
FDPW'2000. Vol. 3. pp. 107�131 107TCP Performane in the Presene ofCongestion and Corruption LossesAndrei V. GurtovDepartment of Computer Siene, University of HelsinkiDepartment of Computer Siene, University of PetrozavodskP.O. Box 26 (Teollisuuskatu 23)FIN-00014 University of Helsinki, FinlandE-mail: gurtov�s.helsinki.fiAbstratThe wireless environment of slow and lossy links presents a hallengefor effiient data transport. In the paper an experimental evaluationof TCP in an emulated wireless environment is presented. Our modelof a network inludes a lossy wireless link and a last-hop router with alimited-size buffer. We have explored how well the state-of-the-art TCPperforms, identified key reasons behind the behavior, and measured theeffet of different optimizations. TCP onnetions under the experimenthad different values of the initial and reeiver windows, error rates, andbuffer sizes. The experiment was done in onditions as presene, soabsene of the SACK and New Reno TCP modifiations. The experi-mental data is obtained with a state-of-the-art TCP implementation ofthe Linux operating system and a real-time network emulator Seawind.Our main result is a omparative study and analysis of different TCPoptimizations. Contents1 Introdution . 1082 TCP over wireless links . 1092.1 Transmission Control Protool 1092.2 Properties of Wireless Links . 1122.3 Network Arhiteture . 113 Andrei V. Gurtov, 2000

108 Andrei V. Gurtov3 Problem Desription . 1143.1 Congestion Losses . 1143.2 Corruption Losses . 1173.3 OS-Related Problems . 1174 Performane Model . 1185 Experimental Design . 1205.1 Test Environment . 1206 Measurement Results and Analysis 1217 Conlusion . 1291 IntrodutionThe number of nomadi users that aess the Internet using wireless teh-nology grows rapidly. Soon, in the upoming era of mobile omputing,every portable devie will have a wireless interfae and an IP address.With all advantages, mobile omputing introdues an environment quitedifferent from the one found in fixed networks, with limitations that omefrom physial properties of the wireless medium. The sare radio band-width allows for a rather low link speed; misellaneous external fatorslike fading of the radio signal may ause loss of data on the radio path.We believe that in the future, wireless onnetions will be widely used, butthey will remain a different environment from wireline networks. In thiswork we fous on Wireless Wide Area Networks (WWANs). A typialWWAN is a ellular phone system also apable of data transmission.Many popular Internet appliations inluding World-Wide Web(WWW), File Transfer Protool (FTP) and email require reliable datadelivery over the network. The Transmission Control Protool (TCP) isthe most widely used transport protool for this purpose; traffi studiesin the Internet report that the dominant fration of the traffi belongsto TCP [30℄. TCP was designed and tuned to perform well in fixed net-works, where the key funtionality is to utilize the available bandwidthand avoid overloading the network. However, nomadi users want to runtheir favorite appliations that are built on TCP over a wireless onne-tion, as well. Paket losses due to transmission errors, a long lateny andsudden delays ourring on the wireless link may onfuse TCP and yielda throughput far from the available line rate. Optimizing TCP for a wire-less environment has been an ative researh area for the last few years.

TCP Performane in the Presene of Losses 109An exellent state-of-the-art lassifiation of related work an be foundin [16℄. We are working in the area of pure transport layer solutions basedon modifiations of TCP solely at the end points of a onnetion. Thisapproah retains the end-to-end TCP onnetion semantis, but enhanesthe TCP protool to make it perform better in the wireless environment.A desription of TCP optimizations that we use in this paper an be foundin [14℄.This paper presents an experimental evaluation of TCP in an emulatedwireless environment. We onsider a network model inluding a lossywireless link and a last-hop router with a limited-size buffer. Our goal is toexplore how well the state-of-the-art TCP performs in this environment,what are the key reasons behind the behavior, and what is the effetof different TCP optimizations. We experiment with multiple error ratesand buffer sizes over TCP onnetions with different optimizations. In theexperiments the network is represented with a real-time network emulatorSeawind and the real data ommuniation using TCP. We have used thestate-of-the-art TCP implementation of the Linux OS. Our main result isa omparative study of performane of different TCP optimizations. Wealso present a list of deteted implementation faults, disuss anomalies inperformane and give a detailed analysis of interesting ases.The rest of the paper is organized as follows: in Setion 2 we desribethe Transmission Control Protool, the assumed network arhiteture,the properties of wireless links and review the related work. In Setion 3we give speifi performane problems we fous on. Setion 4 speifiesthe network and workload model. In Setion 5 we present our measure-ment setup and in Setion 6 we illustrate and analyze the results of ourexperiments.2 TCP over wireless links2.1 Transmission Control ProtoolThe Transmission Control Protool (TCP) [23, 9, 5℄ is the most usedtransport protool in the Internet. TCP provides appliations with re-liable byte-oriented delivery of data on the top of the Internet Protool(IP). TCP sends user data in segments not exeeding the Maximum Seg-ment Size (MSS) of the onnetion. Eah byte of the data is assigned aunique sequene number. The reeiver sends an aknowledgment (ACK)upon reeption of a segment. TCP aknowledgments are umulative;

