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INTRODUCTION

e Introduced by Z. Pawlak in the early eighties
e Deals with uncertainty in data

Rough sets # Fuzzy sets ‘

Fuzzy sets:
Fuzzy membership function U — [0, 1]
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Rough sets:
Approximations based on an indiscernibility relation
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SOME APPLICATIONS PRESENTED IN RSCTC
CONFERENCES (1998, 2000, 2002)

e EEG analysis

e Medical diagnostic rules

e Post-surgery survival analysis

e Similarity of DNA sequences

e cDNA microarray analysis

e Robot navigation

e Satellite attitude control

e Switchbox routing

e Job scheduling

e Industrial design

e Business process understanding
e Visual classification

e Text classification

e Web mining

e Identification of low-paying workplaces

e Monitoring loose parts in nuclear power plants

INDISCERNIBILITY RELATIONS

Let us denote
TRy

if we cannot discern x and y by their properties.
e =~ is called an indiscernibility relation on U

Usually indiscernibility relations are assumed to be

equivalences:
e IR (reflexive)
CIRYS YR (symmetric)
erx~xyand yz=>zr R~ 2 (transitive)

The equivalence class of z € U

] ={y €U |z~y}

consists of objects indiscernible from z

The set U/~ of all equivalence classes forms a
partition of U.




INDISCERNIBILITY AND DECISION TABLES

A decision table is a triple 7 = (U, C, D)

e U is a set of objects
C'is a set of condition attributes

D is a set of decision attributes
each attribute a € CU D isamap a:U — V,
V. is the value set of the attribute a

For any B C C, we may define a binary relation
ind(B) = {(z,y) € U x U | (Va € B) a(z) = a(y)}

e ind(B) is called the B-indiscernibility relation

If (z,y) € ind(B), then objects = and y are indis-
cernible with respect to all attributes in B

EXAMPLE OF INDISCERNIBILITY

U | HEADACHE | TEMPERATURE | FLU
1 yes normal no
2 yes high yes
3 yes normal no
4 yes very high no
5 no high no
6 no very high yes
7 no high yes
8 no very high yes

The partition by HEADACHE:
{{1,2,3,4},{5,6,7,8}}
The partition by TEMPERATURE:
{{1,3},{2,5,7},{4,6,8}}
The partition by HEADACHE and TEMPERATURE:

{{1,3},{2}, {4}, {5, 7}, {6,8}}

ROUGH APPROXIMATIONS

Let =~ be an indiscernibility relation on U

Lower approximation of X C U:

XY ={zeU| [z] C X}

Upper approximation of X C U:

Xt={zeU| XNlz]#0}

Boundary of X C U:

B(X)=X*-X"

ROUGH APPROXIMATIONS

U/= X

Lower approximation:
e Elements which certainly are in X

Upper approximation: Zm
e Elements which possibly are in X

Boundary:

e Area of uncertainty




DEFINABILITY AND ACCURACY OF
APPROXIMATION

X is definable €% X4 = XV <= B(X) =0

The definable sets are () and the unions of equivalence
classes of =.

Accuracy of approximation:

_ XTI
XA

a(X) (X #0)

e If X is definable, then (X ) =1
e In particular, ¢(X) =0 < X" =1

EXAMPLE OF APPROXIMATIONS

Let
X ={z € U | FLU(x) = yes} = {2,6,7,8}
The partition by HEADACHE and TEMPERATURE:

{{1,3}, {2}, {4}, {5, 7}, {6,8}}

Approximations:
XY = {2,6,8} — certainly
X4 = {2,5,6,7,8} — possibly
B(X) = {57} — area of uncertainty
(x"® = {1,3,4} — certainly not

Accuracy of approximation:

XV 3
:l |:—:O.6

o(X) X4~ 5

BASIC PROPERTIES OF APPROXIMATIONS

(a) Approximations are definable

(b) XYC X C X4

@ P =0A=0and UY=UA=U

(d) XAUY*=(XUY)*

e X'NYY=(XnY)"

