
94 FDPW'2000. Vol. 3. pp. 94�106Preditive Software Agentsin Pervasive ComputingMikko M�akel�aDepartment of Computer Siene, University of HelsinkiP.O. Box 26 (Teollisuuskatu 23)FIN-00014 University of Helsinki, FinlandE-mail: Mikko.Makela�helsinki.fiAbstratWe examine the possibilities for helping the development of multi-agentsystem ontaining learning agents targeted for preditive learning tasks.These kinds of agents are of use in realising seamless aess to informa-tion anywhere and anytime, whih is one of the entral researh areasfor pervasive omputing. Contents1 Introdution . 952 Software agents . 953 Motivating example . 964 Learning Servie . 994.1 Modeler agents . 995 Pereption Servie . 1015.1 Adaptation via Chains of Interation 1015.2 Centralized handling of pereptions 1026 Optimising the system . 1037 Conlusions . 105 Mikko M�akel�a, 2000

Preditive Software Agents in Pervasive Computing 951 IntrodutionAessing and handling information anywhere and anytime when needed,seamlessly without the user having to learn omplex tehnial skills isthe goal of the new digital age. The first mass-produed devies tar-geted speially for this kind of pervasive omputing have already ap-peared: AutoPC, Personal Digital Assistants (PDAs), Smart phones,wireless movable 'fridge applianes' with targeted UIs and Internet on-netions et.The requirement that information should be available anywhere meansthat wireless tehnology plays an important role in realising pervasiveomputing. Software agents are a relatively new programming paradigm,whih shows muh promise to takle the problems in the field of dis-tributed information management in general, and the problems whih awireless environment auses.In this presentation we disuss developing learning agents, whih areapable of arrying out preditions about future events and onditionsin order to do planning and/or adapt to the hanges in onditions. Thefous is on helping the designing and implementation proess of (learning)agent arhiteture for wireless environments. The emphasis is on estab-lishing learning in a salable and dynami way, thus the ideas should beappliable to other resoure sare environments as well.2 Software agentsThere are numerous definitions for software agents. Some properties oftenattahed to them are autonomity (the ability to operate by themselves),goal-orientedness (possibly inluding planning to reah the goal) and so-ial ability (agents ommuniate with eah other and the system).It is easy to see that judging if a software entity has these propertiesis somewhat fuzzy (see e.g. [2℄ for a good overview): does for examplea ertain set of if-then-else-lauses make a software entity autonomous?The line between an objet-oriented programming vs. agent approahhas been found espeially diffiult to draw, even though there are leardifferenes. One of the most ompelling is that objets do not have exhibitontrol over their behaviour, they must make methods available for otherobjets to invoke. Of ourse agents an be implemented using objet-

96 Mikko M�akel�aoriented tehniques, but the point is that the standard objet-orientedmodel does not inlude many of the aspets of agent programming (for agood disussion about this, see [3℄).In this presentation we are interested in learning agents, whih try toadapt to the hanges in their environment. From a mahine learning pointof view, passive modellers whih merely produe an output from theirinputs aording to their internal mappings, an be seen as objets. Theative modellers, whose set of outputs inlude ations whih are meant toaffet their environment, an be seen as agents. One way to formalise anagent is: Agent = (P; S; �;A) ;where P is the set of the agent's possible pereptions (inputs) p, A is theset of the agent's possible ations a, S is a set of possible agent's internalstates s and � is the mapping produing A from S, usually alled thepoliy of the agent. S may possibly be dependent of past states of theagent, meaning that agent may try to learn from its past experienes tomake deisions about its future ations.Beause agents affet to their environment, they also affet to the in-puts they will reeive from their environment in the future. This ylidependene between agent's inputs (pereptions) and outputs (ations)means that we must use iterative methods for searhing optimal poliyof the agent. For example Reinforement Learning [1℄ is often used foragents. In RL an agent explores to find the highest value of utility avail-able aording to its utility-funtion.3 Motivating exampleWhy are preditive apabilities essential in realising pervasive omputingand why should one implement them by using software agents? Beausethese questions are hard to answer in general terms, in this hapter it isillustrated with a little sample story, how preditions ome in handy onmany oasions and further, why a monolithi system does not ome intoquestion.Sandra leaves her offie for a meeting on the other side oftown. Before she leaves, the files needed at the meeting are