110 Andrei V. Gurtovthe sender has no information whether some of the data beyond the a-knowledged byte has been reeived. TCP has an important property ofself-loking; in the equilibrium ondition eah arriving ACK triggers atransmission of a new segment. Data are not always delivered to TCPin a ontinuous way; the network an lose, dupliate or re-order pakets.Arrived bytes that do not begin at the number of the next unaknowl-edged byte are alled out-of-order data. As a response to out-of-ordersegments, TCP sends dupliate aknowledgments (DUPACK) that arrythe same aknowledgment number as the previous ACK. In ombinationwith a retransmission timeout (RTO) on the sender side, ACKs providereliable data delivery [9℄. The retransmission timer is set up based on thesmoothed round trip time (RTT) and its variation. RTO is baked offexponentially at eah unsuessful retransmit of the segment [21℄. WhenRTO expires, data transmission is ontrolled by the slow start algorithmdesribed below. To prevent a fast sender from overflowing a slow re-eiver, TCP implements the flow ontrol based on a sliding window [29℄.When the total size of outstanding segments, segments in flight (Flight-Size), exeeds the window advertised by the reeiver, bloked until theACK that opens the window arrives.Early in its evolution, TCP was enhaned by ongestion ontrol meh-anisms to protet the network against the inoming traffi that exeeds itsapaity [15℄. A TCP onnetion starts with a slow-start phase by sendingout the initial window number of segments. The urrent ongestion on-trol standard allows the initial window of one or two segments [5℄. Duringthe slow start, the transmission rate is inreased exponentially. The pur-pose of the slow start algorithm is to get the �ACK lok� running andto determine the available apaity in the network. A ongestion window(wnd) is a urrent estimation of the available apaity in the network.At any point of time, the sender is allowed to have no more segmentsoutstanding than the minimum of the advertised and ongestion window.Upon reeption of an aknowledgment, the ongestion window is inreasedby one, thus the sender is allowed to transmit the number of aknowl-edged segments plus one. This roughly doubles the ongestion window perRTT. The slow start ends when a segment loss is deteted or when theongestion window reahes the slow-start threshold (ssthresh). When theslow start threshold is exeeded, the sender is in the ongestion avoidanephase and inreases the ongestion window roughly by one segment perRTT. When a segment loss is deteted, it is taken as a sign of ongestion

TCP Performane in the Presene of Losses 111
Time

C
on

ge
st

io
n

w
in

do
w

Window = 1

Slow Start

Congestion Avoidance
(linear growth)

(exponential growth)

Window-halving
upon congestion
loss

upon timeout
Slow Start

Fast retransmission

Figure 1: Congestion ontrol in TCP [6℄and the load on the network is dereased. The slow start threshold is setto the half of the urrent ongestion window. After a retransmission time-out, the ongestion window is set to one segment and the sender proeedswith the slow start. Figure 1 shows a possible behavior of the ongestionwindow for a TCP onnetion.TCP reovery was enhaned by the fast retransmit and fast reoveryalgorithms to avoid waiting for a retransmit timeout every time a segmentis lost [27℄. Reall that DUPACKs are sent as a response to out-of-ordersegments. Beause the network may re-order or dupliate pakets, reep-tion of a single DUPACK is not suffiient to onlude a segment loss. Athreshold of three DUPACKs was hosen as a ompromise between thedanger of a spurious loss detetion and a timely loss reovery. Upon thereeption of three DUPACKs, the fast retransmit algorithm is triggered.The DUPACKed segment is onsidered lost and is retransmitted. At thesame time ongestion ontrol measures are taken; the ongestion windowis halved. The fast reovery algorithm ontrols the transmission of newdata until a non-dupliate ACK is reeived. The fast reovery algorithmtreats eah additional arriving DUPACK as an indiation that a segmenthas left the network. This allows to inflate the ongestion window tem-porarily by one MSS per eah DUPACK. When the ongestion windowis inflated enough, eah arriving DUPACK triggers a transmission of anew segment, thus the ACK lok is preserved. When a non-dupliateACK arrives, the fast reovery is ompleted and the ongestion windowis deflated.New Reno [13℄ is a small but important modifiation to the TCP fastreovery algorithm. �Normal� fast reovery suffers from timeouts when

112 Andrei V. Gurtovmultiple pakets are lost from the same flight of segments [12℄. NewReno an reover from multiple losses at the rate of one paket per roundtrip time. If during the fast reovery the first non-dupliate ACK doesnot aknowledge all outstanding data prior to the fast retransmit, suhan ACK is alled a partial aknowledgment. The New Reno algorithmis based on an observation that a partial aknowledgment is a strongindiation that another segment was also lost. During the reovery phaseNew Reno retransmits the presumably missing segment and transmits newdata if the ongestion window allows it. The reovery phase ends whenall segments outstanding before the fast retransmit are aknowledged orthe retransmission timer expires.RFCs desribing the TCP protool leave many issues unspeified andTCP implementations differ in how they behave under similar onditions.For a long time, the referene implementation has been the Reno TCPfound in the Unix BSD4.3 operating system [31℄. Modern TCP implemen-tations differ signifiantly from Reno. The urrent family of BSD OSes isderived from Unix BSD4.4 with TCP-Lite implementation [17℄. For thebaseline in our analysis we wanted to selet a state-of-the-art TCP im-plementation that is both widely used in the Internet and has the soureode available for analysis and modifiation. We hose Linux as a popularoperating system with the soure ode available. Due to a large amount ofindependent developers interested in Linux, implementations of new fea-tures are quik to appear for Linux. The TCP implementation in earlierversions of Linux had problems with onforming to standards [20℄. Wehave deteted, evaluated and orreted a number of misbehavior prob-lems. We believe that after these fixes we obtained a TCP that behavesreasonably with regard to standards. A reent work gives the require-ments for a TCP implementation to be used for TCP researh [4℄. Ourbaseline TCP (desribed in detail in [14℄) satisfies these requirements.2.2 Properties of Wireless LinksMany wireless links are slow, have high lateny and may have high errorrates. These link harateristis adversely affet the TCP performane.The line rate of a wireless link may not exeed some tens of kilobits perseond. The lateny, the propagation delay, of wireless links is typiallyhigh. The lateny omes from the speial transmission shemas and pro-essing delays the network equipment. The total one-way lateny in GSM

