94

FDPW?2000. Vol. 3. pp. 94106

Predictive Software Agents
in Pervasive Computing

Mikko Makela

Department of Computer Science, University of Helsinki

P.0O. Box 26 (Teollisuuskatu 23)
FIN-00014 University of Helsinki, Finland

E-mail: Mikko.Makela®helsinki.fi

Abstract

We examine the possibilities for helping the development of multi-agent
system containing learning agents targeted for predictive learning tasks.
These kinds of agents are of use in realising seamless access to informa-
tion anywhere and anytime, which is one of the central research areas
for pervasive computing.

Contents
1 Introductionc.c.iiiiiiiiiieiinnennnnn 95
2 Softwareagents............... .. . i i, 95
3 Motivating example, 96
4 Learning Serviceieuiittitieeineennesan 99
4.1 Modeler agents. L. 99
5 DPerception Servicettt 101
5.1 Adaptation via Chains of Interaction 101
5.2 Centralized handling of perceptions 102
6 Optimising thesystem, 103
7 Conclusionsottt ittt 105

© Mikko Mikeld, 2000

Predictive Software Agents in Pervasive Computing 95

1 Introduction

Accessing and handling information anywhere and anytime when needed,
seamlessly without the user having to learn complex technical skills is
the goal of the new digital age. The first mass-produced devices tar-
geted specially for this kind of pervasive computing have already ap-
peared: AutoPC, Personal Digital Assistants (PDAs), Smart phones,
wireless movable 'fridge appliances’ with targeted Uls and Internet con-
nections etc.

The requirement that information should be available anywhere means
that wireless technology plays an important role in realising pervasive
computing. Software agents are a relatively new programming paradigm,
which shows much promise to tackle the problems in the field of dis-
tributed information management in general, and the problems which a
wireless environment causes.

In this presentation we discuss developing learning agents, which are
capable of carrying out predictions about future events and conditions
in order to do planning and/or adapt to the changes in conditions. The
focus is on helping the designing and implementation process of (learning)
agent architecture for wireless environments. The emphasis is on estab-
lishing learning in a scalable and dynamic way, thus the ideas should be
applicable to other resource scarce environments as well.

2 Software agents

There are numerous definitions for software agents. Some properties often
attached to them are autonomity (the ability to operate by themselves),
goal-orientedness (possibly including planning to reach the goal) and so-
cial ability (agents communicate with each other and the system).

It is easy to see that judging if a software entity has these properties
is somewhat fuzzy (see e.g. [2] for a good overview): does for example
a certain set of if-then-else-clauses make a software entity autonomous?
The line between an object-oriented programming vs. agent approach
has been found especially difficult to draw, even though there are clear
differences. One of the most compelling is that objects do not have exhibit
control over their behaviour, they must make methods available for other
objects to invoke. Of course agents can be implemented using object-

96 Mikko Méakela

oriented techniques, but the point is that the standard object-oriented
model does not include many of the aspects of agent programming (for a
good discussion about this, see [3]).

In this presentation we are interested in learning agents, which try to
adapt to the changes in their environment. From a machine learning point
of view, passive modellers which merely produce an output from their
inputs according to their internal mappings, can be seen as objects. The
active modellers, whose set of outputs include actions which are meant to
affect their environment, can be seen as agents. One way to formalise an
agent, is:

Agent = (P, S,m, A) ,

where P is the set of the agent’s possible perceptions (inputs) p, A is the
set of the agent’s possible actions a, S is a set of possible agent’s internal
states s and 7 is the mapping producing A from S, usually called the
policy of the agent. S may possibly be dependent of past states of the
agent, meaning that agent may try to learn from its past experiences to
make decisions about its future actions.

Because agents affect to their environment, they also affect to the in-
puts they will receive from their environment in the future. This cyclic
dependence between agent’s inputs (perceptions) and outputs (actions)
means that we must use iterative methods for searching optimal policy
of the agent. For example Reinforcement Learning [1] is often used for
agents. In RL an agent explores to find the highest value of utility avail-
able according to its utility-function.

