Syntactic Methods in Solving Linear Diophantine Equations

Presenter: Dmitry G. Korzun

Department of Computer Science
University of Petrozavodsk

Contents of the Presentation

1. Introduction to NLDE

- What is NLDE? (Nonnegative Linear Diophantine Equation)
- Hilbert basis
- Problem of solving NLDE, the complexity

2. NLDE and Syntactic Analysis

- Interrelationship
- Associated NLDE systems (ANLDE systems)
- Solutions of ANLDE and Derivations in a grammar

3. Syntactic solvers

- Algorithms
- Complexity
- Web-SynDic system

What is Nonnegative Linear Diophantine Equation (NLDE)?
n equations, m unknowns: $A x=b \quad A \in \mathbb{Z}^{n \times m}, b \in \mathbb{Z}^{n}, x \in \mathbb{Z}^{m}$

$$
\left\{\begin{array}{l}
a_{11} x_{1}+\cdots+a_{1 m} x_{m}=b_{1} \\
\quad \cdots \\
a_{n 1} x_{1}+\cdots+a_{n m} x_{m}=b_{n}
\end{array}\right.
$$

Diophantness: \quad solutions are integer, $x_{i} \in\{0,1,2, \ldots\}=\mathbb{Z}_{+}$
Nonnegativness: solutions are nonnegative, $x_{i} \geq 0$

Example:

$$
\begin{array}{cl}
\left\{\begin{array}{l}
x_{1}-x_{2}+3 x_{3}=1 \\
x_{1}+2 x_{2}-x_{4}=-1
\end{array}\right. & \left\{\begin{array}{l}
x_{1}-x_{2}+3 x_{3}=0 \\
x_{1}+2 x_{2}-x_{4}=0
\end{array}\right. \\
x=\left(\begin{array}{l}
2 \\
4 \\
1 \\
11
\end{array}\right) & h=\left(\begin{array}{l}
1 \\
4 \\
1 \\
9
\end{array}\right)
\end{array}
$$

Hilbert basis of NLDE system

Consider NLDE system: $A x=b$. There exist finite sets \mathcal{N} and \mathcal{H} :

$$
\begin{gathered}
\mathcal{N}=\left\{x^{(1)}, x^{(2)}, \ldots, x^{(p)}\right\}, \quad \mathcal{H}=\left\{h^{(1)}, h^{(2)}, \ldots, h^{(q)}\right\} \\
\mathcal{S}=\mathcal{N}+\mathcal{H}^{*} \\
x \in \mathcal{S} \Longleftrightarrow x=x^{(l)}+\alpha_{1} h^{(1)}+\cdots+\alpha_{q} h^{(q)}=x^{(0)}+\sum_{s=1}^{q} \alpha_{s} h^{(s)}
\end{gathered}
$$

for some $x^{(l)} \in \mathcal{N}$ and $\alpha_{s} \in \mathbb{Z}_{+}$

> Solution x is minimal if there is no solution x^{\prime} such that $x^{\prime} \leq x$ (component-wise partial order: $x_{i}^{\prime} \leq x_{i}, i=1,2, \ldots, m$)
> $\mathcal{N} \quad$ all minimal solutions of $A x=b$,
> $\mathcal{H} \quad$ all minimal solutions of $A x=0$ (homogenous system),
> $\mathcal{H}^{*} \quad$ all solutions of the homogenous system,
> $\mathcal{N}+\mathcal{H}^{*}$ all solutions of the original system

An Example

Problem of Solving NLDE

NLDE system of 2 equations in 4 unknowns and its homogenous case:

$$
\begin{gathered}
\left\{\begin{array} { l }
{ x _ { 1 } - x _ { 2 } + 3 x _ { 3 } = 1 } \\
{ x _ { 1 } + 2 x _ { 2 } - x _ { 4 } = - 1 }
\end{array} \quad \left\{\begin{array}{l}
x_{1}-x_{2}+3 x_{3}=0 \\
x_{1}+2 x_{2}-x_{4}=0
\end{array}\right.\right. \\
\mathcal{N}=\left\{\left(\begin{array}{l}
1 \\
0 \\
0 \\
2
\end{array}\right),\left(\begin{array}{l}
0 \\
2 \\
1 \\
5
\end{array}\right)\right\}, \mathcal{H}=\left\{\left(\begin{array}{l}
1 \\
1 \\
0 \\
3
\end{array}\right),\left(\begin{array}{l}
0 \\
3 \\
1 \\
6
\end{array}\right)\right\} \\
\left(\begin{array}{l}
2 \\
4 \\
1 \\
11
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0 \\
2
\end{array}\right)+\left(\begin{array}{l}
1 \\
4 \\
1 \\
9
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
\mathcal{N} \\
\underset{\sim}{\mathcal{H}}
\end{array}\right)+1\left(\begin{array}{l}
1 \\
1 \\
0 \\
3
\end{array}\right)+1\left(\begin{array}{l}
0 \\
3 \\
1 \\
6
\end{array}\right)=\left(\begin{array}{l}
0 \\
2 \\
1 \\
5
\end{array}\right)+2\left(\begin{array}{l}
1 \\
1 \\
0 \\
3
\end{array}\right)
\end{gathered}
$$

Solvability: has NLDE a solution?
Particular solution: find a solution
Hilbert basis:

- search the basis
- how many elements in the basis?
- given solution $=$ a basis solution ?
- given set of solutions = Hilbert basis?
- ...