TCP Performane in the Presene of Losses 113sums up to 200-300 ms. Note that we do not inlude the transmission de-lay into the link lateny. Thus the round-trip time is defined as the sumof transmission and propagation delays in both diretions. Some wirelesslinks impose a signifiant amount of data orruption due to transmissionerrors. For example, in the transparent GSM data servie the residualbit error rate (BER) of the link an be as high as 10�3 after the ForwardError Corretion (FEC) [19℄. The delay-bandwidth produt is an impor-tant harateristi of a network [26℄. It defines the minimum size of datain flight to utilize the available network bandwidth, the pipe apaity.Networks with a large delay-bandwidth produt, for example inludingsatellite links, demand speial attention from the transport protool. Forexample, the slow start phase of TCP an be time-onsuming in suhnetworks [3℄. In our environment, the delay-bandwidth produt is small,lose to one kilobyte. In the slow start, the pipe apaity is filled alreadyafter one-two RTTs .2.3 Network ArhitetureRather than seleting one partiular network arhiteture and develop-ing a detailed model that would reflet the behavior of this network weattempt to build a generi model that would be suitable for all wirelessnetworks with similar harateristis. We are interested in the issue howa nomadi user an use Internet servies via a wireless network. In a se-nario shown in Figure 2, the wireless network plays the role of an aessnetwork from the Internet point of view. It is also possible for a nomadiuser to exhange data with another mobile user, so that two wireless linksare present on the data path. We do not onsider suh onfiguration inthis paper, assuming that the aess to a remote host in the Internetwould be the dominant ase.The wireless link is often the bottlenek in the path of a data flow,beause fixed networks are fast and reliable ompared to the apabilities ofthe wireless link. When data pakets flow from the relatively fast Internetto the slow wireless link they are buffered in the last-hop router whihonnets the wireless link to the Internet. This router plays a signifiantrole in the end-to-end TCP performane beause ongestion data lossesare most likely to happen at the bottlenek queue. A limited number ofbuffers an be alloated in the last-hop router per user. This buffer spaeis shared among onnetions of the same user, but there is no interferene

114 Andrei V. Gurtov
Mobile Last-hopWireless

Internet

Host Link Router
Fixed
HostFigure 2: Network Arhiteturebetween the onnetions of different users. A similar network arhiteturewas onsidered, when three buffers are available per user [25℄.The wireless link in our environment imposes orruption losses. Weassume that all data with transmission errors are deteted and disardedat the wireless link. We also assume no error reovery and no variabledelays on the link. Thus, different patterns of link errors is the only non-deterministi element in our environment. The Global System for MobileCommuniation (GSM) is a widely suessful effort to build a WWANsystem with millions of users in Europe and worldwide [19, 24℄. It mapswell to our generi model shown in Figure 2.3 Problem DesriptionIn this setion we outline the speifi problems of TCP over wireless linksthat we fous on in the rest of the paper.3.1 Congestion LossesIn this setion we disuss the ourrene of ongestion losses and theireffet on TCP. We use the term ongestion for the time period when manypaket losses our due to a buffer overflow, even in the ase of a singleonnetion. We first look at a typial TCP onnetion over a limited-size buffer, but in an error-free environment. Figure 3 shows a baselineTCP onnetion when the buffer spae is limited to seven pakets. Twophases of the onnetion are learly visible. In the first phase, whihlasts approximately 20 s, the onnetion starts up aggressively, reatesongestion, loses a large number of pakets and reovers them. We allthis phase the start-up buffer overflow hereinafter. In the seond phase,the onnetion proeeds smoothly with the periodi loss of a paket. Thisis referred to as the steady state of the onnetion. During this phase theonnetion goes through periodi ongestion avoidane yles followingthe linear inrease � multipliative derease poliy [27℄.