Preditive Software Agents in Pervasive Computing 97automatially synhronized between her laptop and desktopomputers.In the loal train Sandra listens to the weather foreaststreamed via her laptop. Suddenly there is a slight hangein the quality of voie, as the inoming email from her friendhas large pitures attahed. The email is about an on-goingWWW-aution of a hild's safety seat, just like the one Sandrawas looking for. As the aution is losing soon, Sandra deidesto make a bid immediately and swithes her view to the web-browser, whih has already logged into the WWW-pages ofthe aution-site.Beause the system informs Sandra that the onnetionwill likely drop soon, Sandra hurries and makes a bid for thesafety-seat and approves the Shopping Agent to make a 10$higher bid if neessary. Just after the tunnel the onne-tion is re-established, the streamed audio restarts and Sandrareeives a onfirmation that her bid was suessful in the au-tion.Let us examine how all funtionality present in the sample story ouldbe realized:Before Sandra leaves her offie, the files needed at the meet-ing are automatially synhronized between her laptop anddesktop omputers.Calendar Agent an predit Sandra's meeting, based on her input or e.g.beause the meeting is frequent. It informs a Loation Agent whih haslearnt to assoiate suh information to the event of Sandra leaving theoffie, predits that and passes the information to the File Agent. The FileAgent predits the files Sandra may need in the meeting and synhronizesthem between laptop and desktop omputers.While Sandra listens to the weather foreast, suddenly thereis a sligth hange in the quality of voie, as the inoming emailfrom her friend has large pitures attahed.Although nothing speial would appear to happen here, the email ouldbe filtered to deide if it is important enough for onnetion establishment

98 Mikko M�akel�aand possibly ompressed before sending by a Compression Agent on theserver side. Also, the fat that the voie quality just sligthly hanges dueto the email might be possible only if the ompression ratio of the voie isdynamially adjusted before streaming bloks. This ould also be done byCompression Agent whih already knows about the email and thus aboutthe need for adaptation.Sandra deides to make a bid immediately and swithes herview to the web-browser, whih has already logged into theWWW-pages of the aution-site.The automatised logging into the WWW-pages of the aution-site ouldbe realized by allowing e.g. the Keyword Agent to san emails and findorrelations about words and performed user ations. After learning theway to predit the fething of WWW-pages, the Keyword Agent ouldpass the information to a Prefeth Agent. Beause the fething in thisase involves logging, a Logging Agent whih has user authorizations fordifferent logging proedures migth also be involved.The system informs Sandra that the onnetion will likely dropsoon.The Loation Agent predits the inoming tunnel, possibly based on pre-vious trips to the same meeting or information oming from the servieprovider, and informs the QoS Predition Agent. The QoS PreditionAgent informs the user in the ase of a likely onnetion drop. It mightalso make other preparations in order to minimize the damages resulting.Sandra makes a bid for the safety-seat and approves the Shop-ping Agent to make a 10$ higher bid if neessary.Here Sandra informs the Shopping Agent whih then moves to the fixednetwork side to be her representative in the aution.Just after the tunnel the onnetion is re-established, thestreamed audio restarts and Sandra reeives a onfirmationthat her bid was suessful in the aution.This last paragraph gives our little story a happy ending, as agents'autonomity and internal error handling enable seamless reovery from the