3 Mbotivating example

Why are predictive capabilities essential in realising pervasive computing
and why should one implement them by using software agents? Because
these questions are hard to answer in general terms, in this chapter it is
illustrated with a little sample story, how predictions come in handy on
many occasions and further, why a monolithic system does not come into
question.

Sandra leaves her office for a meeting on the other side of
town. Before she leaves, the files needed at the meeting are

Predictive Software Agents in Pervasive Computing 97

automatically synchronized between her laptop and desktop
computers.

In the local train Sandra listens to the weather forecast
streamed via her laptop. Suddenly there is a slight change
in the quality of voice, as the incoming email from her friend
has large pictures attached. The email is about an on-going
WWW-auction of a child’s safety seat, just like the one Sandra
was looking for. As the auction is closing soon, Sandra decides
to make a bid immediately and switches her view to the web-
browser, which has already logged into the WWW-pages of
the auction-site.

Because the system informs Sandra that the connection
will likely drop soon, Sandra hurries and makes a bid for the
safety-seat and approves the Shopping Agent to make a 10$
higher bid if neccessary. Just after the tunnel the connec-
tion is re-established, the streamed audio restarts and Sandra
receives a confirmation that her bid was successful in the auc-
tion.

Let us examine how all functionality present in the sample story could
be realized:

Before Sandra leaves her office, the files needed at the meet-
ing are automatically synchronized between her laptop and
desktop computers.

Calendar Agent can predict Sandra’s meeting, based on her input or e.g.
because the meeting is frequent. It informs a Location Agent which has
learnt to associate such information to the event of Sandra leaving the
office, predicts that and passes the information to the File Agent. The File
Agent predicts the files Sandra may need in the meeting and synchronizes
them between laptop and desktop computers.

While Sandra listens to the weather forecast, suddenly there
is a sligth change in the quality of voice, as the incoming email
from her friend has large pictures attached.

Although nothing special would appear to happen here, the email could
be filtered to decide if it is important enough for connection establishment

98 Mikko Makela

and possibly compressed before sending by a Compression Agent on the
server side. Also, the fact that the voice quality just sligthly changes due
to the email might be possible only if the compression ratio of the voice is
dynamically adjusted before streaming blocks. This could also be done by
Compression Agent which already knows about the email and thus about
the need for adaptation.

Sandra decides to make a bid immediately and switches her
view to the web-browser, which has already logged into the
WWW-pages of the auction-site.

The automatised logging into the WWW-pages of the auction-site could
be realized by allowing e.g. the Keyword Agent to scan emails and find
correlations about words and performed user actions. After learning the
way to predict the fetching of WWW-pages, the Keyword Agent could
pass the information to a Prefetch Agent. Because the fetching in this
case involves logging, a Logging Agent which has user authorizations for
different logging procedures migth also be involved.

The system informs Sandra that the connection will likely drop
soon.

The Location Agent predicts the incoming tunnel, possibly based on pre-
vious trips to the same meeting or information coming from the service
provider, and informs the QoS Prediction Agent. The QoS Prediction
Agent informs the user in the case of a likely connection drop. It might
also make other preparations in order to minimize the damages resulting.

Sandra makes a bid for the safety-seat and approves the Shop-
ping Agent to make a 10$ higher bid if neccessary.

Here Sandra informs the Shopping Agent which then moves to the fixed
network side to be her representative in the auction.

Just after the tunnel the connection is re-established, the
streamed audio restarts and Sandra receives a confirmation
that her bid was successful in the auction.

This last paragraph gives our little story a happy ending, as agents’
autonomity and internal error handling enable seamless recovery from the

Predictive Software Agents in Pervasive Computing 99

connection drop. Of course error recovery can be quite complex in reality,
but it is out of the scope of this presentation.

It is worth noting that the explanations presented here are only drafts
to illustrate agent approach to the problem and these solutions (used task
decompositions etc.) are by no means the only possible ones.

