Contents

Differential cryptanalysis of the quasigroup

 cipherMarko Hassinen, Smile Markovski
Marko.Hassinen@cs.uku.fi, smile@ii.edu.mk
University of Kuopio, Finland
SS Cyril and Methodius University,
Republic of Macedonia

Motivation

- Definition of the encryption method

Differential cryptanalysis
Results
Conclusions and Future Work

Quasigroup encryption

A groupoid is a finite set Q that is closed with respect to an operator *

A quasigroup is a groupoid with unique left and right inverses.

Quasigroup encryption

- A groupoid is a finite set Q that is closed with respect to an operator *

6 A quasigroup is a groupoid with unique left and right inverses.

- A quasigroup can be characterised with a Latin square that is an $n * n$ matrix where each row and column is a permutation of elements of a set

Quasigroup encryption

- A groupoid is a finite set Q that is closed with respect to an operator *
- A quasigroup is a groupoid with unique left and right inverses.
- A quasigroup can be characterised with a Latin square that is an $n * n$ matrix where each row and column is a permutation of elements of a set
The encryption primitive e_{l} on sequence $x_{1} x_{2} \ldots x_{n}$ is defined as $e_{l}\left(x_{1} x_{2} \ldots x_{n}\right)=y_{1} y_{2} \ldots y_{n}$ where

$$
\left\{\begin{array}{l}
y_{1}=l * x_{1}, \\
y_{i+1}=y_{i} * x_{i+1}(i=1, \ldots n-1)
\end{array}\right.
$$

Encryption cont.

$a_{1} a_{2} a_{3} a_{4} a_{5} \ldots$
$\downarrow \downarrow \downarrow \downarrow \downarrow$
$1 b_{1} b_{2} b_{3} b_{4} b_{5} \ldots$
$\downarrow \downarrow \downarrow \downarrow \downarrow$
$1 c_{1} c_{2} c_{3} c_{4} c_{5} \ldots$

Decryption

- Decryption $d_{l}: A^{+} \rightarrow A^{+}$is defined as
$d_{l}\left(y_{1} y_{2} \ldots y_{n}\right)=x_{1} x_{2} \ldots x_{n}$, where

$$
\left\{\begin{array}{l}
x_{1}=l \backslash y_{1}, \\
x_{i+1}=y_{i} \backslash y_{i+1}(i=1, \ldots n-1)
\end{array}\right.
$$

Differential cryptanalysis on a Feistel cipher

6 Originally designed for iterated block ciphers (DES)

Differential cryptanalysis on a Feistel cipher

- Originally designed for iterated block ciphers (DES)

6 Eli Biham and Adi Shamir

- A known plaintext attack

Differential cryptanalysis on a Feistel cipher

Originally designed for iterated block ciphers (DES)
Eli Biham and Adi Shamir

Differential cryptanalysis on a Feistel cipher

6 Originally designed for iterated block ciphers (DES)

- Eli Biham and Adi Shamir
- A known plaintext attack
- A large amount of ciphertext - plaintext pairs is used

Differential cryptanalysis on a Feistel cipher

We define a charasteristic as follows. X causes Y with probability p, marked $X \rightarrow Y$, if for fraction $\frac{1}{p}$ of input pairs whose XOR is X the output XOR is Y.

Differential cryptanalysis on a Feistel cipher

We define a charasteristic as follows. X causes Y with probability p, marked $X \rightarrow Y$, if for fraction $\frac{1}{p}$ of input pairs whose XOR is X the output XOR is Y.

6 From analyzing the crypto component we obtain difference distribution table

Differential cryptanalysis on a Feistel cipher

6 We define a charasteristic as follows. X causes Y with probability p, marked $X \rightarrow Y$, if for fraction $\frac{1}{p}$ of input pairs whose XOR is X the output XOR is Y.