Preditive Software Agents in Pervasive Computing 99onnetion drop. Of ourse error reovery an be quite omplex in reality,but it is out of the sope of this presentation.It is worth noting that the explanations presented here are only draftsto illustrate agent approah to the problem and these solutions (used taskdeompositions et.) are by no means the only possible ones.While one ould imagine a monolithi system to offer all this funtion-ality, it is lear that no suh system ould sope with every possible exam-ple one ould ome up with just sligthly altering the desribed situation.Without deep modularity, the software would soon be too big to manageand too resoure hungry for equipment used by nomadi users. Agentsallow modular and dynamial implementation, where system's funtion-ality is a result of relatively small and simple piees of software (agents)o-operation. The fat that these software omponents are autonomousmeans that when the level of available resoures is thigth, those agentswhih are not needed or an not perform satisfatorily at the time anbe stored on persistent storage or even deleted without loosing the wholefuntionality of the system.4 Learning ServieIn this setion we examine ways to support the agents in learning witheasy to use and dynamially initiated modellers.4.1 Modeler agentsHistorially, the researh on artifiial intelligene an be divided roughlyinto two setors: the expert knowledge approah and the mahine learningapproah. These two viewpoints on intelligent behaviour are both veryimportant for an agent system where adaptation is neessary, but on theother hand an not take too muh time or be too random a proess. Insuh a situation, we need learning to make the adaptation possible, and toguide and speed up the learning we need expert knowledge of the learningdomain.The expert knowledge is typially represented as either hard-wiredode in an agent, symboli representations allowing symboli reasoning,or both. We all agents possessing expert knowledge intelligent agents.Their properties are not onsidered to inlude learning or adaptation to

100 Mikko M�akel�athe environment, whih is what separates so alled learning agents fromthem.The differene between intelligent and learning agents is not in realityalways so lear. But this distintion serves our purposes here, as it illus-trates a lear way of making a learning agent out of an intelligent agentby adding adaptive apabilities to it. This an be done by offering helpfor the modelling of the world in whih the intelligent agent is.We propose a Learning Servie, whih offers the possibility for agentsto easily initiate different kinds of modellers in order to use them as sup-port for deision making. These models an be equipped with agent prop-erties in order to make them interoperate easily and have the basi meansfor error handling et.We all these agents whih are initiated by the Learning Servie (basedon the requests from intelligent agents) as Modeller Agents. We see sev-eral potential benefits in using them:� They failitate the use of modelling in agent systems by offering aneasy-to-use interfae to a set of generi model types.� The initiation and hange of different kinds of models is dynami,whih offers good grounds for developing salable solutions, whereenvironmental onditions affet the modelling methods hoen.� The dynamial life span of Modeller Agents also makes it possibleto try making automated searhes for the best available modellingmethod. This ould ome in handy espeially during the develop-ment of the system, although a large set of usable algorithms andommon ways to guide the searh among them would most probablybe needed to make this approah really useful.� Using the same algorithms for many agents has the potential to savememory within most environments, as the ode does not have to bereprodued.As with any servie, the areless usage of the Learning Servie has alsoa potential to waste resoures. For example in ready-for-market systemsthe initiation of the modellers should surely be based on known needs,espeially if the resoures are limited, whih is the ase most often withinpervasive omputing.

Preditive Software Agents in Pervasive Computing 1015 Pereption ServieIn this setion we examine what benefits ould be reahed by entralizedhandling of agents' pereptions and propose a new agent servie for thetask.5.1 Adaptation via Chains of InterationWhen humans or animals reat to the hanges in environment, the finalation is a produt of a series of events. First, the hange ativates apereption within the sense organ affeted. If the phenomenon ausingthe pereption in question happens to be e.g. a voie, after arrival of theair pressure hanges in the ear, raw information of them is then proessedstep by step in different parts of the brain. When finally the pereptionis brougth to the lous of attention, it might already be assoiated withmeanings and mental images, whih the voie has triggered. However,not all pereptions ome to the lous of attention, and not all of thosewhih do, generate any physial ation.The framework presented here an be seen having resemblene to thisultivation of pereptions desibed above. Pereptions are aused by theenvironment and by the agents. The system is not restrited to "real-time" pereptions. Different kinds of models an be used to ultivatepereptions (lustering, filtering et.) and bring memory properties tothe system. In most multi-agent environments the ultivation and mem-orisation of pereptions would our only in eah agent separately.The ultivation of pereptions happens in hains of agent interopera-tion, where the agent preeding in the hain is pereption produer for thefollowing agent, and the following is pereption onsumer for this interop-eration. One form of ultivation is modelling, where those aspets of theinformation whih are seen as ritial for deision making are extrated.In the former setion we introdued one way for adding modellingapabilities to the system with the help of the Learning Servie. In thissetion we are interested in finding ways to make the information flowsbetween agents more easily administret.