While one could imagine a monolithic system to offer all this function-
ality, it is clear that no such system could scope with every possible exam-
ple one could come up with just sligthly altering the described situation.
Without deep modularity, the software would soon be too big to manage
and too resource hungry for equipment used by nomadic users. Agents
allow modular and dynamical implementation, where system’s function-
ality is a result of relatively small and simple pieces of software (agents)
co-operation. The fact that these software components are autonomous
means that when the level of available resources is thigth, those agents
which are not needed or can not perform satisfactorily at the time can
be stored on persistent storage or even deleted without loosing the whole
functionality of the system.

4 Learning Service

In this section we examine ways to support the agents in learning with
easy to use and dynamically initiated modellers.

4.1 Modeler agents

Historically, the research on artificial intelligence can be divided roughly
into two sectors: the expert knowledge approach and the machine learning
approach. These two viewpoints on intelligent behaviour are both very
important for an agent system where adaptation is neccessary, but on the
other hand can not take too much time or be too random a process. In
such a situation, we need learning to make the adaptation possible, and to
guide and speed up the learning we need expert knowledge of the learning
domain.

The expert knowledge is typically represented as either hard-wired
code in an agent, symbolic representations allowing symbolic reasoning,
or both. We call agents possessing expert knowledge intelligent agents.
Their properties are not considered to include learning or adaptation to

100 Mikko Makela

the environment, which is what separates so called learning agents from
them.

The difference between intelligent and learning agents is not in reality
always so clear. But this distinction serves our purposes here, as it illus-
trates a clear way of making a learning agent out of an intelligent agent
by adding adaptive capabilities to it. This can be done by offering help
for the modelling of the world in which the intelligent agent is.

We propose a Learning Service, which offers the possibility for agents
to easily initiate different kinds of modellers in order to use them as sup-
port for decision making. These models can be equipped with agent prop-
erties in order to make them interoperate easily and have the basic means
for error handling etc.

We call these agents which are initiated by the Learning Service (based
on the requests from intelligent agents) as Modeller Agents. We see sev-
eral potential benefits in using them:

e They facilitate the use of modelling in agent systems by offering an
easy-to-use interface to a set of generic model types.

e The initiation and change of different kinds of models is dynamic,
which offers good grounds for developing scalable solutions, where
environmental conditions affect the modelling methods chocen.

e The dynamical life span of Modeller Agents also makes it possible
to try making automated searches for the best available modelling
method. This could come in handy especially during the develop-
ment of the system, although a large set of usable algorithms and
common ways to guide the search among them would most probably
be needed to make this approach really useful.

e Using the same algorithms for many agents has the potential to save
memory within most environments, as the code does not have to be
reproduced.

As with any service, the careless usage of the Learning Service has also
a potential to waste resources. For example in ready-for-market systems
the initiation of the modellers should surely be based on known needs,
especially if the resources are limited, which is the case most often within
pervasive computing.

Predictive Software Agents in Pervasive Computing 101

5 Perception Service

In this section we examine what benefits could be reached by centralized
handling of agents’ perceptions and propose a new agent service for the
task.

5.1 Adaptation via Chains of Interaction

When humans or animals react to the changes in environment, the final
action is a product of a series of events. First, the change activates a
perception within the sense organ affected. If the phenomenon causing
the perception in question happens to be e.g. a voice, after arrival of the
air pressure changes in the ear, raw information of them is then processed
step by step in different parts of the brain. When finally the perception
is brougth to the locus of attention, it might already be associated with
meanings and mental images, which the voice has triggered. However,
not all perceptions come to the locus of attention, and not all of those
which do, generate any physical action.

The framework presented here can be seen having resemblence to this
cultivation of perceptions descibed above. Perceptions are caused by the
environment and by the agents. The system is not restricted to "real-
time" perceptions. Different kinds of models can be used to cultivate
perceptions (clustering, filtering etc.) and bring memory properties to
the system. In most multi-agent environments the cultivation and mem-
orisation of perceptions would occur only in each agent separately.

