
26.6.2003 FDPW'03 / Inkeri Verkamo, UH 1

Software performance
Inkeri Verkamo

Performance prediction
Software performance models

Case example

26.6.2003 FDPW'03 / Inkeri Verkamo, UH 2

What affects performance?

Hardware 
characteristics

Algorithm A.

1. Do this.

2. Do that.

3. While B do

...

Choice of
algorithm

Amount and speed 
of communication

Mapping of software
on hardware

Software structure

Any of these can be influenced if addressed early enough!

26.6.2003 FDPW'03 / Inkeri Verkamo, UH 3

Uses of performance modeling
Performance prediction

what will be the reponse time of request Q 
on the future system?

Capacity analysis
how many components X, Y, and Z do we 
need for a workload of N requests/second?

Sensitivity analysis
if we replace component Y by Y’, how will 
the response time of request Q change?

If this is not 
acceptable, improve 
(before its too late)!

The times can be either 
predicted or measured.

These can be hardware or 
software components.

26.6.2003 FDPW'03 / Inkeri Verkamo, UH 4

Performance 
evaluation vs. prediction 

Evaluation:
measuring the 
behavior of an 
implemented system 
actual performance 
numbers 
if performance is 
inadequate, only few 
cheap and easy ways 
to improve

Prediction:
predicting the 
behavior of a future 
system 
estimates (may be 
not very accurate)
more flexibility for 
improvement
suggestions on what 
should be improved

26.6.2003 FDPW'03 / Inkeri Verkamo, UH 5

Performance prediction
Place your improvement effort right:

find out which parts will be crucial with 
respect to performance

Early phase of development:
nothing implemented = nothing to measure 
only rough estimates from previous work, 
prototypes, …
simple models for quick estimates
evaluate the sensitivity of your results for 
inaccuracy of input

26.6.2003 FDPW'03 / Inkeri Verkamo, UH 6

Software performance modeling
1. Define the system as a collection of 

objects providing services to each other
2. Model the behavior of each object 

separately 
⇒ (set of) software performance models

3. Model the cooperation of the objects:
parallelism (resource contention)
synchronisation

⇒ system performance model



26.6.2003 FDPW'03 / Inkeri Verkamo, UH 7

Software performance models
Possible representations: 

UML behavioral diagrams (e.g. sequence diagrams or 
activity diagrams)
algorithms
special diagrams such as execution graphs 

Level of detail: 
what is needed to describe essentials of resource 
usage (computation, database services, messaging, ...)
repetition, conditionality, parallelism, if they affect 
resource usage

A rough estimate for resource usage
26.6.2003 FDPW'03 / Inkeri Verkamo, UH 8

Each object is 
modeled separately.

Example of a software model

*
May contain 
conditional or 
repetitive 
elements.

Reply

Request

Request
handler

Calc
element

DB
server

Service times

May contain 
parallel activities.

26.6.2003 FDPW'03 / Inkeri Verkamo, UH 9

Example of a software model 
(cont.)

*

Calc
element

Resource usage of this object 
(for each type of resource):

T = t1 + t2 + n*t3 + t4

t2

t3

t4

t1

Total elapsed time (best case): 
T + DH + DDB1 + n*DDB2

Time effect of other objects 
is represented as delays.

DDB1

DH

DDB2

26.6.2003 FDPW'03 / Inkeri Verkamo, UH 10

System performance models
Use the results of the software models 
as input to the system model
Possible modeling techniques are, e.g., 
queueing networks and Petri nets 
Study the effect of many requests using 
the resources at the same time:

synchronisation
resource contention

Capacity needs ⇔ configuration issues

26.6.2003 FDPW'03 / Inkeri Verkamo, UH 11

What input do we need?
Key performance scenarios
Workload for each key scenario 
Structure of the system 
Load caused by each scenario on each 
element
Performance requirements with respect 
to the scenarios

We need some numbers for each item

… but we can live with inaccuracy!
26.6.2003 FDPW'03 / Inkeri Verkamo, UH 12

Sources of input data
System requirements documentation:

key scenarios
projected workload
performance requirements

System architecture description:
system structure

Test runs: load caused by scenarios
Previous system measurements:

reality checks for all types of input data

No one knows 
the exact numbers,

but many know 
some useful ones!