102 Mikko M�akel�a5.2 Centralized handling of pereptionsIn the story, we did not yet deal with the problem of how the agents findeah other in order to interat and o-operate. This is in fat one of thebasi problems for any multi-agent system, where all agents an not beknown at the time of implementation. The usual solution to this problemis to use some agents, whih all agents know, as brokers. Within thisapproah the agents are usually divided into three types: broker, servieand lient agents. Client agents use the servies provided by servie agentsin order to aomplish tasks they annot solve on their own.While this approah to agent interation is very general, it does notoffer us muh help for the entral problem in learning to predit futureevents: finding orrelations between different situations and events. Thismeans that usually the orrelation must be known to exist at the timethe agent is implemented, or otherwise it may never be found.To takle for example this problem we propose a Pereption Servie,to whih agents may offer all pereptions they think migth be off valuefor learning in the system. We see that there appears to be many reasonswhy a single entity handling pereptions in a entralized way ould be ofvalue:� The salability of the system. The entralized handling of perep-tions is important for the salability of the system, as it makes itsimpler to use ommon models within Pereption Servie for ad-justing the amount of storing the pereptions, mapping them to lessresoure-onsuming strutures et.� Easy organization of hierarhial learning. The above-mentionedmappings an be, for example, lustering, omplex models for pre-diting future values of given pereptions, or anything in between.So besides salability, entralizing of pereptions is good for effiientand more easily organised learning. Taking the Modeller Agentsinto aount is easy by supporting e.g. periodi subsriptions to theinformation the models need for updating.� Finding unknown orrelations. If the handling of pereptions weredeentralized, some dependenies ould be impossible to find. Be-ause all learning tasks are not known beforehand, there is not evenin priniple a way to group pereptions to isolated groups without

Preditive Software Agents in Pervasive Computing 103the possibility that an optimal learning model would need perep-tions from different groups. If the handling of pereptions is entral-ized, it is easy to ollet data even for datamining purposes, whenthe resoures allow. This an be really valuable in omplex domains.� No sarifie of agent autonomy. As the name pereption serviesuggests, the entralization does not restrit the agents' behaviour,it an be onsidered as an optional servie for them.We see that learning for adaptation will in most ases be hierarhi-al suh way that 'ultivative' information flow between agents is onediretional. This is the ase for example in all the outlined hains ofinteration of the example story in setion 3. This kind of hierarhialagent interation bears similarity to so alled Layered Learning, whihwas developed by Stone to handle omplex multi-agent domains. It hasbeen very suesfully deployed in e.g. roboti soer [4℄.One very important aspet of the Pereption Servie is that it givesus an easy way to use muh more resoures on system development timefor learning than will be possible to give when the system is ready. Thedevelopers an for example use more memory than is usually available forend-users in order to perform datamining for finding orrelations.6 Optimising the systemIf we an onstrut a utility-funtion to alulate the overall utility theagent system reeives, we an see the agent system as a whole as oneagent and sometimes even try to use the same methods as for individualagents for optimisation.For example in a setup onsisting of a user's wireless terminal anda node representing the fixed network the terminal is onneted to, theoverall utility-funtion onsists of at least the following elements:� User Rewards (UR), like the reward of the user getting data withouttoo muh inonviene or delay et.� User Costs (UC), like the ost of data transfer et.� Servie Provider Costs (SPC), like the ost of prosessing data onthe fixed network side et.

104 Mikko M�akel�aThus the overall utility-funtion an be expressed:Ug = UR�UC� SPC :All of these utilities (rewards and osts) an be omposed of a setof lower level utilities. The fundamental problem for using the utilitiesfor system optimisation is nevertheless that there are no general ways tobalane them well. For example, to balane the user rewards and ostsonerning data transfers, we would need to know how muh the useris willing to pay for ertain data to be transferred in a ertain time�inertain onditions. It is obvious that regardless of how advaned our usermodelling methods are, we an never know exatly how the user feels atthe moment about given data, without her telling it via the user interfaesomehow.