The cultivation of perceptions happens in chains of agent interopera-
tion, where the agent preceding in the chain is perception producer for the
following agent, and the following is perception consumer for this interop-
eration. One form of cultivation is modelling, where those aspects of the
information which are seen as critical for decision making are extracted.

In the former section we introduced one way for adding modelling
capabilities to the system with the help of the Learning Service. In this
section we are interested in finding ways to make the information flows
between agents more easily administret.

102 Mikko Maikela

5.2 Centralized handling of perceptions

In the story, we did not yet deal with the problem of how the agents find
each other in order to interact and co-operate. This is in fact one of the
basic problems for any multi-agent system, where all agents can not be
known at the time of implementation. The usual solution to this problem
is to use some agents, which all agents know, as brokers. Within this
approach the agents are usually divided into three types: broker, service
and client agents. Client agents use the services provided by service agents
in order to accomplish tasks they cannot solve on their own.

While this approach to agent interaction is very general, it does not
offer us much help for the central problem in learning to predict future
events: finding correlations between different situations and events. This
means that usually the correlation must be known to exist at the time
the agent is implemented, or otherwise it may never be found.

To tackle for example this problem we propose a Perception Service,
to which agents may offer all perceptions they think migth be off value
for learning in the system. We see that there appears to be many reasons
why a single entity handling perceptions in a centralized way could be of
value:

e The scalability of the system. The centralized handling of percep-
tions is important for the scalability of the system, as it makes it
simpler to use common models within Perception Service for ad-
justing the amount of storing the perceptions, mapping them to less
resource-consuming structures etc.

e Easy organization of hierarchical learning. The above-mentioned
mappings can be, for example, clustering, complex models for pre-
dicting future values of given perceptions, or anything in between.
So besides scalability, centralizing of perceptions is good for efficient
and more easily organised learning. Taking the Modeller Agents
into account is easy by supporting e.g. periodic subscriptions to the
information the models need for updating.

e Finding unknown correlations. If the handling of perceptions were
decentralized, some dependencies could be impossible to find. Be-
cause all learning tasks are not known beforehand, there is not even
in principle a way to group perceptions to isolated groups without

Predictive Software Agents in Pervasive Computing 103

the possibility that an optimal learning model would need percep-
tions from different groups. If the handling of perceptions is central-
ized, it is easy to collect data even for datamining purposes, when
the resources allow. This can be really valuable in complex domains.

e No sacrifice of agent autonomy. As the name perception service
suggests, the centralization does not restrict the agents’ behaviour,
it can be considered as an optional service for them.

We see that learning for adaptation will in most cases be hierarchi-
cal such way that ’cultivative’ information flow between agents is one
directional. This is the case for example in all the outlined chains of
interaction of the example story in section 3. This kind of hierarchical
agent interaction bears similarity to so called Layered Learning, which
was developed by Stone to handle complex multi-agent domains. It has
been very succesfully deployed in e.g. robotic soccer [4].

One very important aspect of the Perception Service is that it gives
us an easy way to use much more resources on system development time
for learning than will be possible to give when the system is ready. The
developers can for example use more memory than is usually available for
end-users in order to perform datamining for finding correlations.

6 Optimising the system

If we can construct a utility-function to calculate the overall utility the
agent system receives, we can see the agent system as a whole as one
agent and sometimes even try to use the same methods as for individual
agents for optimisation.

For example in a setup consisting of a user’s wireless terminal and
a node representing the fixed network the terminal is connected to, the
overall utility-function consists of at least the following elements:

e User Rewards (UR), like the reward of the user getting data without
too much inconvience or delay etc.

e User Costs (UC), like the cost of data transfer etc.

e Service Provider Costs (SPC), like the cost of prosessing data on
the fixed network side etc.

104 Mikko Maikela

Thus the overall utility-function can be expressed:
U, =UR - UC - SPC.