(M) (XC)A = (X" and (XT)Y = (X4)°
(@) X CY,thenXYCYY and XA C Y4

(h) Definable sets form a complete field of sets

ROUGH SETS
Rough equality relation:
X=Y &L X"=Y"and X4 =Y*4

The relation = is an equivalence on p(U)

The equivalence classes of = are called rough sets

Idea: If different subsets of U are observed
through the knowledge represented by the indis-
cernibility relation =, the sets in the same rough

set look the same
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STRUCTURE OF SETS

The set p(U) of all subsets of U ordered with C is
isomorphic to 2, where

2

Example. Let U = {a, b, ¢}

STRUCTURE OF ROUGH SETS

Each rough set can be viewed as a pair (XY, X4)
The set R of rough sets can be ordered by
(XY, X4 < (Y, v4) &L XV Cy and X4 C YA

(R, <) is a Stone algebra:
e bounded distributive lattice
e cach element z has a pseudocomplement z*

‘m/\x*:O and tAa=0=a<z*

Moreover, (R, <) is isomorphic to
2! « g7

where
e I ={ [z] | cardinality of [z] = 1}
e J = {[z] |cardinality of [x] > 1}

EXAMPLE. Let U = {a,b,c,d}
g g =L
a b

c d

The lattice (R, <) of all rough sets:

U, 0)

(acd, acd) ()

& (ab,ab)

(bed, bed)

(a, acd)

ROUGH SETS DEFINED BY TOLERANCES

There are non-transitive indiscernibility relations

Example. Weight of three persons:

82+ 2kg

79+ 2 kg 85+ 2 kg

J. JARVINEN, Approximations and Rough Sets Based
on Tolerances, in: W. ZIARKO, Y. YAO (eds.), Proceed-
ings of RSCTC 2000, LNAI 2005 (Springer-Verlag,
Berlin 2001) pp. 182-189.




GENERALIZATIONS OF APPROXIMATIONS

Let B = (B, <) be a complete atomic Boolean lattice.
A map p: A(B) — Bis

extensive: z < p(z)
symmetric: = < p(y) = y < p(z)
closed: = < ¢(y) = »(z) < ¢(y)

Generalized approximations:

z’ VA{a € AB) | p(a) < z}
zt VAa € AB) | p(a) Ax # 0}

J. JARVINEN, On the Structure of Rough Approxima-
tions, Fundamenta Informaticae 53 (2002) pp. 135-
153.

DIFFERENT INFORMATION RELATIONS
Each attribute is a map a: U — p(V,)

Strong similarity:
(Va € A) a(z) Na(y) # 0
Weak inclusion:
(3a € A) a(z) C a(y)
Strong negative similarity:
(Va € A) a(z)® Na(y)® #0
Weak incomplementarity:

(Ja € A) a(z) # a(y)"

J. JARVINEN, Preimage Relations and Their Matrices.
In L. POLKOWSKI, A. SKOWRON (eds.), Proceedings
of RSCTC 1998, LNAI 1424, (Springer-Verlag, Berlin
1998), pp. 139-146.

DEPENDENCY RELATIONS

It may be possible that the values of some attribute set
are determined by another set of attributes:

X - Y & ind(X) Cind(Y)

e J. JARVINEN, A Representation of Dependence
Spaces and Some Basic Algorithms, Fundamenta
Informaticae 29 (1997), pp. 369-382.

e J. JARVINEN, Difference Functions of De-
pendence Spaces, Acta Cybernetica 14 (2000)
pp. 619-630.

e J. JARVINEN, Armstrong Systems on Ordered Sets,
in: C.S. CALUDE, M.J. DINNEEN, S. SBURLAN
(eds.), Combinatorics, Computability, Logic
(Springer-Verlag, London 2001) pp. 137-149.




