Guaranteeing Delay and Throughput Properties of a Communication for a Real-Time Application

Tiina Niklander
University lecturer
Department of Computer Science
University of Helsinki

- Real-time application
- Communication environment
- Properties of real-time communication
- Disciplines to guarantee real-time properties in packet-switched networks
- Real-time transfer in sensor networks

Scheduling

- Similar mechanisms for CPU and network
- Possible alternatives
 - Static table-based
 - Priority-based
 - Static vs dynamic
 - Deadline-based
- Most studied mechanisms
 - Rate Monotonic
 - Earliest Deadline First

Rate-monotonic (RM)

- Based on static priorities
 - Priorities are directly mapped with the frequency of the periodic task's execution
 - Shorter period higher priority
- Schedulable utilisation for one processor

$$U_{RM} = \sum_{i=1}^{n} \frac{e_i}{p_i} \le n(2^{1/n} - 1) \approx 0.693$$

Sufficient, but not necessary condition

Rate monotonic

■ The task with highest priority (shortest period) is executed when ever it is ready.

Earliest-deadline-first (EDF)

- Uses dynamic priorities
 - Current priority depends of the criticality of the task
 - Nearer absolute deadline higher priority
- Schedulable utilisation for one processor

$$U_{EDF} = \sum_{i=1}^{n} \frac{e_i}{\min(p_i, d_i)} \le 1$$

sufficient and necessary condition

Overview

- Real-time application
- Communication environment
- Properties of real-time communication
- Disciplines to guarantee real-time properties in packet-switched networks
- Real-time transfer in sensor networks

Communication connection

- Local network
 - LAN or bus *or wireless*
 - small, fast, reliable
 - hard deadlines
- Wide network
 - WAN, MAN
 - larger, slower
 - soft deadlines

Real-time traffic

- Typical assumptions
 - synchronous traffic,
 - message streams generated continuously
- Traffic models
 - Periodic duration of the period
 - Sporadic statistical model (mean, variation)
 - Aperiodic (must be tranformed to sporadic)

Basic features

- packet, bandwidth, size of the packet, transfer time of one packet, ...
- Simplify: Time is divided by frames, a single fixed-size data packet is sent during one frame
- A periodic message Mi (mi,Ti,Ni)
 - mi message length in frames
 - Ti period of the message (frame numbers)
 - Message bandwidth Ui=mi/Ti; deadline Di=Ti

Performance measurements

- Miss ratio, loss ratio
- Delay jitter
- Buffer requirement
- Throughput rate

Overview

- Real-time application
- Communication environment
- Properties of real-time communication
- Disciplines to guarantee real-time properties in packet-switched networks
- Real-time transfer in sensor networks

Packet-switched networks

- Scheduling packet transmissions
- Priority-Based Service Disciplines
 - WFQ (Weighted Fair-Queueing)
 - Delay Earliest-Due-Date (D-EDD)
 - Jittered-EDD
 - Rate-Controlled Static Priority

Performance of Priority-Based Service Disciplines

		1	L	iu. Table 11-1
Performance Measures	WFQ	Delay-EDD	Jitter-EDD	RCSP
Acceptance test	O(1)	O(1)	O(1)	O(1)
Scheduling Complexity	O(n)	O(log n)	O(log n)	O(log n)
End-to-End Delay Bound	E/u + ρ(e+1)	≤D	≤D	≤D
End-to-End Jitter	const* ρ	const* ρ	const	const
Buffer Space Requirement	const* ρ	const* ρ	const	const

Delay Earliest-Due-Date (D-EDD)

- EDF to schedule the transmissions of packets on each output link.
- Rate-control during acceptance for timing protection.
 - During request-for-connection message, each switch when accepting the connection reserves the requested bandwidth and buffer space for the connection and attached a local reletive deadline for the messages of this connection.
 - Destination client can then allocates the remaining free time to the switches on the route and return the answer.

Jitter-EDD

- Jitter-EDD is simply an enhancement of Delay-EDD.
- Main difference: Jitter-EDD is designed to keep the end-to-end delay jitter smaller.
- Jitter-EDD is nongreedy; the scheduler holds incoming packets in a holding queue and releases them for transmissions at more regularly spaced time instances.
- The end-to-end jitter is always less than the local relative deadline of the connection at the last switch.

Overview

- Real-time application
- Communication environment
- Properties of real-time communication
- Disciplines to guarantee real-time properties in packet-switched networks
- Real-time transfer in sensor networks

Sensor network

- unattended deployment
- energy constraints
- common device failures
- frequent configuration changes
- wireless, broadcast

Features of a sensor network

- No base station with wired backbone
- Messages in the network are periodic
- Messages need guaranteed bounded delay
- Sensors can create a lot of redundant data.
- Nodes are typically fixed in the network;
 the tracket target moves inside the network

Medium Access Control (MAC)

Aloha

inter

- CSMA/CD (carrier sense multiple access / collision detection) - no guarantee
- TDMA (time division multiple access)
 - Usually table-driven (static)
 - Novel idea: use EDF-like scheduling of messages at MAC layer

Network architecture

- Router nodes
 - two transmitters
 - simultaneous sending and receiving
- Cell structure
 - intra-cell dynamic scheduling
 - inter-cell static TDMA

Inter-cell communication Periodic comm. Each cell has a router Router transmits and receives simultaneously during the inter-cell frame Inter-cell comm. Frames reserved for inter-cell comm. To the periodic comm. Inter-cell frame Inter-cell frame Inter-cell communication Inter-cell frame Inter-cell communication Inter-cell communication Inter-cell frame Inter-cell frame Inter-cell communication Inter-cell frame Inter-cell communication Inter-cell frame Inter-

Intra-cell communication

- Conflict-free transmission scheduling
- Every node inside one cell schedules the same set of messages using the same algorithm
- No control messages, no negotiation during transmission
- Initialisation: transmit the message table to all nodes in one cell
- Implicit-EDF

Implicit-EDF

Advantages – Disadvantages

- Energy-efficient
 - no extra listening
- Bound transfer time
 - within the deadline
- Scalability
 - number of cells not restricted
- Less inter-cell traffic
 - only the common information, not all measurements

- More computation
 - all nodes makes synchronously the same decision
- Scalability
 - The message table large, if large cell
- Traffic model
 - only periodic
 - can allow aperiodic with no deadlines

Conclusion

- EDF is widely used in all real-time scheduling issues
- EDF is useless in overload situation. It needs some kind of admission control to avoid this
- Traditional traffic model used in this presentation *periodic tasks with deadlines* is not suitable to all situation, but it is well studied

References

- Jane Liu: Real-Time Systems. Prentice Hall, 2000
- Jochen Schiller: Mobile Communications, second edition. Addison Wesley, 2003
- Marco Caccamo & Lynn Y. Zhang: The capacity of Implicit EDF in Wireless Sensor Networks. In Proceedings of Euromicro Conference on Real-Time Systems (ECRTS'03), 2003.