TCP Performane in the Presene of Losses 115

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd
win

(a)Completeon
netion

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd
win

(b)Start-upzoo
m40 45 50 55 60 65 70

4

4.5

5

5.5

6

6.5

7
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd
win

()Steady-state
zoom

Figure3:An
error-freeTCP
onnetionov
ertherouterb
ufferofseven
pakets

116 Andrei V. GurtovStart-up buffer overflow. Let us look at the start-up buffer over-flow whih is also known as the slow-start overshoot [18℄. Figure 3(b)zooms on the start-up buffer overflow. Ten segments are lost and retrans-mitted. The important points to notie in the figure are: when ongestionours, when the first paket loss is deteted, and how segment losses arereovered. Questions about the start-up buffer overflow are �why does ithappen�, �what is the negative effet�, and �how an it be prevented�.The optimal router buffer size. The maximum size of the queuein the router has a signifiant effet on the onnetion. A router buffer,whih is too small, an result in a smaller FlightSize than needed byTCP to reover well from paket losses. The size, whih is too large,leads to the heavy start-up buffer overflow and overbuffering. One paperhas estimated 1.5*RTT*bandwidth as the optimal value for the buffersize [17℄.Overbuffering. The situation when signifiantly more pakets arein flight than is required to fill the available network apaity is alledoverbuffering. Overbuffering does not neessarily ause ongestion. If thenumber of pakets injeted into the network equals the number of paketsleaving the network, no ongestion take plae. However, having a largenumber of pakets buffered in the network has several drawbaks [17℄. Ifbuffers in the network are full, there is no apaity left to aommodatetraffi bursts. Some appliations using TCP generate bursty traffi. Inaddition, the TCP protool itself an injet pakets in bursts. Anotherdrawbak is a poor servie for interative appliations, beause the end-to-end delay on the overbuffered path an be huge. Finally, the datain the network an beome stale, when a user aborts the data transfer,for example using a stop button in a web browser. Due to these reasonsoverbuffering should be avoided.Fair sharing of resoures. Tail-drop routers are known to haveproblems with sharing the bandwidth between onnetions in a fairway [8℄. When two or more TCP onnetions share the same routerbuffer, one onnetion an starve while other onnetions monopolize theresoures. This situation is referred to as lok-out and ours due to timingeffets. We would like to avoid this problem in our environment.

TCP Performane in the Presene of Losses 1173.2 Corruption LossesPerformane problems of TCP in the presene of error losses are wellknown [7℄. Upon a loss detetion, TCP always redues the transmissionrate, as the reason for the paket loss, ongestion or orruption, is notknown. When the level of error losses is low, they do not have a notableeffet on the performane. At the moderate level of error losses, TCPunderestimated the available network bandwidth. When the level of er-ror losses is high, most of the time the onnetion is idle waiting for aretransmission timeout to expire. In the worst ase, the onnetion is ter-minated, when the maximum number of retransmissions is exeeded. Notonly the rate of the error losses is important, but also the burstiness [17℄.In general, TCP suffers more when errors are bursty than when they areuniformly distributed. Reommendations for using the TCP algorithmsand ontrol parameters in the presene of error losses is given in [11℄. Wehave identified three patterns of error losses to be studied.Single Errors. Normally, single-paket error drops do not have asignifiant effet on the TCP behavior, exept for a few speial ases. Wewill try to loate suh interesting ases and analyze them.Random errors. We will try to identify levels of the uniformly-distributed paket error rate when error losses have no effet on perfor-mane, when the link bandwidth is underestimated, when most time isspent in RTOs and when the onnetion is terminated. We will studyhow different TCP optimizations affet the performane for varying sizeof the router buffer and the error loss rate.Burst errors. It is interesting to study the effet of burst errorson TCP. An error loss rate of one perent does not normally affet TCPperformane, if uniformly distributed. However, the same error rate whenerrors our in lusters an adversely impat performane. We expetTCP to perform badly during an error burst; the performane after theburst ends an also be hampered.3.3 OS-Related ProblemsState-of-the-art TCP performane. Most of the related TCP re-searh onentrated on the evaluation of TCP performane of the RenoTCP implementation or an abstrat TCP model in the ns simulator [22℄.However, from the point of view of an end user, it is muh more impor-

118 Andrei V. Gurtovtant how their urrently installed operating system performs under thegiven onditions. The upoming Linux version 2.4 differs from Reno inmany ways. Thus, it is topial to evaluate how the state-of-the-art TCPimplementation performs on wireless links.Conformane of Linux. There is a stereotype among researhersabout the TCP implementation in Linux, that it does not onform tostandards. Indeed, earlier releases of the Linux kernel showed maliiousbehavior and were even named as an inoming danger to the Internet [20℄.The Linux networking ode has undergone signifiant hanges sine ver-sion 1.0, and a large number of independent developers have verified andimproved Linux. Today, when Linux is widely used on Internet servers, itis of urrent interest to loate and fix the remaining inonsistenies withTCP standards produed by IETF.4 Performane ModelIn this setion we desribe the network model for the network arhiteturedepited in Figure 2 on page 114. The network model is implemented in areal-time emulator. The model of downlink and uplink hannels is shownin Figure 4. The last-hop router is modeled as a queue. The wirelesslink is modeled as a ombination of the transmission and propagationdelays; error losses are modeled as paket drops. The uplink and downlinkdiretions in our model are independent.In the downlink diretion, pakets arriving to the emulator are plaedin the queue. The maximum queue length an be limited; when an over-flow happens, pakets are tail-dropped. The RED algorithm an be usedto atively ontrol the queue length. Pakets are taken from the headof the queue one-by-one for �transmission� over the link. The length ofthe transmission delay is omputed aording to the line rate and thepaket size. When the transmission delay for a paket is ompleted, thepaket is moved to the propagation delay node. The length of the prop-agation delay is the same for all pakets independently of paket size.Several pakets an be in the propagation delay node simultaneously. Er-ror losses are modeled by dropping pakets after the propagation delay.If a paket was not dropped, it is sent out from the emulator.On the uplink diretion, the transmission and propagation delay nodesare used in the same way as for downlink. We assume no queueing in theuplink diretion. With our workload model the hane of two or more