- From analyzing the crypto component we obtain difference distribution table
- Input XOR $\Delta X=x_{1} \oplus x_{2}$

Differential cryptanalysis on a Feistel cipher

6 We define a charasteristic as follows. X causes Y with probability p, marked $X \rightarrow Y$, if for fraction $\frac{1}{p}$ of input pairs whose XOR is X the output XOR is Y.

- From analyzing the crypto component we obtain difference distribution table
- Input XOR $\Delta X=x_{1} \oplus x_{2}$
- Output difference of the component $\left.\Delta Z=\left(Y_{1} \oplus K\right) \oplus\left(Y_{2} \oplus K\right)\right)$

Differential cryptanalysis on a Feistel cipher

- We define a charasteristic as follows. X causes Y with probability p, marked $X \rightarrow Y$, if for fraction $\frac{1}{p}$ of input pairs whose XOR is X the output XOR is Y.
- From analyzing the crypto component we obtain difference distribution table
- Input XOR $\Delta X=x_{1} \oplus x_{2}$
- Output difference of the component

$$
\left.\Delta Z=\left(Y_{1} \oplus K\right) \oplus\left(Y_{2} \oplus K\right)\right)
$$

- $\Delta Z=Y_{1} \oplus Y_{2}$, since $\left(Y_{1} \oplus K\right) \oplus\left(Y_{2} \oplus K\right)=$ $Y_{1} \oplus Y_{2} \oplus K \oplus K$.

Differential analysis of a quasigroup

```
for (a, := 0 ... Quasigroupsize)
    for ( }\mp@subsup{a}{2}{}:=0\ldots\mathrm{ ... Quasigroupsize)
        for (leader:= 0 ... Quasigroupsize)
            c
            c}\mp@subsup{c}{2}{}:= e_transformation(leader, , a⿱2
            input_xor:= a 
            output_xor:= c
            distributions[input_xor][output_xor]++
        endfor
    endfor
endfor
```


$\begin{array}{lllllllllll}3 & 126 & 148 & 9 & 13 & 11 & 154 & 1 & 5 & 107 & 0 \\ 2\end{array}$

 $\begin{array}{lllllllllll}4 & 10 & 149 & 0 & 127 & 5 & 118 & 3 & 151 & 6 & 2\end{array} 13$ $\begin{array}{llllllllll}129 & 1 & 3 & 14112 & 8 & 135 & 6 & 0 & 7 & 15 \\ 10 & 4\end{array}$ $\begin{array}{llllllllll}155 & 10 & 117 & 144 & 133 & 0 & 2 & 1 & 128 & 9\end{array} 6$ $\begin{array}{llllllllll}0 & 113 & 10 & 135 & 8 & 141 & 15 & 129 & 6 & 2 \\ 4 & 7\end{array}$ $\begin{array}{llllllllllll}10 & 1 & 8 & 12 & 11 & 0 & 5 & 3 & 9 & 134 & 7 & 2\end{array} 146$ $\begin{array}{lllllllllll}6 & 4 & 15 & 13 & 1 & 7 & 149 & 8 & 105 & 2 & 113\end{array} 120$ $\begin{array}{lllllllllll}5 & 15 & 132 & 9 & 10 & 12 & 120 & 6 & 7 & 144 & 113\end{array} 8$ $\begin{array}{lllllllllll}136 & 7 & 1 & 2 & 8 & 9 & 10 & 143 & 154 & 0 & 5 \\ 11 & 12\end{array}$ $\begin{array}{lllllllllll}147 & 114 & 3 & 2 & 150 & 129 & 8 & 6 & 5 & 10 & 131\end{array}$ $\begin{array}{lllllllllll}9 & 132 & 0 & 154 & 107 & 6 & 12113 & 141 & 8 & 5\end{array}$ $8 \quad 14515610 \begin{array}{llllllll}8 & 15 & 4 & 102 & 9 & 11 & 13 & 127\end{array} 3$ $\begin{array}{lllllllllll}112 & 9 & 6 & 5 & 13 & 12 & 154 & 7 & 108 & 3 & 0 \\ 1 & 14\end{array}$ $\begin{array}{llllllllllll}1 & 3 & 0 & 8 & 10 & 15 & 6 & 2 & 7 & 14 & 13 & 129\end{array} 4511$ $\begin{array}{llllllllllll}7 & 0 & 125 & 4 & 6 & 3 & 1 & 2 & 11 & 14 & 108 & 13 \\ 159\end{array}$ $\begin{array}{lllllllllllll}2 & 8 & 4 & 7 & 123 & 116 & 5 & 1 & 0 & 13159 & 14 & 10\end{array}$An example quasigroup of order 16
$I \backslash O 0000000100100011010001010110011110001001101010111100110111101111$

