

Quasigroup encryption

- A groupoid is a finite set Q that is closed with respect to an operator *
- 6 A *quasigroup* is a groupoid with unique left and right inverses.
- 6 A quasigroup can be characterised with a *Latin* square that is an n * n matrix where each row and column is a permutation of elements of a set

 $a_1 a_2 a_3 a_4 a_5 \dots$

 $l c_1 c_2 c_3 c_4 c_5 \dots$

 $\bigwedge \bigwedge \bigwedge \bigwedge \bigwedge \bigwedge \\ 1 \ b_1 b_2 b_3 b_4 b_5 \dots$

• A *groupoid* is a finite set *Q* that is closed with respect to an operator *

Quasigroup encryption

- 6 A *quasigroup* is a groupoid with unique left and right inverses.
- 6 A quasigroup can be characterised with a Latin square that is an n * n matrix where each row and column is a permutation of elements of a set
- 6 The encryption primitive e_l on sequence $x_1x_2...x_n$ is defined as $e_l(x_1x_2...x_n) = y_1y_2...y_n$ where

$$\begin{cases} y_1 = l * x_1, \\ y_{i+1} = y_i * x_{i+1} (i = 1, \dots n - 1) \end{cases}$$

Petrozavodsk 8-9.6.2004 - p.3/31

Decryption

6 Decryption $d_l: A^+ \to A^+$ is defined as $d_l(y_1y_2...y_n) = x_1x_2...x_n$, where

 $\begin{cases} x_1 = l \backslash y_1, \\ x_{i+1} = y_i \backslash y_{i+1} (i = 1, \dots n - 1) \end{cases}$

Petrozavodsk 8-9.6.2004 - p.3/31

Encryption cont.

Differential cryptanalysis on a Feistel cipher Differential cryptanalysis on a Feistel cipher We define a *charasteristic* as follows. X causes YWe define a *charasteristic* as follows. X causes Ywith probability p, marked $X \to Y$, if for fraction $\frac{1}{n}$ of with probability p, marked $X \to Y$, if for fraction $\frac{1}{n}$ of input pairs whose XOR is X the output XOR is Y. input pairs whose XOR is X the output XOR is Y. From analyzing the crypto component we obtain From analyzing the crypto component we obtain *difference distribution table difference distribution table* Input XOR $\Delta X = x_1 \oplus x_2$ Input XOR $\Delta X = x_1 \oplus x_2$ Output difference of the component $\Delta Z = (Y_1 \oplus K) \oplus (Y_2 \oplus K))$ Petrozavodsk 8-9.6.2004 - p.9/31 Petrozavodsk 8-9.6.2004 - p.9/31 Differential cryptanalysis on a Feistel cipher Differential analysis of a quasigroup for $(a_1 := 0 \dots \text{Quasigroupsize})$ We define a *charasteristic* as follows. X causes Y(1) for $(a_2 := 0 \dots \text{Quasigroupsize})$ with probability p, marked $X \to Y$, if for fraction $\frac{1}{n}$ of for (leader := 0 ... Quasigroupsize) (3) input pairs whose XOR is X the output XOR is Y. $c_1 := e$ transformation(leader, a_1) (4) From analyzing the crypto component we obtain (5) $c_2 := e$ transformation(leader, a_2) difference distribution table input_xor := $a_1 \oplus a_2$ (6) (7)output xor := $c_1 \oplus c_2$ Input XOR $\Delta X = x_1 \oplus x_2$ (8)distributions[input xor][output xor]++ Output difference of the component (9)endfor

(10)

(11)

endfor

endfor

- $\Delta Z = (Y_1 \oplus K) \oplus (Y_2 \oplus K))$
- $\begin{array}{ll} \bullet & \Delta Z = Y_1 \oplus Y_2, \, \text{since} \, \left(Y_1 \oplus K\right) \oplus \left(Y_2 \oplus K\right) = \\ & Y_1 \oplus Y_2 \oplus K \oplus K. \end{array}$