TCP Performane in the Presene of Losses 119
Drops

Drops

Delay
Propagation

Delay
Transmission Queue

Propagation
Delay

Transmission
Delay

downlink

uplinkFigure 4: The model of downlink and uplink data hannelspakets (i.e. aknowledgments) to be queued in the uplink diretion isnegligible. Error losses are modeled in the same way as for downlink. Weassume the link rate of 9600 bps and the propagation delay of 200 mshereafter. Our error model assumes that all orrupted pakets are de-teted and disarded on the wireless link, that is, no orrupted paketsare delivered to the IP layer. The paket drop probability is independentof the paket size. This may be onsidered inaurate beause, for exam-ple, the loss rate of small ACKs is the same as of large pakets. However,this is the ase, for example, when aknowledgments are piggybaked tolarge data pakets. The type of workload used for evaluation of differentsolutions has a signifiant effet on the results. In most of our tests we usea single unidiretional bulk data transfer as the workload. In the limitedset of tests we use two suh transfers.Reent studies of the Internet traffi indiate that both the New Renoalgorithm and the Seletive Aknowledgment (SACK) option are widelyused nowadays [2℄. We have deided to inlude the New Reno algorithminto the baseline, but leave SACK as one of optimizations. This orre-sponds to the urrent pratise and makes easier omparisons with relatedwork. Table 1 presents a list of relevant parameters that we assume in thebaseline TCP if not mentioned otherwise. More details and justifiationbehind suh a hoie are give in [14℄.

120 Andrei V. Gurtov5 Experimental Design5.1 Test EnvironmentIn this setion we desribe our test environment: how the network modelshown in Figure 4 on page 119 is realized in our emulator, and how theworkload generator (TTCP) is positioned. Figure 5 shows the protoollayering in our setup. The workload soure, the Seawind emulator [1℄ andthe workload sink are eah loated on a separate omputer in EthernetLAN (802.3). The test TCP traffi is enapsulated into a regular TCP/IPonnetion. Seawind runs on a normal Linux workstation, as it gets thetest TCP traffi from a standard soket interfae.The Seawind emulator implements the network model shown in Fig-ure 4 by delaying and dropping TCP segments in real time. The down-link and uplink hannels are parameterized independently. The maximumlength of the queue in pakets is ontrolled by a parameter; in the �un-limited� mode the length is only bound by the available memory. For thepurpose of our experiments, it an be onsidered infinite. One paket isonsidered urrently �in transmission� and is not ounted into the queuelimit. Through the rest of the paper we assume that the �router buffersize� does not inlude this paket. Link errors an be emulated as a fixedTable 1: Features in the baseline TCPFeature AvailabilityFast Retransmit, Fast Reovery ONNew Reno ONInitial Window Size, segments 2SACK OFFMSS, bytes 256Timestamps OFFDelayed Aks ONAdvertised Window, kilobytes 32PPP Compression OFFControl Blok Interdependene OFF

TCP Performane in the Presene of Losses 121
IP

socket socket

���������
���������
���������

���������
���������
���������

PPP

NPA

802.3

pty

tty

workload source

TCP

TTCP

TCP

IP

socket socket

802.3

Seawind emulator

SW

��������
��������
��������

��������
��������
��������

tty

pty

IP

TCP

socket socket

workload sink

PPP802.3

NPA TTCP

IP | TCP | PPP | IP | TCP IP | TCP | PPP | IP | TCPFigure 5: Seawind protool stak. The modified TCP ode is dashedpattern (e.g. 5th and 12th pakets are dropped) or with a speified drop-ping probability per eah paket.The workload soure and sink omputers use the TCP implementationunder study. The Point-to-Point (PPP) protool is used as a link serviefor a TCP onnetion under study. This orresponds to a real-worldsituation, as most dial-up users employ PPP. We have disabled all kindsof header and data ompression, as well as esaping of ontrol haratersin PPP. The PPP/IP/TCP traffi is forwarded by the Network ProtoolAdapter (NPA) via a TCP/IP onnetion to the Seawind emulator.We use a modified TTCP tool for generating traffi for TCP on-netions. TTCP is a popular publi domain tool for testing the end-to-end throughput by sending a high volume of data over the network [28℄.TTCP is ommonly used as a workload generator for bulk data transfers.We have made several extensions to TTCP to make it more suitable toour needs. In our tests we used 400 writes of 256-byte data bloks, whihresults in a 100-kilobyte transfer.6 Measurement Results and AnalysisIn the first set of tests we have shown that an unlimited buffer size in therouter is not desirable. It reates the overbuffering problem and worsensthe reovery from sudden data losses. Figure .6(a) shows the behaviorof the baseline TCP when no ongestion or error losses are present. Theahieved throughput of 1002 bytes per seond (Bps) is lose to the maxi-