0000256	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
00010	10	24	22	24	14	20	14	18	20	14	16	10	16	10	24
0010	0	20	20	26	10	28	10	22	12	12	14	20	12	22	14
14															
00110	26	14	16	12	22	6	12	28	16	24	24	18	18	10	10
01000	14	10	18	20	16	20	22	20	12	14	24	10	12	30	14
01010	18	20	20	18	14	18	16	10	18	18	24	12	18	16	16
01100	20	14	16	20	22	10	18	26	18	14	12	8	14	24	20
01110	8	14	18	24	16	24	16	14	24	22	16	10	12	16	22
10000	16	26	22	14	18	12	12	14	18	14	18	28	20	12	12
10010	16	16	20	8	20	16	16	12	12	20	12	24	12	24	28
10100	24	28	8	18	18	18	22	8	20	16	8	14	18	14	22
10110	24	20	6	10	20	14	14	16	22	22	18	18	18	20	14
11000	12	12	18	18	10	20	18	14	14	12	26	26	34	14	8
11010	10	20	12	22	16	22	18	20	18	20	24	10	12	14	18
11100	14	6	20	20	8	22	18	18	18	20	8	34	12	20	18
1110	24	12	14	18	14	24	18	26	14	12	6	22	18	18	16

[^0]$I \backslash O 0000000100100011010001010110011110001001101010111100110111101111$

0000	256	0	0	0	0	0	0	0	0	0	0	0	0	0	0
00010	128	0	64	0	0	0	32	0	0	0	0	0	0	0	32
0010	0	0	128	0	0	0	64	0	0	0	0	0	0	0	64
00110	64	0	64	0	32	0	32	0	0	0	0	0	32	0	32
0100	0	0	0	0	128	0	0	0	0	0	0	0	128	0	0
01010	0	0	32	0	64	0	32	0	0	0	32	0	64	0	32
01100	0	64	0	0	0	64	0	0	0	64	0	0	0	64	0
01110	32	0	32	0	32	0	32	0	32	0	32	0	32	0	32
1000	0	0	0	0	0	0	0	0	256	0	0	0	0	0	0
10010	0	0	0	0	0	0	32	0	128	0	64	0	0	0	32
10100	0	0	0	0	0	64	0	0	0	128	0	0	0	64	0
10110	0	0	0	0	32	0	32	0	64	0	64	0	32	0	32
11000	0	0	0	128	0	0	0	0	0	0	0	128	0	0	0
11010	0	0	32	0	64	0	32	0	0	0	32	0	64	0	32
11100	0	64	0	0	0	64	0	0	0	64	0	0	0	64	0
11110	32	0	32	0	32	0	32	0	32	0	32	0	32	0	32

Another example difference distribution table

Brute force attack

6 Known quasigroup operations

Brute force attack

6 Known quasigroup operations

- A brute force against leaders $l_{1} \ldots l_{n}, l_{i} \in Q$

Brute force attack

- Known quasigroup operations
- A brute force against leaders $l_{1} \ldots l_{n}, l_{i} \in Q$
- $|Q|$ different leaders
- Known quasigroup operations

A brute force against leaders $l_{1} \ldots l_{n}, l_{i} \in Q$
$|Q|$ different leaders
We need in average $\frac{(|Q| * k)^{n}}{2}$ trials