Dead-line Time

Utility

Figure 1: Example of utility-funtion for reeiving the dataHowever, for optimisation purposes during the development time of thesystem, we an use models of different kinds of users. In the ase presentedabove, we for example know the approximate form of the utility-funtionfor the user reeiving the data (Figure 1). To study the domain field, wean run lengthy simulation runs with different kinds of utility-funtionsand alulate an overall utility of different solutions.

Preditive Software Agents in Pervasive Computing 105If there are not fundamental flaws in simulations or utility-funtions,the solution giving the higher overall utility over time should in the ma-jority of ases be a better solution in a real-life situation than the onewith lower overall utility. Of ourse the limits of simulations and on-struted utility-funtions must be taken into aount, therefore expertknowledge of the domain should be used when evaluating the solutions.While the results we get this way are might be only indiative, they anstill be very valuable in omparing one solution over another and findingpossible bottle-neks of the system et.7 ConlusionsIn the area of pervasive omputing, where seamless user experiene andthe 'vanishing' of underlying omputing are goals, preditions about thefuture onditions and events are of great importane. In this presentationwe examined ways to make it easier to develop ollaborative learningagents whih have preditive tasks.In the Monads projet, the entral ideas of the presented framework,the Pereption Servie and the Learning Servie, have been implementedusing Java. They have been used extensively in realising a multi-agentsystem where agents perform preditive tasks, essentially the preditionof Quality of Servie (QoS) the user is about to fae in her near future.The evaluation is performed in a simulated wireless environment, wheresimulated nomadi users perform different kinds of data transfers. Whilethe evaluation of the system is still unfinished, we believe from our ex-perienes in realising the preditions present at the moment, that theapproah bears potential and deserves further researh.A very interesting subjet for further researh would be to examinethe possibilities for finding a good way to give boundaries to the learningproess running in simulation and how the searh for the best solutioninside these boundaries ould be easily guided.The points taken in this presentation an be summarised:� The funtion of a multi-agent system where aim is in hierarhiallearning an be seen as information flows inside hains of agents.� These flows may ross and mix, the goal is to ultivate the informa-tion for deision making.

106 Mikko M�akel�a� In omplex domain information flows an be realised in myriads ofways and there are many open problems in deiding, whih of theseis the one giving the optimal solution. Thus ad ho methods anditerative trial & error approahes are used.� This means that there is a need to make trialing between differentsolutions as easy as possible.� We propose two new servies: the Learning Servie for realisinga dynami and easy way to use generi algorithms for modellingpurposes, and the Pereption Servie for making the realisation ofinformation flows from one agent to another easier, espeially inthe ase of so-alled Modeller Agents initiated using the LearningServie.� We see the use of these servies as omplementary to existing agentframeworks, their use should not restrit the use of other methods.� For omparing different solutions, an overall utility-funtion of thesystem should be onstruted, if possible. It an be used to examinethe system with simulations of real-life situations.Referenes[1℄ L. P. Kaelbling, M. L. Littman, and A. W. Moore, ReinforementLearning: A Survey. Journal of Artifiial Intelligene Researh 4,1996. pp. 237�285.[2℄ S. Franklin and A. Graesser, Is it an Agent, or Just a Program?:A Taxonomy for Autonomous Agents. Proeedings of the (ECAI)'96Workshop on Agent Theories, Arhitetures, and Languages: Intelli-gent Agents (III). 1997. Springer.[3℄ N. R. Jennings, K. Syara, and M. Wooldridge, A Roadmap of AgentResearh and Development. Journal of Autonomous Agents andMulti-Agent Systems, vol. 1, no 1, 1998. pp. 7�38.[4℄ P. Stone, Layered Learning in Multiagent Systems: A Winning Ap-proah to Roboti Soer. MIT Press, 2000.

