3</mark> }{1, <mark>2</mark> }{1, <mark>4</mark> }	3	0.25
{3,3}{3,3}{4,4}	0	2.0

haplotype fragments
3 2 3 - (freq = 0.75)
3 2 4 - (freq = 0.25 + 0.25 = 0.5)
3 3 4 -

Methods for gene mapping and haplotype analysis – Haplotyping – p.34/51

Department of Con

Department of Co

Fragment frequency estimation

- For the fixed order Markov chain of order d, just enumerate all fragments of lenght d and d + 1 and compute their frequencies as described above
- For the variable order Markov chain, depth-first search is used to find the set of frequent fragments: start from frequent fragments of length 1, and expand fragments to the right until the frequency drops below a given threshold c

Department of Co

Haplotype reconstruction

■ Task: Find $\operatorname{argmax}_{\{H_1,H_2\} \text{compatible with } G} P(H_1) P(H_2)$ for each genotype $G \in \mathcal{G}$

Department of Co

Department of Co

Problem: the number of haplotype configurations for a genotype *G* is exponential in the number of heterozygous markers in *G*

 \Rightarrow exhaustive search through of all possible haplotype configurations is not practical.

Methods for gene mapping and haplotype analysis – Haplotyping – p.37/51

Haplotype reconstruction

We use a divide-and conquer approach (motivated by the related "PL" approach by Niu et al. (2002)) in the haplotype reconstruction step to restrict the search space.

Experiments

Hannu Toivonen

- Performance of the methods
- Sensitivity to parameters
- Comparison to three state-of-the-art approaches:
 - plem: EM algorithm with partition ligation
 - snphap: EM algorithm with sequential pruning
 - Phase: MCMC with coalescence prior
- All treat haplotypes as non-divisible units (≈ no recombinations)
- Controlled experiments with simulated data

Simulated data

Hannu Toivonen

- The simulated setting corresponds to a association study in a population isolate
- 20 independent founders, random mating for 20 generations, no immigration, uniform recombination rate, final population size 100000
- SNP or microsatellite (with 6 alleles/marker) markers
- 32 markers, sample of 500 genotypes
- Main parameter: marker spacing, which ranges between 0.01-1cM between each adjacent pair of markers; giving total map length of 0.31-31 cM.
- 10 independents simulations per setting, over which results are averaged

28.5.2004

Methods for gene mapping and haplotype analysis - Haplotyping - p.40/51

Department of Co

Performance measure

■ "switch distance" = number of neighboring phase relations reconstructed incorrectly.

Results for simulated data

Effect of parameter d (order of Markov chain) of model MC-d

Department of Comp

sity of Helsinki

switch distance

gge 2

0

0

Department of Compu

Results for simulated data

ity of Helsink

Results for simulated data

Department of Com

Summary

 Novel statistical haplotyping methods suitable for long marker maps, typically used in gene mapping studies

Department of Con

Department of Cor

- Exploits local dependencies (LD) with a Markov chain model; variable order Markov chain is used for improved adaptivity
- With simulated data, outperforms competing methods when the distance between neighboring markers is at least 0.05 cM
- The method was competitive also with the real and dense Daly data
- Implementation and data sets are available at: http://www.cs.helsinki.fi/group/genetics/haplotyping.html

Aethods for gene mapping and haplotype analysis – Haplotyping – p.49/51

On-going and future work

ty of Helsink

lannu Toivonen

 An EM-like, iterative algorithm to estimate fragment frequencies

Department of Co

- $\blacksquare \rightarrow$ better fit of the Markovian models
- New fragment-based models for haplotype frequencies
- A sequential reconstruction algorithm
- Other genetic applications for haplotype modeling (discovery of haplotype blocks, reconstruction of founders, ...?)
- Other applications for variable order Markov chains
- Better ways to choose the variable order of a Markov chain

Methods for gene mapping and haplotype analysis - Haplotyping - p.50/51

niversity of Helsinki

lannu Toivonen

Acknowledgements

- Haplotyping: Lauri Eronen and Floris Geerts
- http://www.cs.helsinki.fi/group/genetics/haplotyping.html
- Lauri Eronen, Floris Geerts, and Hannu Toivonen: A Markov chain approach to reconstruction of long haplotypes. *Pacific Symposium on Biocomputing (PSB* 2004), 104-115, Hawaii, USA, January 2004. World Scientific.