Brute force attack

- Known quasigroup operations
- A brute force against leaders $l_{1} \ldots l_{n}, l_{i} \in Q$

$\|Q\|$	5	10	20	30	40
4	$1.53 * 2^{21}$	$1.16 * 2^{43}$	$1.36 * 2^{86}$	$1.58 * 2^{129}$	$1.84 * 2^{172}$
8	$1.53 * 2^{26}$	$1.16 * 2^{53}$	$1.36 * 2^{106}$	$1.58 * 2^{159}$	$1.84 * 2^{212}$
16	$1.53 * 2^{31}$	$1.16 * 2^{63}$	$1.36 * 2^{126}$	$1.58 * 2^{189}$	$1.84 * 2^{252}$
32	$1.53 * 2^{36}$	$1.16 * 2^{73}$	$1.36 * 2^{146}$	$1.58 * 2^{219}$	$1.84 * 2^{292}$
64	$1.53 * 2^{41}$	$1.16 * 2^{83}$	$1.36 * 2^{166}$	$1.58 * 2^{249}$	$1.84 * 2^{332}$
128	$1.53 * 2^{46}$	$1.16 * 2^{93}$	$1.36 * 2^{186}$	$1.58 * 2^{279}$	$1.84 * 2^{372}$
256	$1.53 * 2^{51}$	$1.16 * 2^{103}$	$1.36 * 2^{206}$	$1.58 * 2^{309}$	$1.84 * 2^{412}$

Amount of tries needed for a quasigoup of size $|Q|, k=5$.
In colums are values calculated for 5, 10, 20, 30 and 40 iterations of the cipher.

Brute force attack against unknown quasigroup operations

In a brute force attack we need to

Brute force attack against unknown quasigroup operations

In a brute force attack we need to
Find out how many encryptions have been done

Brute force attack against unknown quasigroup operations

6 In a brute force attack we need to

- Find out how many encryptions have been done
- Find the quasigroup(s) used to encrypt the message

Aim for differential analysis is to gain some non neglible advantage over brute force attack.

Brute force attack against unknown quasigroup operations

6 In a brute force attack we need to
6 Find out how many encryptions have been done

- Find the quasigroup(s) used to encrypt the message

6 Find out the leader(s) used to encrypt the message
6 Find out the order in which the quasigroups were used to encrypt the message

Brute force attack against unknown quasigroup operations

Brute force attack against unknown quasigroup operations

In a brute force attack we need to
Find out how many encryptions have been done

- Find the quasigroup(s) used to encrypt the message

6 Find out the leader(s) used to encrypt the message

Brute force attack against unknown quasigroup operations

Brute force attack against unknown quasigroup operations

Aim for differential analysis is to gain some non neglible advantage over brute force attack.

The amount of different latin squares of order k is $\geq \prod_{k=1}^{n} k$!

Brute force attack against unknown quasigroup operations

6 Aim for differential analysis is to gain some non neglible advantage over brute force attack.

The amount of different latin squares of order k is $\geq \prod_{k=1}^{n} k$!

- There is no (known) formula for deciding the amount of latin squares of certain order.
- Experiments show that there are 576 latin squares of order 4, more than 10^{90} of order 16.

Brute force attack against unknown quasigroup operations

Aim for differential analysis is to gain some non neglible advantage over brute force attack.

The amount of different latin squares of order k is $\geq \prod_{k=1}^{n} k$!

There is no (known) formula for deciding the amount of latin squares of certain order.

- Experiments show that there are 576 latin squares of order 4, more than 10^{90} of order 16.

For simplicity we assume that we know how many encryptions has been done (pherhaps we can use timing attack to find this out).

Brute force attack against unknown quasigroup operations

With chosen plaintext attack we can try to find out information about the orders of the quasigroup(s) used to encrypt the message.

Brute force attack against unknown

 quasigroup operationsWith chosen plaintext attack we can try to find out information about the orders of the quasigroup(s) used to encrypt the message.