122 Andrei V. Gurtovmum taking into aount the TCP/IP/PPP header overhead and the linerate of 1200 Bps. When the FlightSize equals the reeiver window (32kilobytes), 127 segments are queued in the network. In our environment,where the FlightSize of a few segments is suffiient for utilizing the pipeapaity, this is undesirable for reasons disussed in Setion 3.1. We willadd here that the measured RTT also inludes the queuing time and thusis highly inflated with regard to the atual RTT of the link.An adaptive link layer an hange the strength of the radio hanneloding when the number of transmission errors on the link hanges [17℄. Astronger oding shema allows to redue the paket loss rate over the linkat the expense of the redued line rate. A omplete lak of segment lossesreates the overbuffering problem and is not desirable in our environment.In order to keep the FlightSize at the optimal level, TCP needs a low rateof segment losses. Losses due to ongestion at the router buffer and lossesdue to link errors are treated in the same way by TCP. Thus a link anprovide a low level of error losses with a benefiial effet on TCP. For anadaptive link it means that the hannel oding an be kept as weak aspossible to maximize the line rate, leaving a low level of paket losses tobe notied and orreted by TCP.Figure 7 shows that a range of the router buffer sizes of 3-12 pak-ets gives the optimal performane on an error-free link. Variations inthroughput for the buffer size of 3-12 pakets have a simple explanation.If a ongestion ontrol yle happens to our at the end of a onnetion,it auses a retransmission timeout. For example, the onnetion suffersfrom the RTO for the six-paket router buffer, but does not for the five-paket buffer. Whether RTO ours or not for the given router buffer sizedepends on the amount of data sent over the onnetion. Starting withthe buffer size of 15 pakets, performane dereases. The start-up bufferoverflow for a 15-paket buffer already lasts for 40 seonds.We have loated and analyzed the ases where a loss of a single paketsignifiantly affets the performane of TCP. In ase segment losses dosuddenly happen on an overbuffered link (with a large router buffer), thereovery time is long, as shown in Figure .6(b). The four last segmentsin a onnetion are lost (three original and the first retransmission). Theretransmission of a lost segment happens only after 40 seonds after itsloss. Another interesting example is a paket loss at the beginning ofa onnetion that may atually have a positive effet. The paket loss

TCP Performane in the Presene of Losses 123

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd
win (a) No segment losses

0 50 100 150 200
0

2

4

6

8

10

12

14
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

data sent
ack rcvd
win (b) Three last segments and the first retransmission are lostFigure 6: TCP behavior with the unlimited router buffer size

124 Andrei V. Gurtov

0 5 10 15 20 25 30 35 40
945

950

955

960

965

970

975

980

985

990

995

Buffer size in router, packets

T
C

P
 th

ro
ug

hp
ut

, B
ps

Figure 7: Throughput vs. buffer size for the baseline TCP over an error-free link

0 2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5
x 10

4

Time, s

S
eq

ue
nc

e
nu

m
be

r,
 b

yt
es

1

2

3

45

8

7

6 data sent
ack rcvd Figure 8: Analysis of the start-up buffer overflow. The baseline TCPover a 20-paket buffer

TCP Performane in the Presene of Losses 125Table 2: TCP optimizations tested with random errorsLabel iw win sak newreno msssegm. bytes on/off on/off bytesbaseline 2 32696 off on 256iw3 3iw4 4win2K 2048win4K 3840sak_on onnewreno_off offmss536 536triggers ongestion avoidane measures; the start-up buffer overflow isavoided, and the onnetion proeeds smoothly for its lifetime. Moreexamples an be found in [14℄.Our largest group of tests is with random errors on the link. The errorrate was set to 2, 5, and 10 % with a queue limit of 3, 5, 7, 10, and20 pakets. Table 2 lists the optimizations we have experimented with.We found the optimal buffer size to be 7-10 pakets. Throughput of thebaseline TCP is adequate at a 2 % error rate, but is only half of the linerate for a 10 % loss rate. TCP with SACK performed signifiantly betterthan other modifiations under all onditions, espeially at higher lossrates. The inreased initial window gives slightly better throughput thanthe baseline. A small reeiver window (2 kilobytes) dereases throughput,espeially for smaller buffer sizes. A moderate window (4 kilobytes) isbenefiial for larger buffers. Disabling New Reno is helpful at a low errorrate and larger buffer sizes; in other ases it is worse. In general, ourresults are oherent with a previous evaluation of Reno, New Reno, andSACK TCP at the presene of error losses [12℄.