$I \backslash O$	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0000	256	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0001	0	10	24	22	24	14	20	14	18	20	14	16	10	16	10	24
0010	0	20	20	26	10	28	10	22	12	12	14	20	12	22	14	14
0011	0	26	14	16	12	22	6	12	28	16	24	24	18	18	10	10
0100	0	14	10	18	20	16	20	22	20	12	14	24	10	12	30	14
0101	0	18	20	20	18	14	18	16	10	18	18	24	12	18	16	16
0110	0	20	14	16	20	22	10	18	26	18	14	12	8	14	24	20
0111	0	8	14	18	24	16	24	16	14	24	22	16	10	12	16	22
1000	0	16	26	22	14	18	12	12	14	18	14	18	28	20	12	12
1001	0	16	16	20	8	20	16	16	12	12	20	12	24	12	24	28
1010	0	24	28	8	18	18	18	22	8	20	16	8	14	18	14	22
1011	0	24	20	6	10	20	14	14	16	22	22	18	18	18	20	14
1100	0	12	12	18	18	10	20	18	14	14	12	26	26	34	14	8
1101	0	10	20	12	22	16	22	18	20	18	20	24	10	12	14	18
1110	0	14	6	20	20	8	22	18	18	18	20	8	34	12	20	18
1111	0	24	12	14	18	14	24	18	26	14	12	6	22	18	18	16

An example difference distribution table

Petrozavodsk 8-9.6.2004 - p.12/31

$I \setminus O$ 000	00 00	0 10	010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0000 256	6 0	0)	0	0	0	0	0	0	0	0	0	0	0	0	0
0001 0	12	3 0)	64	0	0	0	32	0	0	0	0	0	0	0	32
0010 0	0	1	28	0	0	0	64	0	0	0	0	0	0	0	64	0
0011 0	64	0)	64	0	32	0	32	0	0	0	0	0	32	0	32
0100 0	0	0)	0	128	0	0	0	0	0	0	0	128	0	0	0
0101 0	0	0)	32	0	64	0	32	0	0	0	32	0	64	0	32
0110 0	0	6	64	0	0	0	64	0	0	0	64	0	0	0	64	0
0111 0	32	0)	32	0	32	0	32	0	32	0	32	0	32	0	32
1000 0	0	0)	0	0	0	0	0	256	0	0	0	0	0	0	0
1001 0	0	0)	0	0	0	0	32	0	128	0	64	0	0	0	32
1010 0	0	0)	0	0	0	64	0	0	0	128	0	0	0	64	0
1011 0	0	0)	0	0	32	0	32	0	64	0	64	0	32	0	32
1100 0	0	0)	0	128	0	0	0	0	0	0	0	128	0	0	0
1101 0	0	0)	32	0	64	0	32	0	0	0	32	0	64	0	32
1110 0	0	6	64	0	0	0	64	0	0	0	64	0	0	0	64	0
1111 0	32	0)	32	0	32	0	32	0	32	0	32	0	32	0	32

Another example difference distribution table

An example quasigroup of order 16

Petrozavodsk 8-9.6.2004 - p.11/3

Another example quasigroup of order 16

Petrozavodsk 8-9.6.2004 - p.15/31

Petrozavodsk 8-9.6.2004 - p.18/31

Using several quasigroups

will give the most uniform distribution, such as

00	12	0	0	0
01	0	3	2	2
10	0	3	4	5
11	0	1	2	3

6 which reveals nothing about the structures of the groups.

 In some cases it is possible to gain considerable advantage with differential analysis compared to straight brute force attack

Conclusions

- 6 It is useful to consider a difference distribution of a quasigroup before using it
- If small group is used, one should use more than one group
- These groups should be selected so that combined they produce difference distribution that has no charasteristics with probability 1.

Petrozavodsk 8-9.6.2004 – p.28/3]	Petroz	zavodsk 8-9.6.2004 – p.2 <mark>9/31</mark>
Future work	Thank	you
One could generate a general algorithm for finding the quasigroup based on the difference distribution		
What happens if one uses different, but isomorphic quasigroups (ie. quasigroups with same structure) for encryption and decryption?	Questions?	