A brute force attack after this consists of trying all the possible quasigroups with all the possible leaders, succeeding within average of half the the possibities tried.

Brute force attack against unknown quasigroup operations

With chosen plaintext attack we can try to find out information about the orders of the quasigroup(s) used to encrypt the message.

- A brute force attack after this consists of trying all the possible quasigroups with all the possible leaders, succeeding within average of half the the possibities tried.
- Unfortunately we do not know how many possibilities there are for quasigroups of order higher than ?

Statistical analysis of difference distributions

In statistical analysis our aim is to find structure of the quasigroup(s) used.

Statistical analysis of difference distributions

6 In statistical analysis our aim is to find structure of the quasigroup(s) used.
6 General structure of a latin square of order 4 would look like

Statistical analysis of difference distributions

6 In statistical analysis our aim is to find structure of the quasigroup(s) used.

6 General structure of a latin square of order 4 would look like

$$
\begin{array}{llll}
x_{11} & x_{12} & x_{13} & x_{14} \\
x_{21} & x_{22} & x_{23} & x_{24} \\
x_{31} & x_{32} & x_{33} & x_{34} \\
x_{41} & x_{42} & x_{43} & x_{44} \\
\hline
\end{array}
$$

Finding bit difference patterns (1 round)

After 1 round of encryption we can find bit differences as follows:
$a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} \cdots$
$b_{1} b_{2} b_{3} b_{4} b_{5} b_{6} b_{7} \cdots$

After 2 rounds of encryption we can find bit differences as follows:

```
\(a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} \ldots\)
    \(\downarrow \downarrow\)
\(b_{1} b_{2} b_{3} b_{4} b_{5} b_{6} b_{7} \ldots\)
    へ \(1 /\)
\(c_{1} c_{2} c_{3} c_{4} c_{5} c_{6} c_{7} \ldots\)
```

- An example difference distribution on a quasigroup of order 4 might look like

An example difference distribution on a quasigroup of order 4 might look like

$I \backslash O$	00	01	10	11
00	16	0	0	0
01	0	8	8	0
10	0	8	8	0
11	0	0	0	16

Finding the quasigroup

6 An example difference distribution on a quasigroup of order 4 might look like

$I \backslash O$	00	01	10	11
00	16	0	0	0
01	0	8	8	0
10	0	8	8	0
11	0	0	0	16

Finding the quasigroup

Here we have a charasteristic of $11 \rightarrow 11$ with probability 1 , which gives us

Here we have a charasteristic of $11 \rightarrow 11$ with probability 1 , which gives us

00	x_{12}	x_{13}	11
01	x_{22}	x_{23}	10
10	x_{32}	x_{33}	01
11	x_{42}	x_{43}	00

Here we have a charasteristic of $11 \rightarrow 11$ with probability 1 , which gives us

00	x_{12}	x_{13}	11
01	x_{22}	x_{23}	10
10	x_{32}	x_{33}	01
11	x_{42}	x_{43}	00

6 For difference 01 we have two charasteristics with equal probability, namely $01 \rightarrow 01$ and $01 \rightarrow 10$.

00	01	x_{13}	11	00	10	x_{13}	11
01	x_{22}	x_{23}	10	01	x_{22}	x_{23}	10
10	x_{32}	x_{33}	01	10	x_{32}	x_{33}	01
11	x_{42}	x_{43}	00	11	x_{42}	x_{43}	00

Finding the quasigroup

For determining the value of x_{22} we have to do the same ending up with four possible tables:

00	01	10	11	00	10	01	11
01	00	11	10	01	00	11	10
10	x_{32}	x_{33}	01	10	x_{32}	x_{33}	01
11	x_{42}	x_{43}	00	11	x_{42}	x_{43}	00
00							
01	01	10	11	00	10	01	11
10	11	00	10	01	11	00	10
11	x_{32}	x_{33}	01	10	x_{32}	x_{33}	01
1	x_{42}	x_{43}	00	11	x_{42}	x_{43}	00

Finding the quasigroup

For x_{32} we have two choices

- This means eight possible structures four of which would violate the definition of latin squares

00	01	10	11	00	10	01	11
01	00	11	10	01	00	11	10
10	11	00	01	10	11	00	01
11	10	01	00	11	01	10	00
00	01	10	11				
01	11	00	10	00	10	01	11
10	00	11	01	01	11	00	10
11	10	01	00	10	00	11	01
			11	01	10	00	

Attack with known structure

- Knowing the structure of the latin square reduces brute force complexity to n !

