Rough Sets and Decision Making

JOUNI JÄRVINEN ALEKSANDR MYLLÄRI

Department of Information Technology
University of Turku
Finland

Petrozavodsk June 26th 2003

1

INTRODUCTION

- Introduced by Z. Pawlak in the early eighties
- Deals with uncertainty in data

Rough sets \neq Fuzzy sets

Fuzzy sets:

Fuzzy membership function $U \rightarrow [0, 1]$

Rough sets:

Approximations based on an indiscernibility relation

2

SOME APPLICATIONS PRESENTED IN RSCTC CONFERENCES (1998, 2000, 2002)

- EEG analysis
- Medical diagnostic rules
- Post-surgery survival analysis
- Similarity of DNA sequences
- cDNA microarray analysis
- Robot navigation
- Satellite attitude control
- Switchbox routing
- Job scheduling
- Industrial design
- Business process understanding
- Visual classification
- Text classification
- Web mining
- Identification of low-paying workplaces
- Monitoring loose parts in nuclear power plants

3

INDISCERNIBILITY RELATIONS

Let us denote

$$x \approx y$$

if we cannot discern x and y by their properties.

ullet pprox is called an **indiscernibility relation** on U

Usually indiscernibility relations are assumed to be **equivalences:**

• $x \approx x$ (reflexive)

• $x \approx y \Rightarrow y \approx x$ (symmetric)

• $x \approx y$ and $y \approx z \Rightarrow x \approx z$ (transitive)

The equivalence class of $x \in U$

$$[x] = \{ y \in U \mid x \approx y \}$$

consists of objects indiscernible from x

The set U/\approx of all equivalence classes forms a **partition** of U.

INDISCERNIBILITY AND DECISION TABLES

A decision table is a triple $\mathcal{T} = (U, C, D)$

- *U* is a set of **objects**
- C is a set of condition attributes
- D is a set of **decision attributes**
- each attribute $a \in C \cup D$ is a map $a: U \to V_a$
- V_a is the **value set** of the attribute a

For any $B \subseteq C$, we may define a binary relation

$$\operatorname{ind}(B) = \{(x, y) \in U \times U \mid (\forall a \in B) \ a(x) = a(y)\}\$$

• ind(B) is called the B-indiscernibility relation

If $(x, y) \in \text{ind}(B)$, then objects x and y are indiscernible with respect to all attributes in B

EXAMPLE OF INDISCERNIBILITY

U	HEADACHE	TEMPERATURE	FLU
1	yes	normal	no
2	yes	high	yes
3	yes	normal	no
4	yes	very high	no
5	no	high	no
6	no	very high	yes
7	no	high	yes
8	no	very high	yes

The partition by HEADACHE:

$$\{\{1,2,3,4\},\{5,6,7,8\}\}$$

The partition by TEMPERATURE:

$$\{\{1,3\},\{2,5,7\},\{4,6,8\}\}$$

The partition by HEADACHE and TEMPERATURE:

$$\{\{1,3\},\{2\},\{4\},\{5,7\},\{6,8\}\}$$

6

5

ROUGH APPROXIMATIONS

Let \approx be an indiscernibility relation on U

Lower approximation of $X \subseteq U$:

$$X^{\blacktriangledown} = \{x \in U \mid [x] \subseteq X\}$$

Upper approximation of $X \subseteq U$:

$$X^{\blacktriangle} = \{ x \in U \mid X \cap [x] \neq \emptyset \}$$

Boundary of $X \subseteq U$:

$$B(X) = X^{\blacktriangle} - X^{\blacktriangledown}$$

ROUGH APPROXIMATIONS

Lower approximation:

• Elements which certainly are in X

Upper approximation: +

• Elements which possibly are in X

Boundary:

• Area of uncertainty

DEFINABILITY AND ACCURACY OF APPROXIMATION

$$X$$
 is definable $\stackrel{\mathrm{def}}{\Longleftrightarrow} X^{\blacktriangle} = X^{\blacktriangledown} \iff B(X) = \emptyset$

The definable sets are \emptyset and the unions of equivalence classes of \approx .

Accuracy of approximation:

$$\alpha(X) = \frac{|X^{\blacktriangledown}|}{|X^{\blacktriangle}|} \qquad (X \neq \emptyset)$$

9

- If X is definable, then $\alpha(X) = 1$
- $\bullet \ \ \text{In particular, } \alpha(X) = 0 \iff X^{\blacktriangledown} = \emptyset$

EXAMPLE OF APPROXIMATIONS

Let

$$X = \{x \in U \mid FLU(x) = yes\} = \{2, 6, 7, 8\}$$

The partition by HEADACHE and TEMPERATURE:

$$\{\{1,3\},\{2\},\{4\},\{5,7\},\{6,8\}\}$$

Approximations:

$$X^{\blacktriangledown} = \{2,6,8\}$$
 — certainly
$$X^{\blacktriangle} = \{2,5,6,7,8\}$$
 — possibly
$$B(X) = \{5,7\}$$
 — area of uncertainty
$$(X^{\blacktriangle})^{\complement} = \{1,3,4\}$$
 — certainly not

Accuracy of approximation:

$$\alpha(X) = \frac{|X^{\blacktriangledown}|}{|X^{\blacktriangle}|} = \frac{3}{5} = 0.6$$