Complexity of Solving NLDE

The source of a rich family of complexity problems
Solvability \& Particular solution: has NLDE a solution? find a solution

- Polynomial for homogenous NLDE
- NP-complete in general case

Hilbert basis: over-NP in general case

- search the basis - $|\mathcal{H}|$ depends exponentially on size ($n, m,\|A, b\|)$
- how many elements in the basis? — \#P-hard and in \#NP
- given solution $=$ a basis solution? - coNP-complete
- given set of solutions $=$ Hilbert basis? — is the set is basis of some NLDE system?

Universal solvers are not adequate for practical use!

Interrelationship: NLDE \leftrightarrow Formal grammars

Associated with formal grammar ANLDE system

Grammar G and strings v, w
m rules $\left(r_{i}\right)$
n nonterminals $\left(A_{k}\right)$
t terminals $\left(a_{k}\right)$

ANLDE system $A x=b$
m unknowns (x_{i})
$n+t$ equations (k)

Derivation in G

$$
v \Rightarrow^{*} w
$$

Solutions

$x \in \mathbb{Z}_{+}^{m}$
x — the number of applications of grammar rules in $v \Rightarrow^{*} w$
A - rules structure (occurrences of symbols)
$b-v, w$ structure (occurrences of symbols)

Associated with formal grammar ANLDE system

$$
\begin{aligned}
& \sum_{i=1}^{m} \operatorname{occ}\left(U, \operatorname{lhs}\left(r_{i}\right)\right) x_{i}-\sum_{i=1}^{m} \operatorname{occ}\left(U, \operatorname{rhs}\left(r_{i}\right)\right) x_{i}=\operatorname{occ}(U, v)-\operatorname{occ}(U, w), \quad U \in N \cup T \\
& \text { occ }(U, \alpha) \quad \text { number of occurrences of symbol } U \text { in string } \alpha \\
& \text { lhs }(r) \text { or rhs(r) left or right hand side of rule } r \\
& r_{1}: A \rightarrow A A B \quad m=4, n=2, t=0 \\
& r_{2}: A \rightarrow B B \quad v=B, w=A \\
& r_{3}: B \rightarrow A A A B \quad B \Rightarrow^{*} A \text { ? } \\
& r_{1}: B \rightarrow \varepsilon \\
& \text { (hom: } A \Rightarrow^{+} A \text { and } B \Rightarrow^{+} B \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& A:\left(x_{1}+x_{2}\right)-\left(2 x_{1}+3 x_{3}\right)=-1 \\
& B:\left(x_{3}+x_{4}\right)-\left(x_{1}+x_{2}+x_{3}\right)=1
\end{aligned}
$$

$x=(0,2,1,5): \quad B \stackrel{3}{\Rightarrow} A A A B \stackrel{4}{\Rightarrow} A A A \stackrel{2,2}{\Rightarrow} A B B B B \stackrel{4,4,4,4}{\Rightarrow} A$
$x=(1,0,0,2): \quad B A \stackrel{1}{\Rightarrow} B A A B \stackrel{4,4}{\Rightarrow} A A$
$h=(1,1,0,3): \quad A \stackrel{1}{\Rightarrow} A A B \stackrel{2}{\Rightarrow} A B B B \stackrel{4,44}{\Rightarrow} A$

Solutions and Derivations

$$
\begin{array}{|c|}
\text { standard derivation } v \Rightarrow^{*} w \\
\rightarrow(?) \leftarrow
\end{array} \begin{aligned}
& (\text { by construction }) \rightarrow \text { solution } x \in \mathbb{Z}_{+}^{m} \\
& \hline
\end{aligned}
$$

$$
\text { generalized derivation } \widetilde{v} \Rightarrow^{*} \widetilde{w} \longleftrightarrow \text { solution } x \in \mathbb{Z}_{+}^{m}
$$

Three-component solution:

$$
x=x^{v, w^{\prime}}+x^{w \backslash w^{\prime}}+x^{\varepsilon}
$$

Generalized derivation:

Homogenous ANLDE Systems

$\sum_{i \in H_{k}} x_{i}=\sum_{i=1}^{n} \gamma_{k i} x_{i}, \quad k=1,2, \ldots, n, \quad I_{1} \cup \ldots \cup I_{n}=\{1,2, \ldots, m\}$
Polynomial complexity $(n \leq m)$:

	Hilbert basis	Particular solution
Time	$O\left(q^{3} m^{2} n^{2}\right)=O\left(q^{3} m^{4}\right)$	$O\left(m^{2} n^{2}\right)=O\left(m^{4}\right)$
Space	$O(q m n)=O\left(q m^{2}\right)$	$O\left(m n^{2}\right)=O\left(m^{3}\right)$

Experimentally: time is $\Theta\left(q m^{2}\right)$ in the most test cases

- more than 1 billion of test ANLDE systems
- coefficients $\gamma_{k i}$: .. 10^{5}
- unknowns and equations: .. 10^{3}

Experimental plots

Experimental total time complexity as a function on the number of unknowns

Experimental total time complexity as a function on the number of solutions

The dimensions of the generated systems were in range: $n \in[1,1000], m \in[n, n+200]$, $\gamma_{k i} \in[0,500]$. The systems were generated in such a way that each of them has at least one basis solution but not more than 200 .

1. Think up an ANLDE system and solve it estimating the resources (time\&space), test the found solution
2. Construct a generator, generate a system and its solution, ..., compare the found and original solutions
3. Compare the results with an alternative solver
4. More detailed analysis needs not a system, but a set of them: generate a set and analyze how the solver solves all the systems

COMBINE THESE FEATURES TOGETHER, MOVE THIS TO THE WEB SPACE . . .

AND YOU GET THE WEB-SYNDIC SOFTWARE SYSTEM