Attack with known structure

© Knowing the structure of the latin square reduces brute force complexity to n !
© For example for order 4 this is 24 while amount of latin squares of order 4 is 576.

Attack with known structure

6 Knowing the structure of the latin square reduces brute force complexity to n !

6 For example for order 4 this is 24 while amount of latin squares of order 4 is 576 .

6 The task of finding the latin square from difference distributions comes more difficult as the order increases.

Attack with known structure

(6nowing the structure of the latin square reduces brute force complexity to n !

- For example for order 4 this is 24 while amount of latin squares of order 4 is 576 .

6 The task of finding the latin square from difference distributions comes more difficult as the order increases.
Some cases are "simple" and some can be impossible

Using several quasigroups

When several squares are used the success of the attack depends on the distributions.

Using several quasigroups

6 When several squares are used the success of the attack depends on the distributions.

6 Using two latin squares with distribution tables of, for example, form

	00	01	10	11		00	01	10	11
00	16	0	0	0	00	16	0	0	0
01	0	8	0	8	00	0	16	0	0
10	0	0	16	8	00	0	0	8	8
11	0	8	0	8	00	0	0	8	8

Using several quasigroups
will give the most uniform distribution, such as

Using several quasigroups

will give the most uniform distribution, such as

00	12	0	0	0
01	0	3	2	2
10	0	3	4	5
11	0	1	2	3

Using several quasigroups

will give the most uniform distribution, such as

00	12	0	0	0
01	0	3	2	2
10	0	3	4	5
11	0	1	2	3

6 which reveals nothing about the structures of the groups.

Conclusions

6 In some cases it is possible to gain considerable advantage with differential analysis compared to straight brute force attack

- It is useful to consider a difference distribution of a quasigroup before using it
- If small group is used, one should use more than one group

6 These groups should be selected so that combined they produce difference distribution that has no charasteristics with probability 1.

Thank you

6 One could generate a general algorithm for finding the quasigroup based on the difference distribution

What happens if one uses different, but isomorphic quasigroups (ie. quasigroups with same structure) for encryption and decryption?

[^0]: $\begin{array}{llllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$
 $\begin{array}{llllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 0\end{array}$
 $\begin{array}{llllllllllllllll}2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 0 & 1\end{array}$
 $\begin{array}{lllllllllllllll}3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 0 & 1\end{array} 2$
 $\begin{array}{lllllllllllllll}4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 0 & 1 & 2 \\ 3\end{array}$ $\begin{array}{llllllllllllll}5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 0 & 1 & 2\end{array} \quad 3 \quad 4$ $\begin{array}{lllllllllllllll}6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 0 & 1 & 2 & 3 & 4 \\ 5\end{array}$

 $\begin{array}{llllllllllllllllllllllll}8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$ $\begin{array}{llllllllllllllll}9 & 10 & 11 & 12 & 13 & 14 & 15 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$ $\begin{array}{lllllllllllll}10 & 11 & 12 & 13 & 14 & 15 & 0 & 1 & 2 & 3 & 4 & 5 & 6\end{array} 7$ $\begin{array}{llllllllllllllll}11 & 12 & 13 & 14 & 15 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$ $\begin{array}{llllllllllllll}12 & 13 & 14 & 15 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array} 1011$ $\begin{array}{lllllllllllllll}13 & 14 & 15 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 12\end{array}$ $\begin{array}{lllllllllllllll}14 & 15 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array} 13$ | 15 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 Another example quasigroup of order 16