All of these utilities (rewards and costs) can be composed of a set
of lower level utilities. The fundamental problem for using the utilities
for system optimisation is nevertheless that there are no general ways to
balance them well. For example, to balance the user rewards and costs
concerning data transfers, we would need to know how much the user
is willing to pay for certain data to be transferred in a certain time—in
certain conditions. It is obvious that regardless of how advanced our user
modelling methods are, we can never know exactly how the user feels at
the moment about given data, without her telling it via the user interface
somehow.

Utility

Dead-line Time

Figure 1: Example of utility-function for receiving the data

However, for optimisation purposes during the development time of the
system, we can use models of different kinds of users. In the case presented
above, we for example know the approximate form of the utility-function
for the user receiving the data (Figure 1). To study the domain field, we
can run lengthy simulation runs with different kinds of utility-functions
and calculate an overall utility of different solutions.

Predictive Software Agents in Pervasive Computing 105

If there are not fundamental flaws in simulations or utility-functions,
the solution giving the higher overall utility over time should in the ma-
jority of cases be a better solution in a real-life situation than the one
with lower overall utility. Of course the limits of simulations and con-
structed utility-functions must be taken into account, therefore expert
knowledge of the domain should be used when evaluating the solutions.
While the results we get this way are might be only indicative, they can
still be very valuable in comparing one solution over another and finding
possible bottle-necks of the system etc.

7 Conclusions

In the area of pervasive computing, where seamless user experience and
the ’vanishing’ of underlying computing are goals, predictions about the
future conditions and events are of great importance. In this presentation
we examined ways to make it easier to develop collaborative learning
agents which have predictive tasks.

In the Monads project, the central ideas of the presented framework,
the Perception Service and the Learning Service, have been implemented
using Java. They have been used extensively in realising a multi-agent
system where agents perform predictive tasks, essentially the prediction
of Quality of Service (QoS) the user is about to face in her near future.
The evaluation is performed in a simulated wireless environment, where
simulated nomadic users perform different kinds of data transfers. While
the evaluation of the system is still unfinished, we believe from our ex-
periences in realising the predictions present at the moment, that the
approach bears potential and deserves further research.

A very interesting subject for further research would be to examine
the possibilities for finding a good way to give boundaries to the learning
process running in simulation and how the search for the best solution
inside these boundaries could be easily guided.

The points taken in this presentation can be summarised:

e The function of a multi-agent system where aim is in hierarchical
learning can be seen as information flows inside chains of agents.

e These flows may cross and mix, the goal is to cultivate the informa-
tion for decision making.

106 Mikko Makela

e In complex domain information flows can be realised in myriads of
ways and there are many open problems in deciding, which of these
is the one giving the optimal solution. Thus ad hoc methods and
iterative trial & error approaches are used.

e This means that there is a need to make trialing between different
solutions as easy as possible.

e We propose two new services: the Learning Service for realising
a dynamic and easy way to use generic algorithms for modelling
purposes, and the Perception Service for making the realisation of
information flows from one agent to another easier, especially in
the case of so-called Modeller Agents initiated using the Learning
Service.

e We see the use of these services as complementary to existing agent
frameworks, their use should not restrict the use of other methods.

e For comparing different solutions, an overall utility-function of the
system should be constructed, if possible. It can be used to examine
the system with simulations of real-life situations.

References

[1] L. P. Kaelbling, M. L. Littman, and A. W. Moore, Reinforcement
Learning: A Survey. Journal of Artificial Intelligence Research 4,
1996. pp. 237-285.

[2] S. Franklin and A. Graesser, Is it an Agent, or Just a Program?:
A Tazonomy for Autonomous Agents. Proceedings of the (ECAT)’96
Workshop on Agent Theories, Architectures, and Languages: Intelli-
gent Agents (III). 1997. Springer.

[3] N. R. Jennings, K. Sycara, and M. Wooldridge, A Roadmap of Agent
Research and Development. Journal of Autonomous Agents and Multi-
Agent Systems, vol. 1, no 1, 1998. pp. 7-38.

[4] P. Stone, Layered Learning in Multiagent Systems: A Winning Ap-
proach to Robotic Soccer. MIT Press, 2000.