126 Andrei V. Gurtov

2 4 6 8 10 12 14 16 18 20
840

860

880

900

920

940

960

980

Buffer size in the router, packets

C
on

ne
ct

io
n

th
ro

ug
hp

ut
, b

ps

baseline
iw3
iw4
win2K
win4K
sack_on
newreno_off (a)Goodradio

onditions(2%e
rror

rate)
2 4 6 8 10 12 14 16 18 20

600

650

700

750

800

850

900

950

Buffer size in the router, packets

C
on

ne
ct

io
n

th
ro

ug
hp

ut
, b

ps

baseline
iw3
iw4
win2K
win4K
sack_on
newreno_off

(b)Mediorera
dioonditions(
5%

errorrate)
2 4 6 8 10 12 14 16 18 20

400

450

500

550

600

650

700

750

800

Buffer size in the router, packets

C
on

ne
ct

io
n

th
ro

ug
hp

ut
, b

ps

baseline
iw3
iw4
win2K
win4K
sack_on
newreno_off

()Poorradioo
nditions(10%er
ror

rate)

Figure9:Th
roughputofT
CPattheend
ofonnetions
.Notethediff
erentsale

TCP Performane in the Presene of Losses 127We have also studied what time it takes to transmit the first 15 kilo-bytes of data in the bulk data onnetions. In this way we an estimatethe performane of a transation-type traffi. The performane piture isdifferent for whole onnetions. The optimal buffer size varies with errorrates and TCP optimizations. A limited reeiver window and disabledNew Reno are quite helpful at the low error loss rate. SACK performsbetter than other modifiations in this ase, as well.We have studied the effet of an error burst on the TCP onnetion.Typially, little or no data gets through during the burst as soon as ata 20% paket loss rate. After the burst ends, the transmission is resumedimmediately, exept when RTO was baked off several times during theburst. In the later ase the onnetion is idle approximately for half of theburst length after the link quality returns to normal. The likelihood ofthe RTO bak-off is inreased with the buffer size. This is beause mostpakets sent during the burst are retransmissions, but not the new data.In suh a ase no valid RTT sample an be olleted and RTO is morelikely baked off several times. Thus a smaller buffer size is preferable fora link where error bursts are possible.We found that RED worsens the performane when only a single TCPonnetion is present. This is beause the moving average of the queuesize does not reat timely to the start-up buffer overflow, and late paketdrops only worsen the reovery. For two onurrent TCP onnetions,RED improves the throughput and the fairness among the onnetions,but only for large buffer sizes (20, 40 pakets). We have provided thedetailed analysis of the start-up buffer overflow and have suggested using adual threshold drop poliy to prevent it. However, its implementation andevaluation is left for future work. A deployment of the Expliit CongestionNotifiation (ECN) ould make RED more attrative in our environment,beause ECN avoids ongestion-related losses. The implementation ofECN in our emulator and a performane evaluation is left for future work.Here we present the detailed analysis of the start-up buffer overflowshown in Figure 8. The segment marked 1, is the last segment trans-mitted before the overflow is deteted after the third DUPACK (2) forthe lost segment (3). The number of segments between 1 and 2 is theFlightSize when a paket loss is deteted, it is about twie as large as therouter buffer. Approximately, every seond segment from this flight islost due to the buffer overflow. The time between points 2 and 3 shows

128 Andrei V. Gurtovthe urrent RTT of the link, it is about six seonds. The number of seg-ments between 3 and 5 is the FlightSize at the moment when the first lossours. Thus, the segment marked 5 is the latest segment to be droppedby an ative queue management algorithm, so that a paket loss is de-teted before point 3. When a loss of 5 would be deteted, the FlightSizeis not grown anymore and additional losses are prevented. The number ofsegments between points 6 and 7 is the minimum FlightSize to trigger thefast retransmit, four segments. Thus, segment 8 is the earliest segmentof the onnetion, whih loss would be reovered by the fast retransmit.The segments before that an be reovered only by the retransmissiontimeout. Thus, if we drop a segment between points 5 and 6 we avoidthe buffer overflow at the ost of a single paket drop. It is better toselet a paket loser to point 5 to avoid underutilization of the link. Apratial implementation of suh a poliy ould define a soft queue limitin the router, for example ten pakets. The hard limit an be two-threetimes larger than the soft limit. When the urrent queue size reahes thesoft limit, a single paket is dropped. When the TCP sender detets apaket loss, it dereases the transmission rate and the buffer overflow isprevented. If the hard queue limit is reahed, the router drops all arriv-ing pakets. Extending this algorithm to work well for a few onurrentonnetions requires a ounter or a timer-based mehanism to determinewhen to drop another paket in ase the load is not dereased, i.e. apreviously dropped paket was not from the most aggressive onnetion.Some heuristis that favor onnetions with small pakets an be imple-mented to protet interative flows. The suggested algorithm is similarto the Dual Threshold Early Paket Disard [10℄.We have olleted some empirial evidene suggesting that the moreareful version of the �bug fix� for preventing multiple fast retransmitsshould be implemented in all TCPs. In the first senario, multiple fastretransmits are aused by a long delay on the link and a spurious timeoutand in the seond senario, by a loss of a blok of segments in the middleof the flight. New Reno adversely affets the performane in the preseneof multiple fast retransmits.