26.6.2003 FDPW'03 / Inkeri Verkamo, UH 13

Case example: telephone switch
soft real-time system
as many calls per hour as possible
central use cases: 

placing a phone call
receiving a phone call

PSTNPSTN

26.6.2003 FDPW'03 / Inkeri Verkamo, UH 14

Architecture
modular structure:

each module handles a group of lines
switch is scalable by adding more modules
for each phone call a path is established 
from the caller module to the callee module

26.6.2003 FDPW'03 / Inkeri Verkamo, UH 15

digitloop *[until done]

Call sequence diagram

offHook

Caller switchB CalleeswitchA

dialTone

alerting

answerringback

answer
answer

connect
ring

clear

release

onHook
release

onHook

clear

callinProgress

26.6.2003 FDPW'03 / Inkeri Verkamo, UH 16

Performance scenarios
separate scenario for each phase:

call origination
call termination 
call in progress

duration etc. varies a lot
caller hang up
callee hang up 

most interesting 
scenario:

how long must 
the caller wait, 
before the call 
is established?

26.6.2003 FDPW'03 / Inkeri Verkamo, UH 17

Call origination
offHook

lineInterface

anOCall

aDigit
Analyzer

callingModule
Processor

dialTone

digit

clear

release

done

aRoute

ringback alerting
connect

answer answer

onHook

clear

loop *[until done]

calledModule
Processor

aPath

<<create>>

<<create>>

<<create>>

<<destroy>>

<<destroy>>

<<destroy>>

callinProgress

temporary 
objects

call setup

26.6.2003 FDPW'03 / Inkeri Verkamo, UH 18

Software resources
central software resources:

processor
unit: KInstructions
service time (depends on hardware):

line interface:
processing and message passing
unit: number of messages = number of visits to 
the line interface
each visit to the line interface requires 

processing: 
message passing delay:

0.000015 s

0.005 s
100 KInstr



26.6.2003 FDPW'03 / Inkeri Verkamo, UH 19

Performance goals
workload: 

3 call originations / s
same number of call terminations
assumption:

half of the hang-ups by caller, half by callee

call setup time: 
critical from point of view of the switch
on the average at most 0.5 s

26.6.2003 FDPW'03 / Inkeri Verkamo, UH 20

Call origination execution graph

analyzeDigits

setupPath

setupReady

connect

answer

main steps of call origination

straightforward structure, 
no looping etc.

more detailed graph 
for each node

26.6.2003 FDPW'03 / Inkeri Verkamo, UH 21

Resource usage

analyzeDigits

setupPath

setupReady

connect

answer

0.220 s9 visits11700 Kinstr

0.025 s2 visits1000 KInstr

0.013 s1 visit550 KInstr

0.090 s5 visits4350 KInstr

0.036 s0 visits2400 KInstr

0.056 s1 visit3400 KInstr

TimeLine I/FCPU

setup tim
e

best case time < 0.5 s
26.6.2003 FDPW'03 / Inkeri Verkamo, UH 22

System model
system model with one scenario (call 
origination):

3 requests / s
⇒ setup time:

system model with all four scenarios:
3 requests / s for each scenario
simulation result: setup time
explanation: CPU saturates

0.38 s

>16 s !

26.6.2003 FDPW'03 / Inkeri Verkamo, UH 23

System improvement
reduce CPU use:

save time spent in creating and destroying 
objects by using recycled call objects
corresponding change in all scenarios

simulation results:
CPU utilization
setup time

68%
0.31 s

Fixing the problem would have been much more 
expensive, if it had been found after implementation.

26.6.2003 FDPW'03 / Inkeri Verkamo, UH 24

Literature
C.U. Smith, L.G. Williams, Performance 
Solutions: A Practical Guide to Creating 
Responsive, Scalable Software; Addison-
Wesley 2001
Workshop on Software and Performance 
(WOSP) 

1998, 2000, 2002
next workshop in January 2004