10

BASIC PROPERTIES OF APPROXIMATIONS

- (a) Approximations are definable
- (b) $X^{\blacktriangledown} \subseteq X \subseteq X^{\blacktriangle}$
- (c) $\emptyset^{\blacktriangledown} = \emptyset^{\blacktriangle} = \emptyset$ and $U^{\blacktriangledown} = U^{\blacktriangle} = U$
- (d) $X^{\blacktriangle} \cup Y^{\blacktriangle} = (X \cup Y)^{\blacktriangle}$
- (e) $X^{\blacktriangledown} \cap Y^{\blacktriangledown} = (X \cap Y)^{\blacktriangledown}$
- (f) $(X^{\complement})^{\blacktriangle} = (X^{\blacktriangledown})^{\complement}$ and $(X^{\complement})^{\blacktriangledown} = (X^{\blacktriangle})^{\complement}$
- (g) If $X \subseteq Y$, then $X^{\blacktriangledown} \subseteq Y^{\blacktriangledown}$ and $X^{\blacktriangle} \subseteq Y^{\blacktriangle}$
- (h) Definable sets form a complete field of sets

ROUGH SETS

Rough equality relation:

$$X \equiv Y \stackrel{\text{def}}{\Longrightarrow} X^{\blacktriangledown} = Y^{\blacktriangledown} \text{ and } X^{\blacktriangle} = Y^{\blacktriangle}$$

The relation \equiv is an equivalence on $\wp(U)$

The equivalence classes of \equiv are called **rough sets**

Idea: If different subsets of U are observed through the knowledge represented by the indiscernibility relation \approx , the sets in the same rough set look the same

STRUCTURE OF SETS

The set $\wp(U)$ of all subsets of U ordered with \subseteq is isomorphic to $\mathbf{2}^U$, where

2

Example. Let $U = \{a, b, c\}$

STRUCTURE OF ROUGH SETS

Each rough set can be viewed as a pair $(X^{\blacktriangledown}, X^{\blacktriangle})$

The set \mathcal{R} of rough sets can be ordered by

$$(X^{\blacktriangledown}, X^{\blacktriangle}) \leq (Y^{\blacktriangledown}, Y^{\blacktriangle}) \iff X^{\blacktriangledown} \subseteq Y^{\blacktriangledown} \text{ and } X^{\blacktriangle} \subseteq Y^{\blacktriangle}$$

 (\mathcal{R}, \leq) is a Stone algebra:

- bounded distributive lattice
- each element x has a pseudocomplement x^*

$$x \wedge x^* = 0$$
 and $x \wedge a = 0 \Rightarrow a \leq x^*$

Moreover, (\mathcal{R}, \leq) is isomorphic to

$$\mathbf{2}^I imes \mathbf{3}^J$$

where

- $I = \{ [x] \mid \text{cardinality of } [x] = 1 \}$
- $J = \{ [x] \mid \text{cardinality of } [x] > 1 \}$

13

14

EXAMPLE. Let $U = \{a, b, c, d\}$

The lattice (\mathcal{R}, \leq) of all rough sets:

ROUGH SETS DEFINED BY TOLERANCES

There are *non*-transitive indiscernibility relations

Example. Weight of three persons:

J. JÄRVINEN, *Approximations and Rough Sets Based on Tolerances*, in: W. ZIARKO, Y. YAO (eds.), Proceedings of RSCTC 2000, LNAI **2005** (Springer-Verlag, Berlin 2001) pp. 182–189.

GENERALIZATIONS OF APPROXIMATIONS

Let $\mathcal{B}=(B,\leq)$ be a complete atomic Boolean lattice. A map $\varphi\colon\mathcal{A}(\mathcal{B})\to B$ is

extensive: $x \leq \varphi(x)$

symmetric: $x \le \varphi(y) \Rightarrow y \le \varphi(x)$ closed: $x \le \varphi(y) \Rightarrow \varphi(x) \le \varphi(y)$

Generalized approximations:

$$x^{\blacktriangledown} = \bigvee \{a \in \mathcal{A}(\mathcal{B}) \mid \varphi(a) \leq x\}$$

$$x^{\blacktriangle} = \bigvee \{a \in \mathcal{A}(\mathcal{B}) \mid \varphi(a) \land x \neq 0\}$$

J. JÄRVINEN, *On the Structure of Rough Approximations*, Fundamenta Informaticae **53** (2002) pp. 135–153.

17

DEPENDENCY RELATIONS

It may be possible that the values of some attribute set are determined by another set of attributes:

$$X \to Y \iff \operatorname{ind}(X) \subseteq \operatorname{ind}(Y)$$

- J. JÄRVINEN, A Representation of Dependence Spaces and Some Basic Algorithms, Fundamenta Informaticae **29** (1997), pp. 369–382.
- J. JÄRVINEN, *Difference Functions of Dependence Spaces*, Acta Cybernetica **14** (2000) pp. 619–630.
- J. JÄRVINEN, Armstrong Systems on Ordered Sets, in: C.S. CALUDE, M.J. DINNEEN, S. SBURLAN (eds.), Combinatorics, Computability, Logic (Springer-Verlag, London 2001) pp. 137–149.

DIFFERENT INFORMATION RELATIONS

Each attribute is a map $a: U \to \wp(V_a)$

Strong similarity:

$$(\forall a \in A) \ a(x) \cap a(y) \neq \emptyset$$

Weak inclusion:

$$(\exists a \in A) \ a(x) \subseteq a(y)$$

Strong negative similarity:

$$(\forall a \in A) \ a(x)^{\complement} \cap a(y)^{\complement} \neq \emptyset$$

Weak incomplementarity:

$$(\exists a \in A) \ a(x) \neq a(y)^{\complement}$$

J. JÄRVINEN, *Preimage Relations and Their Matrices*. In L. POLKOWSKI, A. SKOWRON (eds.), Proceedings of RSCTC 1998, LNAI **1424**, (Springer-Verlag, Berlin 1998), pp. 139–146.

18