TCP Performane in the Presene of Losses 1297 ConlusionWe have performed an experimental evaluation of the state-of-the-artTCP implementation in the emulated wireless environment. We haveaddressed the problem of start-up buffer overflow, determined a rangeof optimal buffer size in the last-hop router, demonstrated the negativeeffet of overbuffering and the effet of different patterns of error losses onTCP performane. We have also experimented with the RED algorithmin the last-hop router and did not find it useful in our environment.Referenes[1℄ T. Alanko, A. Gurtov, M. Kojo, and J. Manner. Seawind: Soft-ware requirements doument. University of Helsinki, Department ofComputer Siene, September 1998.[2℄ M. Allman. A web server's view of the transport layer. ACM Com-puter Communiation Review, 30(5), Otober 2000.[3℄ M. Allman, S. Dawkins, D. Glover, J. Griner, D. Tran, T. Henderson,J. Heidemann, J. Touh, H. Kruse, S. Ostermann, K. Sott, andJ. Semke. Ongoing TCP researh related to satellites. IETF RFC2760, 2000.[4℄ M. Allman and A. Falk. On the effetive evaluation of TCP. ACMComputer Communiation Review, 5(29), Ot. 1999.[5℄ M. Allman, V. Paxson, and W. Stevens. TCP ongestion ontrol.IETF RFC 2581, April 1999.[6℄ H. Balakrishnan. Challenges to Reliable Data Transport over Hetero-geneous Wireless Networks. PhD thesis, Computer Siene Division,Univ. of California at Berkeley, Berkeley, CA, Aug. 1998.[7℄ H. Balakrishnan, R. Katz, V. Padnamabhan, and S. Seshan. Improv-ing performane of TCP over wireless networks. Tehnial report,Texas A&M University, 1996.[8℄ B. Braden, D. Clark, J. Crowroft, B. Davie, S. Deering, D. Es-trin, S. Floyd, V. Jaobson, G. Minshall, C. Partridge, L. Peterson,

130 Andrei V. GurtovK. Ramakrishnan, S. Shenker, J. Wrolawski, and L. Zhang. Reom-mendations on queue management and ongestion avoidane in theInternet. IETF RFC 2309, Apr. 1998.[9℄ R. Braden. Requirements for internet hosts�ommuniation layers.IETF RFC 1122, Otober 1989.[10℄ R. Cohen and Y. Hamo. Balaned paket disard for improving TCPperformane in ATM networks. Tel Aviv, Israel, Mar. 2000.[11℄ S. Dawkins, G. Montenegro, M. Kojo, V. Magret, and N. Vaidya.End-to-end performane impliations of links with errors. Internetdraft �draft-ietf-pil-error-06.txt�, November 2000. Work in progress.[12℄ K. Fall and S. Floyd. Simulation-based omparisons of Tahoe, Reno,and SACK TCP. ACM Computer Communiation Review, July1996.[13℄ S. Floyd and T. Henderson. The NewReno modifiation to TCP'sfast reovery algorithm. IETF RFC 2582, April 1999.[14℄ A. Gurtov. TCP performane in presene of ongestion and or-ruption losses. Master's thesis, Department of Computer Siene,University of Helsinki, Deember 2000.[15℄ V. Jaobson. Congestion avoidane and ontrol. In Proeedings ofACM SIGCOMM '88, pages 314�329, August 1988.[16℄ R. Ludwig. A ase for flow-adaptive wireless links. Tehnial ReportCSD-99-1053, University of California, Berkeley, 1999.[17℄ R. Ludwig. Eliminating Ineffiient Cross-Layer Interations inWireless Networking. PhD thesis, Aahen University of Tehnology,April 2000.[18℄ M. Mathis and J. Mahdavi. Forward aknowledgement: RefiningTCP ongestion ontrol. In Proeedings of ACM SIGCOMM '96,volume 26, Otober 1996.[19℄ M. Mouly and M. Pautet. The GSM System for Mobile Communi-ations. Europe Media Dupliation S.A., 1992.

TCP Performane in the Presene of Losses 131[20℄ V. Paxson. Automated paket trae analysis of TCP implementa-tions. In Proeedings of the ACM SIGCOMM Conferene: Appli-ations, Tehnologies, Arhitetures, and Protools for ComputerCommuniation (SIGCOMM-97), vol. 27 of Computer Communia-tion Review, pages 167�180, Cannes, Frane, Sept. 14�18 1997. ACMPress.[21℄ V. Paxson and M. Allman. Computing TCP's retransmission timer.IETF RFC 2988, November 2000. Standards Trak.[22℄ K. Poduri and K. Nihols. Simulation studies of inreased initialTCP window size. IETF RFC 2415, September 1998.[23℄ J. Postel. Transmission ontrol protool. IETF RFC 793, 1981.Standard.[24℄ M. Rahnema. Overview of the GSM system and protool arhiteture.IEEE Communiations Magazine, 31:92�100, April 1993.[25℄ T. Shepard and C. Partridge. When TCP starts up with four paketsinto only three buffers. IETF RFC 2416, Sept. 1998.[26℄ W. Stallings. Data and Computer Communiations. Prentie-Hall,sixth edition, 2000.[27℄ W. Stevens. TCP slow start, ongestion avoidane, fast retransmit,and fast reovery algorithms. IETF RFC 2001, Jan. 1997.[28℄ R. H. Stine. FYI on a network management tool atalog: Toolsfor monitoring and debugging TCP/IP internets and interonneteddevies. IETF RFC 1147, Apr. 1990.[29℄ A. S. Tanenbaum. Computer Networks. Prentie-Hall International,1996.[30℄ K. Thompson, G. J. Miller, and R. Wilder. Wide-area internet traffipatterns and harateristis. IEEE Network, 11(6):10�23, Novem-ber/Deember 1997.[31℄ G. Wright and W. Stevens. TCP/IP Illustrated, Volume 2; TheImplementation. Addison Wesley, 1995.

